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ABSTRACT The link between phenotypic plasticity and heterosis is a broad fundamental question, with
stakes in breeding. We report a case-study evaluating temporal series of wood ring traits of hybrid larch
(Larix decidua · L. kaempferi and reciprocal) in relation to soil water availability. Growth rings record the tree
plastic responses to past environmental conditions, and we used random regressions to estimate the re-
action norms of ring width and wood density with respect to water availability. We investigated the role of
phenotypic plasticity on the construction of hybrid larch heterosis and on the expression of its quantitative
genetic parameters. The data came from an intra-/interspecific diallel mating design between both parental
species. Progenies were grown in two environmentally contrasted sites, in France. Ring width plasticity with
respect to water availability was confirmed, as all three taxa produced narrower rings under the lowest water
availability. Hybrid larch appeared to be the most plastic taxon as its superiority over its parental species
increased with increasing water availability. Despite the low heritabilities of the investigated traits, we found
that the expression of a reliable negative correlation between them was conditional to the water availability
environment. Finally, by means of a complementary simulation, we demonstrated that random regression
can be applied to model the reaction norms of non-repeated records of phenotypic plasticity bound by a
family structure. Random regression is a powerful tool for the modeling of reaction norms in various
contexts, especially perennial species.
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The link between phenotypic plasticity and heterosis has been well
documented for annual plants, notably maize (Janick 1999; Gallais
2009). Usually, hybrids are able to stay productive in environments
where one or both parents’ performances drop. This enhanced stability
is referred to as ’hybrid homeostasis’, and can be responsible for the
environmental conditionality of the expression of heterosis (Knight
1973). Comparing larch growth in several contrasted sites, we recently

highlighted homeostasis for hybrid larch (HL, Larix decidua Mill. · L.
kaempferi (Lamb.) Carr., and the reciprocal cross), a highly productive
conifer cultivated for wood in Western Europe and North America
(Marchal et al. 2017). Because the plasticity of some traits can be a tool
for the homeostasis of the whole organism, phenotypic plasticity is
suspected to play a key role in the construction of hybrid larch
heterosis.

Phenotypic plasticity, in its narrow-sense definition, is the ability of a
genotype to produce several phenotypes depending on the environ-
mental conditions. It can be studied by means of reaction norms
(Schlichting and Pigliucci 1998). A reaction norm is an equation, or
simply a graphical representation, of the value taken by a phenotypic
trait along an environmental gradient. Estimating reaction norms is not
a trivial task. In particular, exposing the same genotype to different
environments may be experimentally challenging, depending on the
biological model. In some cases, the only solution is to expose related
individuals to the different environments, relying on their genetic re-
lationship to draw the common, additively inherited, component of the

Copyright © 2019 Marchal et al.
doi: https://doi.org/10.1534/g3.118.200697
Manuscript received August 24, 2018; accepted for publication October 10, 2018;
published Early Online October 17, 2018.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.7211597.
1Corresponding author: INRA, Research Unit on Forest Breeding, Genetics and
Physiology (UR 0588 AGPF), E-mail: leopoldo.sanchez-rodriguez@inra.fr

Volume 9 | January 2019 | 21

http://orcid.org/0000-0002-2865-9865
http://orcid.org/0000-0002-5061-4241
http://orcid.org/0000-0002-8285-0441
https://doi.org/10.1534/g3.118.200697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25387/g3.7211597
https://doi.org/10.25387/g3.7211597
mailto:leopoldo.sanchez-rodriguez@inra.fr


reaction norms (e.g., Gibert et al. 2004; Valladares et al. 2006). The
random regression model is an extension to the classical quantitative
genetics model (Kirkpatrick and Heckman 1989), and as such it can
predict the additive component of reaction norms, and give access to
causal components of population variation. In addition, Murren et al.
(2014) demonstrated with a large meta-analysis that when comparing
reaction norms of close species or populations, changes in shapes (i.e.,
slope, curvature) were generally higher than the changes in the inter-
cepts (i.e., the taxon means), suggesting the need of high-order mod-
eling. In that view, random regression modeling has also the valuable
capability to fit complex curves for reaction norms.

Random regression is a special case of covariance function (Meyer
1998). Covariance functions present a particular interest in quantitative
genetics, as they allow the representation of quantitative genetics pa-
rameters as functions. For instance, the cattle breeding literature is rich
in illustrations of heritabilities and genetic correlations estimated as
functions of time in the milk production context (e.g., Miglior et al.
2007; Muir et al. 2007; Jamrozik et al. 2010). Although covariance
functions and random regression have been often suggested for the
modeling of reaction norms (Kirkpatrick and Heckman 1989; De Jong
and Bijma 2002; Schaeffer 2004), their application is still rare for most
taxa (Morrissey and Liefting 2016). For instance, in the forestry context,
random regression has been used to model growth over time (Apiolaza
and Garrick 2001; Wang et al. 2009), but not tree growth reaction
norms over environmental gradients until very recently (Carnwath
and Nelson 2016; Marcatti et al. 2017). Li et al. (2017) advocated for
the use of random regression in forest trees, but the growth reaction
norms they reviewed were only performed at the population scale, with
fixed effects, without covariance functions. Nevertheless, because they
are sessile, long-living, and because they record radial growth incre-
ments in the form of annual rings, trees are remarkable biological
models for the study of phenotypic plasticity. The use of random re-
gression has been suggested for the study of tree rings plasticity
(Sánchez et al. 2013).

