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Abstract:  As agricultural data and information becomes more abundant, diagnostics are needed to 

quickly and efficiently interrogate these data. Indices exist to identify sensor data with structured 

spatial variation, conducive to site-specific management. However, these indices do not indicate if 

this spatial variation is driven by managerial or environmental effects. A new index is proposed to 

identify perennial (or ordered row) fields that are likely or highly likely to have management effects 

within the spatial pattern of sensor data. This is determined by investigating differences in 

anisotropic (directional) variograms parallel and perpendicular to the direction of management (row 

orientation). Small differences are indicative of isotropic (environmental-driven) variation. Large 

differences indicate row and management effects. The index is derived, run on a database of 1080 

simulated fields and applied to yield data from 124 vineyard blocks to assess index performance and 

response to different levels of variation. Simulations showed that the index is non-responsive to the 

magnitude of variation but responds strongly to anisotropy in the data. The stochastic variance in 

the data was observed to have an effect on index response and may be problematic when applied to 

noisy data sets.  The index scores for the simulated and real-world data showed a similar pattern of 

response and the index was able to identify vineyard blocks where differential row management had 

generated differing yield responses. The index scores are continuous and some general guidelines 

for use of the index are proposed.  

Keywords: anisotropy, variograms, viticulture, horticulture  
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Introduction 

High-resolution proximal crop data are widely available in many agricultural systems. These include data 

from yield monitors and canopy sensors. With increasing volumes of data being generated, end-users 

(growers and agronomists) need rapid and effective diagnostics to interrogate the quality of the data. This is 

especially needed before deciding if a data layer should be used in decision-making processes. Incorrect or 

poor quality data that is used in visualisation or in decision processes will generate poor decisions and 

undermine user confidence in the data and the process.   

Some examples already exist of diagnostics that operate on the information within raw sensor data to help 

inform end-users. These diagnostics have been primarily used to understand the level of variation with-in 

fields and to quantify the opportunity for a field to be suitable for site-specific management. To date, 

proposed “opportunity indices” have considered both the magnitude and spatial structure of yield (Pringle et 

al., 2003, de Olivera et al., 2007) and canopy (Monso et al., 2013) variation and/or the technical constraints 

imposed by operations (Tisseyre and McBratney, 2008) and zoning (Roudier et al., 2011). Such indices 

consider the relationship between stochastic and structured variation, which is critical for considering the 

amount of production variation that is potentially manageable. They have been based on assumptions of 

isotropy in the data, i.e. that variation occurs equally in all directions. However, as well as understanding the 

potential opportunity for site-specific management, end-users also need an indication of whether the spatial 

variation in the data is likely to be associated with (spatial) differences in management, or if it is driven by 

environmental factors. If variation in a field is caused by management effects, then the first step is most 

likely to be to correct management before considering further opportunities for site-specific management.  

Understanding the potential sources of variation is particularly important in ordered, perennial cropping 

systems, with vineyards being an example. In such systems, management is very focused on activities along 

a row. There exists the potential for adjacent rows to receive different levels of management. A very practical 

example of this is in the level of pruning (bud numbers left) by different individuals working along adjacent 

rows, which can impact yield and canopy development (Bates, 2008). Other possibilities include incorrect 

machinery set-up or equipment operations on one row of a multi-row machine, such as a sprayer. Such 

management effects could leave a systematic pattern of crop response in a vineyard, orchard or field. If this 

Author-produced version of the article published in Precision Agriculture, 2018. 
The original publication is available at https://link.springer.com/article/10.1007/s11119-018-9620-3 
Doi: 10.1007/s11119-018-9620-3



3 
 

is the case, then differences in anisotropic, or directional, analysis of crop data should provide an indication 

of whether there is an effect of management on production. 

Figure 1 illustrates the potential problem using vineyard yield monitor data. It is clear in Figure 1 that the 

region denoted by the area A, has an irregular yield pattern that is likely to be following an environmental 

effect – and likely to be soil variation. Patterns flow across block boundaries. In contrast, the area denoted 

B has a yield pattern that is aligned with the rows, indicative of different management in different sections 

of the vineyard blocks (NB: all blocks are the same variety and same trellis system). There will of course be 

intermediate situations where there are some management effects overlying a spatial environmental effect.  

At present, a suitable diagnostic for rapidly analysing spatial production data for potential management 

effects does not exist. In this paper, an index is proposed that considers how crop production, in this case 

yield, varies along and across trellised vineyard systems. The hypothesis is that environmental variation 

tends to be isotropic in nature, so similar spatial variance structures should be observed along and across 

rows. In contrast, management effects, if present, will be oriented along rows resulting in different spatial 

variance structures parallel and perpendicular to the rows. 
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Fig. 1 A 2014 grape yield map from a Concord (Vitis Labrusca Bailey) vineyard in the Lake Erie Region of 

NY State. Boxes A and B show regions where yield relates to environmental variations (A) and where yield 

shows strong linear effects associated with management (B). The numbers on the graph are block identifiers 

(1 – 11).  

 

Methods and Materials 

The Management or Environment Index (MoEI) - Derivation of MoEI 

Variography is a well-developed and accepted discipline in precision agriculture for interpolation (e.g. 

Whelan et al. 1996), sampling (e.g. Kerry and Oliver, 2003) and for diagnostic statistics (e.g. Pringle et al. 
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2003). It is possible to compute experimental variograms within a variety of different software platforms 

(e.g. via R packages or with Python libraries). The proposed MoEI uses this ability and is calculated by 

considering the difference in the area under the curve (AUC) of an anisotropic variogram generated parallel 

to the direction of management (rows) and the AUC of an anisotropic variogram generated perpendicular to 

the direction of management. The difference is then standardised against the larger of these two areas (Eq. 

1). Low scores indicate a similar spatial structure in both directions, larger scores will be indicative of 

differences. 

MOEI =  
|𝐴𝑈𝐶⊥ −𝐴𝑈𝐶= |

max⁡[𝐴𝑈𝐶⊥ ;𝐴𝑈𝐶= ]
∗ 100      (1) 

Where: AUC⊥ is the area under the curve of the isotropic variogram constructed perpendicular to the 

direction of management (rows), AUC= is the area under the curve of the anisotropic variogram constructed 

parallel to (along) the direction of management. 

The index will be dependent on the method used to generate the anisotropic experimental variograms and 

the theoretical model applied to the experimental variograms. To standardise this, there are several steps 

proposed to ensure that this equation can provide MOEI scores that are effective for decision-making widely 

within viticulture in the first instance, but also potentially in other cropping systems as well. 

Derivation of the experimental variogram clouds: Every production system is potentially different, 

especially in the manner that the crop is established. The experimental variograms therefore need to reflect 

the conditions of the production system. From the production perspective, the key distances are the fixed 

row widths, the width of sensing operations and the typical swath width for field operations. With this in 

mind, the lag interval within the experimental variograms should approximate the minimum width between 

sensor operations (or swaths), which for vineyard yield data is a function of the row width1, (d) and the 

maximum lag distance should be at least twice the typical field operation swath (D) (which may be greater 

than the typical sensing swath)2. In cases where the field operations tend to be very intense (e.g. based on 2-

3 row operations), the maximum lag distance should be wider and a distance of 10 times the row width has 

                                                           
1 For broad-acre row crops, this is likely to be a minimum sensing width, not row spacing. 
2 This is likely to be more relevant if the index is transferred to broadacre systems, where for example yield data 

may be collected on 6 m swaths but spraying operations may be at 36 m. In this case, the maximum lag will be 

72 m to ensure two ‘spray’ swaths (which may be the cause of management effects) are captured in the index.  
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been adopted. Both conditions are likely to constrain the maximum lag to a relatively short distance (30 – 

50 m). This was done deliberately to focus potential management differences on short-range variance 

structures and to avoid the potential effect of large spatial patterns in the data. 