For a given tree, the succession of wood annual rings constitutes an
archive of its plastic responses to the succession of past climatic
environments. Indeed, trees growth is conditioned by solar radiation,
temperature and precipitation. They are particularly sensitive to
drought, as this can eventually lead to lethal embolismof their hydraulic
system. As a response to water stress, trees have a range of plastic
responses including modification of the cambial activity to control the
sap flow rate and xylem resistance to embolism (Bréda et al. 2006;
Rennenberg et al. 2006). Under a temperate climate, water availability
is usually high in spring with cool temperatures and lower in summer
with higher temperatures. Trees respond to this seasonal succession by
producing an early wood, made of large cells with thin walls, progres-
sively followed by a late wood, made of narrow cells with thick walls,
allowing a rapid change in the trunk of the water conductance along the
season (Sánchez-Vargas et al. 2007; Martinez-Meier et al. 2009;
Bryukhanova and Fonti 2013). This succession of early and late wood
is recorded in the wood as an annual growth ring.

In summary, trees present the remarkable feature of recording
long repeated series of phenotypes that are known to respond
plastically to the climatic environment, and differentially among
individuals. This provides a gold mine of information for the
study of phenotypic plasticity. First, based on a random regression
approach, we leveraged this information to address the question of
the role of phenotypic plasticity in the construction of HL heterosis
for radial growth. Indeed, integrative heterosis as observed for HL
stem circumference necessarily arises from the cumulation of het-
erosis occurring at the annual ring scale: this might be expressed

differentially with respect to parental genotypes depending on water
availability. Second, we described how the water availability affected
the quantitative genetic parameters of HL and of its parental species.
Finally, since most biological models do not archive repeated series
of phenotypic plasticity records, we addressed the question of the
generalizability of the method. Using simulations, we evaluated the
robustness of the random regression approach for the modeling of
reactionnorms in the casewhere no repeated series of phenotypes per
individual are available.

MATERIALS AND METHODS
Thedataarepart of amulti-siteprogeny trial established inearly 1997on
two environmentally contrasted sites at Saint-Appolinaire (SA, 45∘58’N
4∘26’E, 784 m a.s.l.) and Saint-Saud (SS, 45∘31’N 0∘48’E, 307 m a.s.l.) in
central France. The site of SA is a relatively high-elevation site, on a
steep slope with a southern aspect formerly planted with Douglas-fir;
whereas the site of SS is a low elevation site on a formermeadow, under
oceanic influences.

Progenieswere produced by control-crossing in the frame of a diallel
mating design between 9 European larch (Larix decidua, EL) parents
and 9 Japanese larch (L. kaempferi, JL) parents, producing pure species
and HL full-sib progenies. A total of 327 EL, 472 JL and 1199 HL
genetically distinct trees were ultimately available for analysis in SA;
and 311 EL, 706 JL and 1261 HL in SS. The mating design is detailed in
Supplementary 1, Tables S1 and S2, with the number of genotypes
available for each combination of parents. The set-up is also described
further in Marchal et al. (2017).

Phenotypic data: wood formation records
One breast-height diameter increment corewas collected fromeach tree
from each site. For each diameter increment core, only one radius (the
one exhibiting the fewest defects) was kept for further analysis. These
radial increment cores were sawed in 2mm thick boards andX-rayed to
obtain microdensitometric profiles (Figure 1). From the alternating of
early wood and late wood, the year of formation for each ring was
identified (Regent Instruments Canada Inc. 2008). Ring width (RW)
and ring mean density (RMD) were measured from the microdensito-
metric profiles. A total of 1998 increment cores in SA and 2278 incre-
ment cores in SS were collected. In SS, the increment cores were
collected at three different periods: before the first thinning in
2003 from trees to be felled, and two later ones before and after the
second thinning, that is in 2009 and in 2011. In SA, the collection was
done in 2013. The average number of rings available per core was 13.2
in SA and 9.7 in SS (Supplementary 1, Fig. S1).

Environmental data: soil water availability
The soil daily relative extractable water (REW) content was estimated
using a water balancemodel. The REWvaries between 1 (field capacity)
and0 (permanentwiltingpoint,meaning thewater is no longer available
for the plants). We used an adapted, simplified implementation of
Granier et al. (1999)’s daily water balance model. This implementation
allowed two important features. First, it accounted for the temporal
evolution of the stand. Indeed, during the growth of the trees, the
canopy leaf area increases and subsequently increases the transpiration,
whereas understorey shrubs and grass vegetation decrease. Second, the
model could be run at the individual tree level. Indeed, the intra-site
spatial heterogeneity of the soil storage capacity causes variation in the
water availability at the individual tree level. Thus, the daily REW was
estimated for each combination of individual tree within each site and
year for which ring data were available. The water balance model is
described in Supplementary 2.
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To summarize a year of fluctuation of REW, we selected the lowest
decile of the whole series of the year’s daily REW values (D1rew). This
index was considered because of its easy interpretation (the REWbelow
which lay the �35 driest days of the year), because of its likelihood to
carry the information of drought events and therefore to affect the
growth, and finally because it ensures a proper coverage of the envi-
ronmental gradient (Supplementary 1, Fig. S2), unlike e.g., indexes
based on a drought threshold that may not be reached some humid
years. The environmental gradient coverage guarantees the stability of
the regression parameters and the quality of the subsequent analyses.

The indexD1rew, derived from a complex water balancemodel, was
compared to a simpler indexMJJA defined as the sum of rain fromMay
to August (inspired from Fallour-Rubio et al. (2009)), from which was
subtracted the daily potential evapotranspiration (Supplementary 1,
Fig. S2). Moreover, Bryukhanova and Fonti (2013) showed that for
European larch, several traits including RW were more strongly corre-
lated to the soil water deficit of year t2 1 than to the deficit of the current
year t. Therefore, we modeled the reaction norms along D1rew for year t,
for year t2 1, and MJJA for year t as three separate environmental gradi-
ents, and we compared the coefficient of determination (R2) (Nakagawa
and Schielzeth 2013; Johnson 2014) of the resulting reaction norms.