As the intention is to generate variograms in specific directions, a tolerance angle of 2° is specified to ensure 

that the anisotropic variograms generated parallel to the row orientation are only considering within-row 

data (Fig. 2). At this tolerance, with a row width of 3 m, data from adjacent rows should not be considered 

until lag distances > 80 m (assuming straight rows and fairly straight lines of georeferenced data), well 

beyond the maximum lag specified. Similarly, for the perpendicular anisotropic variograms, a small 

tolerance ensures a narrow band of data is considered. This minimises the distance between points that are 

located within the same row when moving sideways through the vineyard, avoiding issues with pairs within 

rows as well as between rows.  

MoEI Conditions:  

Lag interval = row width (d) 

Maximum lag = max (2x swath of widest operations (D); 10 x row width (d)) 

Tolerance angle = 2° (designed for vineyards at ~2-3 m row spacing3) but adjustable, such that the 

distance (Distance1), where neighbouring row data (Distance1) is considered for the parallel 

variogram is < the maximum lag distance, and the maximum distance within a row (Distance2) 

for the perpendicular  variogram is < d.  

Given these constraints, anisotropic experimental variograms are generated parallel to (along) and 

perpendicular to the direction of management (rows) using the standard semi-variance formula (Eq. 2) 

constrained to an angle equal to the row orientation (θ) or perpendicular to it (θ + 𝜋/2). 

𝛾(ℎ, 𝜃) = (
1

2
𝑁(ℎ, 𝜃))∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ, 𝜃)]2

𝑁(ℎ,𝜃)
𝑖=1   (2) 

Where θ = row orientation and the perpendicular solution utilises (θ + 𝜋/2). 

                                                           
3 For systems where row spacing and plant/tree/vine spacing is larger, e.g. large tree crops, a larger tolerance 
may be used and tolerance angle could be adapted. 
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These conditions and the directional (anisotropic) variogram determination are illustrated in schematic form 

(Fig. 2).  

 

Fig. 2 Schematic indicating how the conditions specified limit the selection of data for the anisotropic 

experimental variograms. Image is not to scale. Points used for generating pairs with the example point (●) 

are indicated as open circles parallel to the row and as grey circles perpendicular. All other points are 

discounted from the semivariance calculations. The angle (2° here) should be chosen so that points from 

neighbouring rows are not considered for the parallel variogram, and points are not considered within the 

same row for the perpendicular variogram.  

 

Model fitting to the experimental variogram cloud: When used for interpolation or other opportunity indices, 

experimental variograms are usually modelled with a standard range of models (spherical, exponential, linear 

with sill, gaussian, matern, etc…). However, correct automatic model fitting can be problematic using these 

models. The intent with an index such as this, is to ensure that it is as user-friendly and to be as robust as 

possible. It is not practical or desirable to have users verifying the quality of the theoretical model fit to the 

experimental variogram. The sole objective is to ensure a good fit to determine the area under the curve. To 

achieve this, a smoothing spline fit has been employed with a smoothing parameter of 0.6, which allows 

some flexibility in the fit. Additionally, for each lag in the experimental variogram, a weighting for the fit 

was assigned based on the relative number of pairs used to generate that point. This was done to ensure that 
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any individual lag with a low level of confidence (low number of pairs) does not adversely affect the fit. 

Figure 3 shows an example of the experimental anisotropic variograms generated parallel and perpendicular 

to the direction of harvest and the spline fit to the data for vineyard yield collected with an on-harvester yield 

monitor. The high semivariance of the first lag in the anisotropic experimental variogram perpendicular to 

rows (Fig. 3) is associated with a low number of pairs (n = 74) in its determination. The spline only shows a 

small change associated with this value due to the weighting in the fit. Most of the other lags, in both of the 

anisotropic experimental variograms, have a number of pairs > 1000.   

Calculation of AUC: With the smoothing spline defined above, the numerical integral is calculated and used 

for the AUC of each anisotropic variogram. These values are used in Equation 1.  

 

Fig. 3 An example of the anisotropic experimental variograms and weighted spline fits derived from yield 

monitor data collected in a Concord vineyard block, Westfield, NY, USA.  