Modeling of reaction norms by random
regression model
Reaction norms were modeled using orthogonal Legendre polynomials
(Kirkpatrick et al. 1990; Schaeffer 2004). Let Lmðx9Þ be the mth order
Legendre polynomial of x9; with x9 the standardization of x on [-1, 1],
that is x9 ¼ 2½x2minðxÞ�=½maxðxÞ2minðxÞ�2 1: We fitted the fol-
lowing model for each taxon (EL, HL or JL):

yijklðxÞ ¼
XMS

m¼0

simLm
�
x9
�þXMA

m¼0

ajmLm
�
x9
�

                        þ
XMP

m¼0

pkmLm
�
x9
�þ rijkl

where yijklðxÞ was the lth observation of individual k, of genotype j,
from site i, with environment x. The site’s effect s was fixed. The
additive effects a were random, and depended on the species. For
EL and JL pure species, respectively, aE � Nð0;ΣAE5AEÞ and

aJ � Nð0;ΣAJ5AJÞ, where5 indicates a Kronecker product,Awere
the additive relationship matrices computed from the pedigree, and
ΣA were the estimated variance-covariance matrices for additive ef-
fects. For the hybrid, aH ¼ gE þ gJ with g the additive contributions
from each parental species. Thus, gE � N

�
0;ΣHE5

1
2AHE

�
on the EL

side and gJ � N
�
0;ΣHJ5

1
2AHJ

�
on the JL side, with ΣH the estimated

variance-covariance matrices for additive effects in hybridization
(Stuber and Cockerham 1966). Given that the parents were supposed
outbred and unrelated, the resulting relationship matrices AHE and
AHJ reduced to identity matrices. The permanent environment, i.e.,
the similarity from non-additive genetic origin between the re-
peated measures of the same individual tree (Mrode and Thompson
2005), was p � Nð0;ΣP5IPÞ. The residual was unstructured
r � Nð0;s2

RIRÞ: We chose to fix MS ¼ MA ¼ MP ¼ M so that an
’order M’ applied to the whole model. Models of different orders
are characterized by how much information on plastic responses is
included: order 0 does not estimate any plasticity, order 1 calculates
slopes, order 2 additionally fits parabolas, and so on.

This model was fitted for both traits RW and RMD separately
(univariate models), and also for RW and RMD simultaneously
(multivariate model). In this latter case, the effects s, a and p
were estimated for each trait; the variance-covariance matrices Σ
gathered the variances of each combination of trait and order
and the covariances between them all; the residual variance s2

R
was independent for each trait.

The model was fitted by Markov chain Monte Carlo (MCMC) with
the same priors as inMarchal et al. (2017) (Hadfield 2010; RCoreTeam
2017): parameter expansion was used on the genetic variance-covariance
matrices, and flat improper priors were set on the permanent environ-
ment variance-covariance matrices as well as on the residual variances.
All chains were 5:5 · 106 iterations long, with 5 · 105 iterations burn-in
and a thinning of 5· 103. Point estimations from chains were maximum
a posteriori, and 95% credible intervals (CIs) were computed where
appropriate. The quality of fitting depending on the order was assessed
using coefficients of determination R2.

Estimation of genetic parameters
The additive variances (s2

A:RWðxÞ and s2
A:RMDðxÞ) and covariance be-

tween RW and RMD (cAðxÞ) were calculated from the multivariate
random regression model as functions of the environmental gradi-
ent x. The additive variance-covariance matrix decomposes into

ΣA ¼
�
VA:RW CA

Ct
A VA:RMD

�
where VA:RW and VA:RMD are the vari-

ance-covariance sub-matrices for each trait, CA is the across-traits co-
variance sub-matrix, and the operator: t indicates a transposition. The
additive variance of a traitT is the variance of the additive performances
within the population for this trait, that is the variance of a linear
combination:

s2
A:TðxÞ ¼ var

 XMA

m¼0

ajm:TLm
�
x9
�! ¼ L

�
x9
�
VA:TL

t�x9�

Where Lðx9Þ ¼ ½L0ðx9Þ L1ðx9Þ . . . LMAðx9Þ�. The permanent environ-
ment variance s2

P:TðxÞ was computed in the same way. Similarly, the
additive covariance between the 2 traits was computed as:

cAðxÞ ¼ L
�
x9
�
CAL

t�x9�
Finally, the permanent environment covariance cPðxÞ was computed
in a similar way. Narrow-sense heritabilities and additive correlation
were then computed respectively:

Figure 1 Microdensitometric profile from one wood core sample in
Saint-Appolinaire. Bottom: wood core sample (pith on the left).
Middle: X-ray radiography of the sample. Top: wood density variation
(kg/m3) along the core (mm). The peaks correspond to late wood and
delimit the annual growth rings.
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h2TðxÞ ¼
s2
A:TðxÞ

s2
A:TðxÞ þ s2

P:TðxÞ þ s2
R:T

and:

rAðxÞ ¼ cAðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
A:RWðxÞs2

A:RMDðxÞ
q

For hybrids, narrow-sense heritabilities and additive correlations were
computed for each of the parental contributions gE and gJ : These
heritabilities h2HE and h2HJ quantify the proportion of hybrid pheno-
typic variance that is due to the additive inheritance from each pa-
rental side (Marchal et al. 2017). In the same way, the additive
correlations rHE and rHJ are the correlations between the additive
contributions for the 2 traits from each parental side. Therefore, on

the EL side and given that ΣHE ¼
�
VHE:RW CHE

Ct
HE VHE:RMD

�
, for a trait T:

s2
HE:TðxÞ ¼ L

�
x9
�
VHE:TL

t�x9�
from which:

h2HE:TðxÞ ¼
s2
HE:TðxÞ

1
2s

2
HE:TðxÞ þ 1

2s
2
HJ:TðxÞ þ s2

P:TðxÞ þ s2
R:T

and for the covariance parameters between the 2 traits:

cHEðxÞ ¼ L
�
x9
�
CHEL

t�x9�
from which:

rHEðxÞ ¼ cHEðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
HE:RWðxÞs2

HE:RMDðxÞ
q

and idem on the JL side.

Simulation: evaluation of the random regression model
with single record per individual
Weused the softwareMetagene to simulate data. The functioningof this
simulator to derive in silico populations with phenotypic plasticity
records is detailed in Supplementary 3. Basically, the genotypic
effect at a given locus was set as a function of the environment
aðxÞ ¼ a0 þ a1ðx þ dÞ þ a2ðx þ dÞ2; where parameters a0; a1; a2

and d defined the parabola that was associated to each genotype in a
set of X diallelic loci constituting the genome. Then, for each indepen-
dent simulation, the simulator randomly sampled a genome for each
founder, produced the mating between founders, the new offspring
genomes, and returned their phenotypic plasticity in the form of
longitudinal records over Y environments. We parameterized the
allelic effects in such a way that the additive reaction norms were very
interactive, that is, the ranking of the parents varied along the environ-
mental gradient due to slopes and parabolas.

The simulated mating design consisted of a full diallel between
10monoecious founders, excluding selfs. Unlike the real mating design
previously described, the simulated mating design involved a single
species so there was a single additive variance to estimate. Each
combination of parents (A·B) produced n=2 sibs, so that the size of
a full-sib family (A·B + B·A) was n. The environmental gradient was
divided in n random positions, each position being defined by an
environmental value x. Each of these environments hosted one sib
per family, and as many individuals as families. The progenies’

phenotypes, their pedigree, and the environmental values x were in-
cluded in the analysis. As there were no repeated observations of the
individuals, the permanent environment was unidentifiable, it was nei-
ther simulated neither included in the analysis.

We tested 4 different scenarios, resulting from the combination of
low (0.1) and high (0.6) heritabilities with small (20) and large (120)
family sizes. Thus, these scenarios measured the importance of the
quantity (i.e., the number of progenies) and quality (i.e., the heritability)
of information for genetic inference. For each scenario, 100 indepen-
dent simulations were run and analyzed. The analysis was performed
using pure species univariate random regressions:

yiðxÞ ¼
XM
m¼0

mmLm
�
x9
�þXM

m¼0

aimLm
�
x9
�þ ri

where yiðxÞ was the only observation for individual i, from environ-
ment x,mwere the parameters for the mean reaction norm, awere the
additive effects such as a � Nð0;ΣA5AÞ; and rwas the unstructured
residual.

The chains were 1:5 · 105 iterations long, with 5 · 104 iterations
burn-in and a thinning of 103:We measured the ability of the random
regression to infer additive components of the parental reaction norms.
To do so, we defined the accuracy of the model as the correlation
between the parents’ predicted additive performances and their true
simulated additive performances (Mrode and Thompson 2005), andwe
computed it at each point of the environmental gradient. The reaction
norms of the parents were only inferred for the ranges on which the
progenies were tested.

Prediction of the larch reaction norms with single
records per individuals
Finally, we also investigated the possibility to infer reaction norms from
single records per individuals using the empirical larch data. We
randomly sampled one observation per tree in the dataset, and used
it tofit the randomregressionmodel.Themodelweusedwas the sameas
for the complete empirical larch dataset, except without the permanent
environment component that became unidentifiable.

Data availability
Our datasets are available at the INRA repository GnpIS https://data.inra.
fr/dataset.xhtml?persistentId=doi:10.15454/REMJWZ&version=DRAFT
(https://doi.org/10.15454/REMJWZ).

The Metagene simulator is available on the NOVELTREE project
page https://data.inra.fr/dataset.xhtml?persistentId=doi:10.15454/
ELCSZI (https://doi.org/10.15454/ELCSZI). Supplemental mate-
rial available at Figshare: https://doi.org/10.25387/g3.7211597.

RESULTS

Quality of model fitting to real data
The order 0 model (fixed and random intercepts) explained between
8.9%and12.1%ofRWvariancedependingon taxaand site combination
(Figure 2). The addition of fixed and random slopes (1st order) along
D1rew of the current year (t) greatly improved the model, allowing it to
account for 39.9% (EL in SA) to 55.8% (HL in SS) of the variance.
Analyzing higher orders (order 2 and order 3 along D1rew of the
current year) slightly increased the R2 (by 5.1% on average compared
to order 1). Such high R2 were not reached using D1rew of the previous
year, nor using the simpler index MJJA. For RMD, on the contrary,
order 0 or higher orders led to very close R2 (Figure 2). Using D1rew of
the previous year instead of that of the current year led to a marginal
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improvement of R2 that happened only in SA, reaching up to 39.4% for
HL with order 3.

Heterosis expressed mostly in radial growth, that was better
explained by D1rew of the current year. For this reason, we focused
on this environmental gradient only, and all the subsequent results
refer to random regressionmodels along D1rew at year t. The gain in
R2 with orders beyond 1 was overall due to more variance explained
by the fixed component of the models, as shown in Figure 3. There-
fore, we present in Figure 4 and Fig. S10 (Supplementary 4) the
taxon scale reaction norms (i.e., the fixed component) estimated
from the order 3 univariate random regression models. Then, for
parsimony consideration and because increasing the order did not
increase the portion of R2 captured by the random effects (Figure 3),
the multivariate random regressionmodels (RW and RMD analyzed
simultaneously), from which the genetic variance and covariance
parameters were estimated, were fitted with order 1. The R2s of the
multivariate models were also presented in Figure 2 and were very
similar to their univariate counterparts.