 

MoEI applied to simulated yield data 

To assess the performance of the MoEI, simulated 1 ha ‘vineyard’ yield data sets were generated with a 

known spatial structure (and no induced errors) using the yield data simulator of Leroux et al. (2017). The 
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row width was set at 5 m and the inter-vine distance within a row at 3 m. The choice of 5 m rows and 3 m 

vine planting is slightly larger than is typical in most systems (often approximately 2.5 m x 1.5 m), but was 

increased to reduce computational time for the simulations while approximating typical row to vine spacing 

ratio. Simulations were targeted to have an average yield of 7 – 7.5 Mg/ha with variations in: 

 The coefficient of variation (CV) ==> from 10 % to 60 % in steps of 10% (6 levels) 

 The range of the variogram of the simulated yield ==> from 30 m to 90 m in steps of 30 m (3 

levels) 

 The spatial structure in the data represented by the nugget to sill ratio ==> from 30 % to 70 % in 

steps of 10 % (5 levels), where 30% indicates that the nugget and (partial) sill comprise 30% and 

70% of total semivariance respectively, and 

 The anisotropy in the data represented by the percentage of anisotropy introduced ==> from 30 % 

to 90 % in steps of 20 % (4 levels), where 90 % anisotropy is generated by making the perpendicular 

variogram range 1/10th the parallel variogram range. 

The simulator was run 3 times to generate 3 repeats for all possible combinations of variables. In total, there 

were 1080 simulated fields (6 x 3 x 5 x 4 levels x 3 repeats).  

These variables were selected to simulate different levels in the amount (magnitude) of variation and the 

spatial structure to the variation based on reported values from a global survey of vineyard yield monitor 

data (Taylor et al., 2005). Different levels of anisotropy were also selected. There was no reported literature 

on observed anisotropy in vineyard yield data so the range of anisotropy ratios selected (10 -70 %) was based 

on the authors’ experience and expectations.  

In the first instance, simulation is useful for providing an expected population distribution of MoEI scores as 

a reference for any real-world applications. This was assessed using a histogram analysis and summary 

statistics. In the second instance, simulation can provide an indication of the sensitivity of the MoEI scores 

to the different facets of yield variation changes. ANOVA was used to interrogate independently the effect 

of each variable (CV, variogram range, Nugget:Sill ratio and anisotropy) on the MoEI scores and the 

behaviour of the index.  
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For each simulated field, the R program (R Core Team, 2017) was used to generate the experimental 

directional variogram (gstat package), fit a smoothing spline (stats package) and to determine the AUC 

(MESS package) for the parallel and perpendicular anisotropic variograms. The data was exported and the 

MoEI calculated (Eq. 1) in JMP (v12; SAS Institute, Cary, NC, USA). Histograms and ANOVA were 

performed in JMP. Maps of the simulated yield data for selected blocks were generated using ArcMap (ESRI, 

Redlands,CA, NY, USA). 

 

Real-world Application of MoEI: 

A Concord enterprise (~170 ha over 35 blocks), spread over several locations near Westfield NY and within 

the Lake Erie viticulture region, was chosen as a detailed test site. The vineyard in Figure 1 is one of these 

locations. All the enterprise vineyards have been yield mapped for 4 years (2014-17) using the Advanced 

Technology Viticulture grape yield monitor (Adelaide, South Australia, Australia). This provided a 

relatively temporally rich data set for viticulture (see Taylor et al., 2016 for further details on the yield 

monitoring process). Most of the vineyard blocks are oriented North-South (as shown in Fig. 1), although 

some other blocks (not shown) do have other orientations, which are accounted for in the MoEI calculation. 

There were some blocks where yield data were not collected or only partially collected in some years. Blocks 

with no data or < 500 data points were omitted and, after removal, a total of 124 vineyard block-years (over 

the 4 years) were available for the analysis. The vineyard management team is progressive and often 

performs on-farm trials to assess new approaches. Some of these have been highlighted in Figure 1 (Area B) 

for one year, however experimentation is only limited to a small area in any given year.  

The yield data for each year was cleaned before analysis to remove extreme values (<0.25 and >30 Mg/ha). 

It was then trimmed to within 3 standard deviations of the mean. Row width in these vineyards is 

approximately 2.7 m. Operations are done on 3-row sections (~8 m), so a max lag distance of 27 m (10 x 

row width) was used. The MoEI was calculated as described above using R scripts and JMP.  