Stability of the heterosis and its dependence on the
water availability
The ranking in RW performance between EL and JL varied depending
on the site: ELperformedbetter in SAwhile JLdid better in SS (Figure 4).
Meanwhile, the superiority of the hybrid over both its parental refer-
ences, hence best-parent heterosis, occurred in the two sites and over
the whole range of D1rew.

For any taxon and in any site, RWwas plastic as it increased with
increasing water availability (Figure 4). The three taxa showed how-
ever different curves along the D1rew, being close to each other
when water availability was minimal (D1rew close to 0), and split-
ting apart with increasing water availability, where the superiority of
HL over its parental references was the highest. Thus, HL had the

steepest reaction norm in any site, as shown in Table 1. The gain in
superiority for RW of HL over its parental references due to in-
creasing D1rew ranged between +3.26 mm (HL vs. EL in SA) and
+1.04 mm (HL vs. JL in SS). For high D1rew, the CIs of the HL
reaction norm were not overlapping with those of the parental
species.

On the opposite, the trait RMD showed neither heterosis nor
plasticity. The hybrid ranged between both its parents, and all the
norms of reaction were almost flat for this trait, showing no con-
spicuous pattern of variation along the water availability gradient
D1rew.

Heritabilities and genetic performances along the water
availability gradient
All thenarrow-senseheritabilitieswe estimatedwere very low (Figure 5).
Low heritabilities were overall due to high residual variances in com-
parison to the lower additive and permanent environment variances
(Figure 3). Despite this residual noise, some extreme parental perfor-
mances of contrasting genotypes were different for both traits with
statistical credibility (Supplementary 4, Fig. S6 - S7).

Ring width heritabilities were close to 0 (Figure 5). The signal for
performance contrasts for RW in pure species was also very weak, but
both species showed contrasted performances in hybridization as the
water availability increased; some of these contrasts were supported by
non-overlapping 95% CIs when D1rew was high (Supplementary 4,
Fig. S7).

Heritabilities for RMD were higher than those of RW, especially on
the JL side for which they varied between 0.08 and 0.12 both in pure
species and in hybridization (Figure 5). Pure species heritability and
heritability in hybridization were very close for JL, and they both in-
creased with water availability, though the increase was not supported
by statistical confidence (the CIs were large and encompassed the whole

Figure 2 Coefficients of determina-
tion (R2) for ring width (RW) (a) and
ring mean density (RMD) (b), depend-
ing on the model specification. The
polynomial order (M) varied from 0 to
3. Three covariates were compared:
the first decile of the soil daily relative
extractable water (D1rew) for the cur-
rent year (year t, implicit) and for the
previous year (year t2 1, specified),
and the sum of daily differences be-
tween precipitation and potential
evapotranspiration from May to July
(MJJA) for the current year. The last
model specification (’Multi.’) corre-
sponds to 1st order regression with
the covariate D1rew of the current
year t, but in this case the model was
multivariate and RW and RMD were
analyzed simultaneously.
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variation). Increasing contrasts between individual performances, sup-
ported by some non-overlapping 95%CIs for high D1rew (Supplemen-
tary 4, Fig S7), may reflect this possible gain in heritability along the
D1rew gradient for RMD on the JL side. Noteworthily, the ranking of
the 9 JL parents’ performances for RMD was consistent in pure species
and in hybridization (Supplementary 4, Fig S6).

Correlations along the water availability gradient
The additive genetic correlation between RMD and RW showed
similar patterns between pure species and their respective contri-
butions in hybridization (Figure 6). The additive correlation de-
creased slightly along the gradient from around 0 to -0.41 in
EL pure species (-0.35 in hybridization). On the JL side, it started

Figure 3 Decomposition of the coefficients of de-
termination (R2) obtained with the order 1 model (a)
and with the order 3 model (b), for each trait: ring
width (RW) and ring mean density (RMD), and for
each combination of site (SA or SS) and taxon (EL,
HL or JL). The environmental gradient was the first
decile of the daily relative extractable water for the
current year. The proportion of variance explained
by each component is presented: genetic additive
effects (in black), permanent environment (in white),
and fixed terms (in gray).

Figure 4 Reaction norms of ring width (a,
b) and ring mean density (c, d) along the
first decile of the daily relative extractable
water (D1rew), in the sites SA (a, c) and SS
(b, d), for each taxon: European larch (in
blue, EL), Japanese larch (in red, JL) and
their hybrid (in green, HL). These average
reaction norms at the taxon level repre-
sent the fixed components of the order
3 random regressions. Dashed lines: 95%
credible intervals.
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from a positive correlation of 0.48 in pure species (0.14 in hybrid-
ization) and it steeply switched to a negative correlation of -0.60
(-0.41 in hybridization). Uncertainty was high around this
parameter, however, for D1rew high enough, the 95% CIs ex-
cluded 0 (completely or mostly) on the JL side (in pure species
or in hybridization, respectively) (Figure 6). Due to the higher
genetic variance for RW for JL in hybridization than in pure
species, the negative correlation pattern was especially visible in
the JL performances in hybridization: for the highest D1rew,
the ranking between RW and RMD was almost inverted (Supple-
mentary 4, Fig S6).

ThepermanentenvironmentcorrelationbetweenRWandRMDwas
negative for HL and JL, and did not vary along the environmental
gradient. It was also null to negative for EL (Supplementary 4, Fig S8).
This means that the sum of effects that the model did not explicitly
account for (i.e., micro-environment, competition between trees, non-
additive genetic effects, etc.) tended to induce a negative correlation
between radial growth and wood density.