Histograms of scores from all blocks are presented as well as detailed scores and anisotropic variograms for 

the blocks presented in Figure 1. Maps of the trimmed yield data were generated in ArcMap. Variogram 

plots were produced in R. 
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Results and Discussion: 

Simulation 

The simulated outputs generated a range of MoEI scores from 0.1 to 60.6. The distribution was positively 

skewed with a peak at very low values (<2), a second peak at 12, a spike about 22 and then a long tail. This 

indicates that there may be overlapping distributions in the total population. The median MoEI score was 

16.5 and mean score was 18.5 in the simulated data. 

 

Fig. 4 Histograms of the MoEI scores generated (a) across the simulated data sets (n=1080) and (b) using 

yield monitor data from a Concord enterprise (2014-17; n=124).  

 

The ANOVA results (Table 1) showed that there was no effect of CV on the MoEI scores. Since the MoEI 

is a ratio between the anisotropic variograms, it was not expected that the magnitude of variation in the 

system would affect the score and the simulation results showed this. The variogram range affected MoEI 

values (lower scores) at shorter ranges (30 m). This range approximates the max lag distance defined for the 

index in this system. At longer ranges, there was no statistical effect on the scores. The mean MoEI scores 

were statistically significantly different between all Nugget:Sill ratio levels and the level of anisotropy 
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applied also generated statistical differences in mean MoEI scores for all levels. Increased differences in the 

level of anisotropy parallel and perpendicular to rows was expected (and the intent of the index). Increasing 

the Nugget:Sill ratio reduces the expected spatial patterning in the data and the level of autocorrelation in 

the data. Less autocorrelation resulted in less potential to differentiate between anisotropic variograms. This 

indicates that ‘noisy’ data sets, with a high level of stochastic variance, may not be suitable for analysis with 

this index and care should be taken in conditions where the nugget variance represents a large proportion of 

the total variance. Nugget:Sill ratios > 50% in vineyard yield monitor data are common in viticulture, 

particularly in Australian systems  (see summary data on the Cambardella Index (Cambardella et al., 1994) 

presented in Taylor et al. (2005), so it is an expected effect).  

 

Table 1 Mean responses for each adjusted variable. For a given variable, all permutations of the other 

variables were included in determining the mean value. Significant differences were determined using 

Tukey’s Means comparison following ANOVA. Different letters indicate significant difference within a 

variable (p<0.05) (but not between variables).  

Variable Level Mean MoEI 

CV 10% 18.95a 

CV 20% 19.01a 

CV 30% 18.31a 

CV 40% 18.11a 

CV 50% 18.56a 

CV 60% 18.37a 

   

Range 30m 13.96ba 

Range 60m 20.38b 

Range 90m 21.32b 

   

Nugget:Sill 30% 26.27a 

Nugget:Sill 40% 22.59b 

Nugget:Sill 50% 18.86c 

Nugget:Sill 60% 13.95d 

Nugget:Sill 70% 11.10e 

   

Anisotropy 30%   8.78d 

Anisotropy 50% 14.96c 

Anisotropy 70% 22.38b 

Anisotropy 90% 28.09a 
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Fig. 5 Simulated yield data sets selected randomly from within populations of MoEI scores of a) 0-10, b) 10-

20, c) 30-40 and d) >40. The actual MoEI score for each field is indicated on each plot. Simulated yield maps 

show the shift from large, irregular spatial patterns (left - a), likely associated with natural environmental 

factors, to ‘striped’ patterns associated with management effects (right – d). 

 

Figure 5 shows four examples of simulated yield data selected randomly from different parts of the MoEI 

population. The progression from having large coherent, non-vertical variation (left, a - b) to very ‘striped’ 

vertical effects in the data (right, d) is clearly evident. Figure 5c shows a simulated dataset with an above 

median MoEI score (25.1) and presents an interesting case. The trend East-West of low-high-low yield is 

evident and approximates a vertical structure but it is not clear if this is following management or aligned 

environmental variation. It illustrates that this is an indicative tool and should help to identify blocks (fields) 

of interest, and not be used without verification.  