Simulation: accuracy of the random regression model
With single record per individual
Using simulated data, we evaluated the ability of the random regression
model to predict the additive component of reaction norms from family
series of singleobservationsper environment.The accuracyof themodel
depended on the scenario and on the order of the random regression
(Figure 7). The 1st scenario (n ¼ 20 progenies, h2 ¼ 0:1) showed very
poor predictive abilities, independently of the order. When a larger
number of progenies (n ¼ 120) or a higher heritability (h2 ¼ 0:6)
was available, the accuracy was still low for order 0 (fixed and random
intercept model) but it greatly increased with order 1 (addition of fixed
and random slopes). However, in each case (n ¼ 120 or h2 ¼ 0:6) no
further accuracy was gained from order 1 to order 2. Only the accuracy
for the last scenario (both n ¼ 120 and h2 ¼ 0:6) increased with order
2 (addition of fixed and random parabolas). The accuracy for the last
scenario analyzed with order 2 model ranged between 0.905 and
1 depending on the simulation and on the position along the environ-
mental gradient.

The order 0 models were not able to estimate the additive variance
properly (Supplementary4,Fig. S9). Fromorder1 andover, the abilityof
the model to estimate the additive variance appeared overall dependent
on the heritability. Indeed, the estimated additive variance was close to
the true one in scenarios 3 and 4 (both h2 ¼ 0:6) with order 1 or 2.With
lower heritability (h2 ¼ 0:1) and order 1 or 2, the additive variance was
overestimated.

Finally, we also fitted random regression using only a single obser-
vation per tree from the empirical dataset. As show in Supplementary 4,
Fig. S10, the average taxon-scale reaction norms thus estimated were
close to the ones estimated using the whole dataset (Figure 4). The
uncertainty was much higher using a single observation per tree,

n Table 1 Estimation of the average slope for each taxon (1st

order parameter of the fixed component of the order 3 model)
for ring width along the water availability gradient (D1rew), in
each site (SA and SS). Point estimate: maximum a posteriori and
in brackets: 95% CI

Site SA Site SS

European larch 0.4 (0.1 - 0.8) 2.5 (2.2 - 2.8)
Japanese larch 1 (0.7 - 1.3) 3.4 (3.2 - 3.5)
Hybrid 2.2 (1.9 - 2.4) 3.6 (3.4 - 3.9)

Figure 5 Narrow-sense heritabilities
along the first decile of the daily
relative extractable water (D1rew), for
European larch (a, c) and Japanese
larch (b, d), for the traits: ring width (a,
b) and ring mean density (c, d). These
heritabilities were computed from the
variance parameters estimated with
the multivariate, order 1 random re-
gressions. Black line: narrow-sense
heritability in pure species crosses;
and gray line: narrow-sense heritability
in hybridization (i.e., proportion of hy-
brid phenotypic variance that is due to
the additive inheritance from each pa-
rental side). Dashed lines: 95% credi-
ble intervals.
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however, both the slope of the reaction norms and the ranking of the
taxa were well preserved.

DISCUSSION
In this study, we constructed the reaction norms of annual wood-
formation traits along a water availability gradient in a larch multi-site
diallelmating experiment. The reactionnormswerefittedusing random
regression modeling, allowing to investigate the changes in heritability
and genetic correlations along the gradient. Our study was comple-
mented by using simulations involving the same analytical approach,
where we evaluated the ability of the random regression model to
estimate the additive component in a frequent phenotypic plasticity
experimental setting: thatofparental reactionnorms fromnon-repeated
observations of their progenies as data.

The annual ring width was plastic and as expected increasing water
availability allowed a higher radial growth (Figure 4). At the taxon level,
the hybrids performed better than their parents in each of the two sites
of the study. This alternativemodeling confirmed our previous findings
(Marchal et al. 2017), in that hybrid larch had a stable superiority across
sites. However, within each site, HL demonstrated more plasticity than

its parental references: indeed, under water stress all taxa produced a
similarly narrow ring, whereas in favorable conditions of higher water
availability the HL expressed superiority over its parental references. In
other words, the HL reaction norms were steeper than those of the
parental counterparts over the same environmental gradient.

On the contrary, the second trait under study, RMD, was not plastic
for thiswater availability gradient and expressed noheterosis in any site.
AlthoughRMDdisplayedhighernarrow-sense heritabilities thanRW, it
did not reach high values, with a global maximum of only 0.12. Despite
the weak genetic signal, we represented the genetic parameters and the
performances of the 18 parents of the diallel as functions of the water
availability gradient. Some performance functions were distinct with
statistical credibility, only when the water availability index was high
enough. Interestingly, on the Japanese larch side, the additive correlation
switched from being uncertainly positive to reliably negative as water
availability increased (Figure 6). The seemingly emergence of this neg-
ative correlation may be explained by a genetically variable increase in
the early wood / late wood ratio with increasing water availability, with
early (spring) wood being generally less dense than that of late (sum-
mer) wood (Figure 1). However, we need to look more carefully to
other ring traits (as did, e.g., Bryukhanova and Fonti 2013) and their
respective correlations before proposing any causal explanation, with
the goal to better understand the structure of the genetic variability of
larch wood plasticity.

We obtained fairly high R2 for the reaction norms models, suggest-
ing that water plays an important role in the tree ring phenotypic
plasticity. We evaluated a simpler environmental factor (sum of daily
rain minus potential evapotranspiration from May to August) but it
showed a lower R2; highlighting the relevance of our water availability
index ’D1rew’. It should be noted, however, that our water balance
model has not been field-calibrated, and it should then be considered
with care if generalizations are to be made. Moreover, the index D1rew
gives no indication on the distribution of the driest days along the
year. The timing of a water deficit, in spring or in summer, could have
more or less effect on different ring traits; for instance, those relative to
early or late wood, or to the transition between the two. It also has to
be said that the relation between water balance and radial growth
that we showed in the present study does not necessarily imply a
direct causality. Indeed, other factors may play a role in the observed
plastic response. For instance, heat affects directly the photosynthetic
efficiency and the resources that may be allocated to growth
(Rennenberg et al. 2006). Heat and drought being highly correlated,
their effects could well be confounded to some extent. More broadly,
the environment has a multivariate nature. Soil, climate, but also com-
petition with neighboring trees are known to affect the tree’s growth.
We isolated what we expected to be one of the most important envi-
ronmental factor for radial growth, yet the existence of an important
site effect pinpoints the fact that some other environmental factors
might be involved in the tree ring phenotypic plasticity. Identifying
relevant environmental factors of plant plastic reactions is an open area
of research, notably in the context of global warming. The present study
did not aim explicitly at the identification of relevant environmental
triggers, rather it presented an approach that could help in such
identification.

We studied phenotypic plasticity at two levels. The first level was
spatial, at the across-site scale, and the second level was longitudinal, at
the individual scale. At the across-site scale, heterosis was shown to be
stable, supporting the common statement that hybrids are more stable
across macro-environmental sites than their parental counterparts
(Gallais 2009). Specifically, the ranking of the parents species varied
across sites whereas hybrid was invariably the highest performing

Figure 6 Additive correlations between ring width and ring mean
density along the first decile of the daily relative extractable water
(D1rew), for European larch (a) and Japanese larch (b). These
correlations were computed from the variance and covariance param-
eters estimated with the multivariate, order 1 random regressions.
Black line: correlation in pure species crosses; and gray line:
correlation in hybridization (i.e., correlation between the additive con-
tributions for the 2 traits from the corresponding parental side).
Dashed lines: 95% credible intervals.
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taxon, in what could be qualified as hybrid homeostasis according to
the theory developed by Knight (1973). The spatial plasticity is gener-
ally, and historically, the one that interests breeders the most because of
the operational implications for the deployment of varieties. Using
non-linear random regressions, Marcatti et al. (2017) fitted eucalyptus
growth reaction norms along a gradient of spatial environments. The
spatially distributed climatic environment was described with principal
component analysis to account for its multivariate nature. This method
is very appealing in order to deal with spatial phenotypic plasticity in
tree breeding. However, Marcatti et al. (2017)’s approach could be
further improved by accounting for genetic information, such as the
one from a pedigree and from which quantitative genetic parameters
could be estimated (Hinkelmann 1974; Falconer and Mackay 1996). In
this context, the use of random regressions as defined by Kirkpatrick
and Heckman (1989) and presented in this paper, or other covariance
functions, would be relevant.

The second level of phenotypic plasticity that we addressed was
longitudinal, along the year-to-year water availability gradient. The

resulting reaction norms were strongly influenced by the sites. In-
deed, our study steps in the direction that tree ring longitudinal
phenotypic plasticity should be seen as a plastic trait in itself, varying
spatially (De Luis et al. 2013; Natalini et al. 2016), varying with long-
term trends such as global warming (Natalini et al. 2016), and
varying with the level of competition between neighboring trees in
wet years (Carnwath and Nelson 2016). Growth recovery, the ability
for trees to produce large rings the years following a drought event,
is also site-dependent (Gazol et al. 2017). Besides the site effect, a
substantial part of the individual variation was shown to occur be-
tween taxa. Unlike what we initially expected, hybrid larch reaction
norms for radial growth along the water availability gradient were
not flatter than the ones from its parental species: on the contrary,
they displayed more plasticity and were steeper than the parental
ones. Interestingly, this increase in longitudinal plasticity for HL
incrementally contributes to the construction of heterosis that was
observed on an integrative scale across years, namely in the total
circumference (Marchal et al. 2017).

Figure 7 Accuracy of the predictions of parents’ additive reaction norms in each simulated scenario: (1) h2 ¼ 0:1 and n ¼ 20 (a, e, i), (2) h2 ¼ 0:1
and n ¼ 120 (b, f, j), (3) h2 ¼ 0:6 and n ¼ 20 (c, g, k), and (4) h2 ¼ 0:6 and n ¼ 120 (d, h, l); for 100 simulations in each scenario, and for each order
of random regression: order 0 (a-d), order 1 (e-h) and order 2 (i-l). Each gray curve is the accuracy of 1 simulation.
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The molecular and physiological mechanisms behind the increased
plasticity of hybrid larch remain open questions. Longitudinal plasticity
as shownhere is still anovel approach,with less immediateapplication to
currentplantbreeding,unlike spatialplasticity. It certainly opensupnew
possibilities whenever long-time series are available, where extreme
events, such as the 2003 drought in France (Bréda et al. 2006;
Rennenberg et al. 2006), are recorded. Some initiatives, for instance,
compared dead trees vs. alive neighbors immediately after extreme
climatic events for their past wood records (Martinez-Meier et al.
2008), finding that both classes had long-term distinctive patterns of
reaction. This kind of study could well be undertaken with a random
regression approach to gain insight in the quantitative genetics of such
longitudinal patterns and their environmental drivers, and be of po-
tential use ultimately for breeders.

One eventual problemwith longitudinal data are autocorrelation. In
order to minimize its effects, several authors propose an extra step that
consists in fitting an autocorrelation model on the tree ring series. The
resultingresiduals, that aremore independent thanthe rawdata, are then
used as the response variable in the subsequent phenotypic plasticity
models (Bryukhanova and Fonti 2013; De Luis et al. 2013). In this
study, we did not do so because the chronology was somehow already
involved in the environmental variable. Indeed, as the trees grew older,
the stand LAI increased, and so did the transpiration, making water
generally less available. Though this trend was not so strong (rain and
potential evapotranspiration during the growing season were the main
drivers of D1rew, as seen on Supplementary 1, Fig. S2), we did not want
to account twice for the same chronological effect, and therefore we
chose to work with raw data instead. The much weaker explicative
power of D1rew of the previous year compared to that of D1rew of
the current year supports our decision. We acknowledge though that
there remains a risk of non-controlled autocorrelation in the data, in
particular due to the trees’ ontogeny and to the onset of competition
between trees (Sánchez et al. 2013).