 

Real World Application 

The distribution of MoEI scores acquired from the Concord enterprise yield monitor data (2014-17) is shown 

in Figure 4b (on the same x-axis as the simulated data histogram). It has the same approximate shape and 

positive skew as the simulated data (Fig. 4a), with a peak at low values and secondary peaks at 8 and 16, 

shifted slightly from those in the simulated data, followed by a long tail and a range from 0.03 to 56.43. The 

median (11.1) and mean (12.8) scores were slightly lower than the simulated data. The simulated and real-

world data are behaving in a similar way, providing a validation for the simulated outcomes. Again, it appears 

that there may be several populations in the real yield data. 
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To further interrogate the MoEI performance, the MoEI scores for 11 blocks (shown in Fig. 1) across the 

four years of measurement are given in Table 2. Scores tended to range from 5 to the mid-high 20s, with two 

outliers with scores > 40 recorded. There is no clear stable temporal pattern to the block scores, with most 

blocks recording both higher and lower scores in different years. The two high outliers in 2014, Blocks 8 

and 10 (Fig. 1), have a yield response that is strongly affected by management effects, in particular 

differences in pruning strategies (pers. comm. Mr Thom Betts, Betts Vineyards Ltd, Westfield NY, USA). 

In subsequent years, this management effect was removed (by using a uniform canopy management strategy). 

In the southern section, Blocks 8 and 10, that exhibited high MoEI scores in 2014, showed a decreasing 

pattern in MoEI scores over subsequent years when more ‘normal conditions’ prevailed. Block 11 was an 

exception, exhibiting similar scores in all four years and the same East-West yield trend. However, while 

known, the reason for this is unclear to the vineyard managers.  

All blocks where the MoEI scores were > 25 (n=12) were discussed with the vineyard manager. In all cases, 

the manager could identify varying management effects, often without viewing the yield map. These were 

usually either a change in pruning strategy or a difference in crop thinning operations that produced a 

‘management’ effect on the spatial yield pattern. Blocks 4 and 5 in 2014 (Fig. 1) were 2 of the blocks 

discussed and present interesting cases. On first viewing, they do not seem to have strong management 

effects (part of Zone A in Fig. 1). However, Block 4 was used for cover crop trials in 2014 and a higher 

yielding middle section resulted. In Block 5, the eastern-most part of the block missed a pruning treatment 

resulting in higher yields. These trends are evident with a closer inspection of the raw yield data (Fig. 1).     
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Table 2 Annual MoEI scores for each block within a vineyard, Westfield, NY, USA derived from yield 

monitor data collected over 4 seasons (2014-17). Missing data indicates that insufficient yield monitor data 

were collected in that block in a particular year to perform the analysis. 

Block 

ID 2014 2015 2016 2017 

1 6.67 10.32 11.18 9.09 

2 20.86 
 

7.84 14.81 

3 12.19 6.48 1.44 9.58 

4 27.10 
 

8.76 10.68 

5 25.85 
 

2.76 21.39 

6 9.94 15.17 12.62 16.82 

7 9.14 12.67 16.88 2.85 

8 31.95 7.38 0.16 13.75 

9 16.07 9.23 8.85 12.03 

10 33.55 6.40 6.12 9.95 

11 17.06 18.60 16.15 17.72 

  

 

To further illustrate the behaviour of the index, some examples of the anisotropic variograms and the raw 

yield maps are shown in Figure 6. The two example blocks, Blocks 3 and 8, are again derived from the 

vineyard in Figure 1. Block 3 has been taken from the northern section, that exhibited more natural, irregular 

yield patterns in 2014, and Block 8 from the southern section that had management effects in 2014 (Fig. 1). 

The two blocks represent high, low and intermediate MoEI scores across the 4 years (Table 2).  
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Fig. 6 Anisotropic experimental variograms and weighted spline fits parallel (○) and perpendicular (□) to 

management, with the corresponding raw yield maps from two blocks (Block 3 top; Block 8 bottom) from 

2014 (left) to 2017 (right). All the variograms are plotted on a common scale. Yield is also plotted on a 

common scale across the years.  
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The maps of Block 3 (Fig. 6a-d) show no defined ‘striping’ in any year. There is a strong visible trend in the 

block from east-west (low-high), especially in 2017. However, the MoEI scores are low to moderate (< 13) 

across all years. In contrast, the management effect in Block 8 in 2014 (Fig. 1 and Fig. 6e) is clearly defined 

and produced a high-yielding western part in a generally low-yielding year. This produced a strong deviation 

in the parallel and perpendicular variograms, which resulted in the high MoEI (31.95) (Fig. 6e). The 

following year, 2015 (Fig. 6f), exhibited generally high yields across the block but does show an inverse of 

the 2014 pattern, with the western side slightly lower yielding than the rest of the block. However, 

management in 2015 was uniform, and the difference is a legacy effect of the 2014 management effect. 

Thought this effect was visible in 2015, especially with the 2014 data supplied, there is no distinct striping 

pattern in the Block 8 2015 yield data. The MoEI was low in 2015 and by 2016 was approaching 0, with 

yield patterns in 2016 linked to underlying soil patterns, especially in the north of the block (Fig. 6g). In 

2017 (Fig. 6h), the MoEI rises again (13.75) and the western third of the block was lower yielding, a result 

of different pruning management in this section (pers. comm. Mr Thom Betts, Betts Vineyard Ltd, Westfield, 

NY, USA). The more ‘natural’ yield pattern that exists in the 2016 map was only evident in the eastern half 

of the block in 2017.  

 

General Discussion 

The simulation results showed that the index, as intended, is responding to differences in anisotropy and the 

amount of stochastic (nugget) variance in the data. It is not responding to the total amount of (aspatial) 

variance in the data. It was observed in the results that the variogram range had an effect when the range was 

less than the maximum lag set for the index. However, at longer ranges, there was no effect of the variogram 

range. Reported ranges for yield variograms tend to be larger than the likely maximum lag (e.g. a median 

range of 89.2 m from 162 blocks reported by Taylor et al. 2005). Therefore, the variogram range is likely to 

have a low impact on the MoEI. By design, the MoEI is constrained to short-range variation (10 x row width 

or 2 x max swath operation) thus the choice of a variogram range of 30-90 m was considered sufficient for 

index evaluation. 

From the real-world results presented here, the MoEI has flagged blocks that may have or are very likely to 

have management effects contributing to the spatial variation in within-block yield response. It appears to 
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have a strong potential to be used as a diagnostic index in precision agriculture. When discussing the 

outcomes with the vineyard manager, the manager could identify issues with the higher scoring blocks and 

was very interested to understand further the effect that management was having on production. The index 

was able to identify patterns that were associated with management effects that were not immediately 

obvious to the researchers, but were confirmed in discussions with the manager and closer inspection.  

The simulation and Concord vineyard results indicated that MoEI values of <10 are typical for vineyards 

where variability in production is caused predominantly by underlying environmental factors. Scores > 25 

were always associated with blocks where management had strongly affected the spatial pattern of 

production. Based on the distribution of responses in Figure 4, and the information in Table 2 and Figure 6, 

some preliminary rules have been proposed in Table 3. These are designed to provide a guide for users and 

summarises some initial potential thresholds to interpret the MoEI scores. It must be stressed that these are 

derived for yield monitor data in Concord systems in the Lake Erie Region. Since the MoEI is standardised 

against the maximum AUC recorded, it is likely that these thresholds, or similar values will hold true in other 

applications, but should be validated before use. In cases where the stochastic variance (high Nugget:Sill 

ratio) is known or expected to be high, these thresholds will be lower as the MoEI is less sensitive as the 

Nugget:Sill ratio increases (Table 2). This may be real production variation or induced variation 

(measurement error), for instance via a poorly installed/calibrated sensor or incorrect operation. The index 

cannot differentiate the reason for the elevated stochastic variance, but thresholds can be altered if the level 

of stochastic variance is likely to be dampening the MoEI scores. The assumption is that the rank of the fields 

would still be maintained provided there is confidence in the experimental variograms. 
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Table 3 Threshold values and interpretation of MoEI scores within a viticulture system (based on Concord 

production in the Lake Erie region). 