The simulations showed that it was possible to estimate the additive
componentof reactionnormsusingonly singularobservationsof related
individuals. However, the quantity and the quality of information (i.e.,
respectively, the number of related individuals and the heritability)
were key factors to estimate properly the additive components of re-
action norms. Although the simulationwas notmeant tomimic the real
case in the genomic layout of effects, it pinpointed the eventuality of
potential biases in the estimation of the genetic variances (Supplemen-
tary 4, Fig. S9). As emphasized by Misztal et al. (2000), a limitation of
the model used in the present study is the lack of covariance function
for the residuals. This limitation could be a source of bias in the esti-
mation of variance components and of heritabilities. Unfortunately,
this feature was not available yet with the software we used. Indeed,
we fitted linear mixed models in which the covariance functions were
implicit and computed from the covariance between the regression
coefficients. On the other hand, despite this issue with the variance,
the simulated additive reaction norms could be properly estimated in
most scenarios. Moreover, we also showed that the average reaction
norm at the taxon level could be estimated from a single observation
per genotype using the empirical larch data.

Random regression is already used for the modeling of reaction
norms, especially in dairy cattle for which industry produces a large flow
of longitudinal data (e.g., Kolmodin et al. 2002; Windig et al. 2006;
Santana et al. 2017). However, plasticity has been suggested (Bradshaw
1965) and demonstrated (Murren et al. 2014) to be of special impor-
tance in plants. Indeed, because they are sessile, plants have to face their
environment in a different way than animals that are capable of behav-
ioral responses and locomotion.Manifestations of phenotypic plasticity

have been reported in several perennial crops. For instance, grape vine
manifests phenotypic plasticity in terms of fruit weight and chemical
composition (Dai et al. 2011). Even in equatorial regions, oil palm is
able to react to subtle variations in photoperiod and drought events by
changing its bunch productivity (Legros et al. 2009). Cherry tree phe-
nology reacts promptly to climate, notably heat, with global warming
expected to bring flowering a month forward (Allen et al. 2014). Ismaili
et al. (2016) showed a significant genotype-by-year interaction in apri-
cot tree, and recommend the use of mixed models for the analysis of
perennial plants’ longitudinal data. All these examples could be good
candidates for analysis based on covariance functions. Indeed, the pos-
sibility to define quantitative genetic parameters as functions of the
environment and to model the additive contributions to phenotypic
plasticity opens wide perspectives in terms of selection (De Jong and
Bijma 2002), especially in a global warming context (Koski 1996). In
that sense, Chevin and Hoffmann (2017) pinpoint the importance of
inferring the complex functions underlying plastic responses, notably
those modeled under extreme environments, as essential steps to ad-
dress evolutionary questions related to the amount of genetic differ-
ences in plasticity to extreme events, and to what extent these reflect
heritability. The same authors also argue that comprehending the evo-
lutionary dynamic of phenotypic plasticity would require a fine knowl-
edge on the genetic constraints that could operate across environments.
Our study contributed to illustrate methodologically several of the
perspectives highlighted by Chevin and Hoffmann (2017).

Like trees, otherorganismsnaturally accumulate growth records that
reflect their reaction to past environmental conditions, etched in hard
organs that grow incrementally: for instance,fishotoliths,mollusc shells,
corals, whale ear plugs, ibex horns, etc. (reviewed by Morrongiello and
Thresher 2015).Morrongiello and Thresher (2015) advocate for the use
of random regression for the analysis of such natural records of longi-
tudinal data, especially with regards to these species’ phenotypic plas-
ticity. On a prospective review concerning new integrative ways to
assess phenotypic plasticity, Stinchcombe et al. (2012) already high-
lighted the potential advantages of using random regression in the
context of non-linear continuous reaction norms, notably to study
growth curves matched by chronological age.

The random regression framework as developed by Kirkpatrick and
Heckman (1989) exhibits two particular strengths that deserve to be
emphasized once more. First, the use of orthogonal base functions, such
as Legendre polynomials, allows the fit of virtually any shape of growth
curves or reaction norms. Although the example we presented here did
not illustrate this need, neglecting curvature when studying evolutionary
divergence in reaction norms leads to a risk of missing critically impor-
tant information (Murren et al. 2014). The traditional use of x and x2 as
covariates should be avoided in any case, given the high correlation that
binds the identity and the square (and any power) functions.

A second point of interest is the fact that genetic information can be
taken intoconsideration in themodel,whichcanbeof relevancenotonly
for breeding but also in ecology studies looking for drivers and patterns
of natural selection (Brommer et al. 2005). As we illustrated with the
results of our simulations, this possibility opens up the use of a random
regression framework to species whose individuals do not cumulate in
any known form longitudinal records of their plastic responses. In this
sense, our simulation provided an example of random regression being
an alternative to traditional methods: related individuals can indeed
give access to the additive component of the reaction norms, and this
can likely be extrapolated to isofemale lines (Gibert et al. 2004) or half-
sib families (Valladares et al. 2006). Finally, the pedigree information
can be conveniently replaced by molecular information (e.g., Ly et al.
2018), extending the potential of the random regression framework
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beyond the limitation of our capability to realize time-consuming,
sometimes impossible, artificial mating. This also opens up the possi-
bility to realize genome-wide association studies in order to detect the
genetic variants involved in phenotypic plasticity.
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