MoEI 

Score 

Interpretation Suggested action 

<6 Variation is isotropic and highly 

likely driven by environment 

Calculate other opportunity indices and consider 

differential management if necessary. 

6-12 Variation is mostly isotropic and 

likely driven by environment 

Consider a check of the data before calculating other 

opportunities and consider differential management. 

12-18 Variation contains some 

anisotropy and is possibly 

associated with management  

Visually check map of the block/field to determine if 

management effects are dominating. Consider data for 

site-specific management. 

18-30 Variation exhibits anisotropy that 

is likely caused by management  

Visually check map of the data with the intent of 

understanding where management effects are, their 

cause and remediation. Do not considering using data 

for PA unless management effects are permanent. 

> 30 Variation exhibits strong 

anisotropy that is highly likely 

caused by management 

Visually check map of the data with the intent of 

understanding where management effects are, their 

cause and remediation. Do not consider using data for 

PA unless management effects are permanent. 

 

In the real-world scenario presented here, the fields flagged with high MoEI scores were all identified as 

being affected by varying management operations. This may not always be the case, and it is certainly 

possible, though not expected, that a change/error in the sensor during operations could cause a similar effect 

and generate a high MoEI score. Sensor malfunction should always be considered and discounted as a first 

step. The quality of the GNSS could also be an issue. Very low quality receivers, with low accuracy, could 

generate meandering and criss-crossing tracks that would confound the analysis. The MoEI score may not 

be sensible if individual rows cannot be defined in the plot of the raw data. Mid to high MoEI scores should 

only be treated as indicative of a potential management effect on the spatial pattern. Blocks need to be 

investigated to confirm management effects. This is likely to need plotting of the raw or interpolated data 

for visualisation of the spatial patterns and discussions with the vineyard (or farm) manager.  

The intent with the MoEI is to identify blocks/fields where management may confound implementation of 

future differential (site-specific) management. Where management practices have been identified as driving 

the spatial variation, care should be taken when incorporating the data into a decision process. In most cases, 

the advice is likely to be to remove the data unless the management effect is expected to be constant or 

repeated. In the latter case, it is relevant to include the effect in differential decision and management 
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processes. Care should also be taken when considering using the ‘management-affected’ data with other 

indices, such the original Opportunity Index (Pringle et al. 2003) or the Technical Opportunity Index 

(Tisseyre and McBratney, 2008).  

While its application here has been targeted at vineyard yield monitor data, theoretically, it could equally be 

applied to other vineyard production data, including remote- or proximal-sensed canopy data or other 

proximal vineyard data, such as the high resolution berry count data of Mirbod et al. (2016). Similarly, as 

indicated in the index description, it could potentially be applied across a wide range of crop systems, 

provided the MoEI conditions are suitably adjusted. Alternative perennial systems, organised in straight rows, 

are the most obvious applications. However, annual row crop data could be analysed if operations occur in 

straight lines and that turns, particularly headland and border operations, are removed before analysis.  

 

Conclusions 

An index has been proposed that examines ordered production data, with yield data used as an example, for 

spatial patterns that may be attributed to management rather than environmental variability. The index is 

based on differences between variography applied along and perpendicular to the direction of operations in 

a production system. When applied to actual and simulated vineyard yield monitor data, the index was 

effective at identifying fields where management effects were likely. The simulation data showed that the 

index responds to changes in anisotropy and in the amount of structured variation in the data (Nugget:Sill 

ratio), which are of interest, but was not affected by the magnitude of variation or the range (distance) of 

autocorrelated variance in the data, which are not of interest in this situation.  

The proposed index fills a gap for a diagnostic tool to identify data sets that may be compromised and need 

validation before being used in data analytics and decision systems. It is proposed to be used with, not instead 

of, existing diagnostic statistics and indices in precision viticulture and agriculture. While defined here and 

applied to a relatively large viticulture data set, more widespread application will be needed to determine its 

suitability in other vineyard systems, with other crop types and with other sensors and to correctly interpret 

the index scores. 
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