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ABSTRACT 17 

Pollution greatly impacts ecosystems health and associated ecological functions. Persistent Organic 18 

Pollutants (POPs) are amongst the most studied contaminants due to their persistence, 19 

bioaccumulation, and toxicity potential. Biomagnification is often described using the estimation of a 20 

Trophic Magnification Factor (TMF). This estimate is based on the relationship between contamination 21 

levels of the species and their trophic level. However, while the estimation can be significantly biased 22 

in relation to multiple sources of uncertainty (e.g., species physiology, measurement errors, food web 23 

complexity),  usual TMF estimation methods typically do not allow accounting for these potential 24 

biases. More accurate and reliable assessment tool of TMFs and their associated uncertainty are 25 

therefore needed in order to appropriately guide chemical pollution management. The present work 26 
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proposes a relevant and innovative TMF estimation method accounting for its many variability 27 

sources. The ESCROC model (EStimating Contaminants tRansfers Over Complex food webs), which is 28 

implemented in a Bayesian framework, allows for a more reliable and rigorous assessment of 29 

contaminants trophic magnification, in addition to accurate estimations of isotopes trophic 30 

enrichment factors and their associated uncertainties in food webs. Similar to classical mixing models 31 

used in food web investigations, ECSROC computes diet composition matrices using isotopic 32 

composition data while accounting for contamination data, leading to more robust food web 33 

descriptions. 34 

As a demonstration of the practical application of the model, ESCROC was implemented to revisit the 35 

trophic biomagnification of 5 polyfluoroalkyl substances (PFAS) in a complex estuarine food web (the 36 

Gironde, SW France). In addition to the TMF estimate and 95% confidence intervals, the model 37 

provided biomagnification probabilities associated to the investigated contaminants —for instance, 38 

92% in the case of perfluorooctane sulfonate (PFOS) — that can be interpreted in terms of risk 39 

assessment in a precautionary approach, which should prove useful to environmental managers.  40 

  41 
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Highlights  47 

 Estimating the trophic magnification potential of chemicals is a key issue for management 48 

 This biomagnification potential is usually estimated through a Trophic Magnification Factor 49 

(TMF) 50 

 ESCROC is an innovative Bayesian mixing model for estimating TMFs 51 

 It provides rigorous diagnoses on contamination and associated uncertainty 52 

 The example of PFASs in the Gironde estuarine food web was used as a case study 53 

 54 
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1 Introduction 59 

Increased nutrients, pollutants, and agrochemicals due to industries, urbanization and agriculture 60 

exert dramatic impacts on ecosystems (Köhler and Triebskorn, 2013; Verhoeven et al., 2006). Aquatic 61 

ecosystems and, among them, coastal and estuarine ecosystems are particularly vulnerable to these 62 

changes:  they are increasingly exploited and polluted, and their biodiversity is decreasing (Budzinski 63 

et al., 1997; Matthiessen and Law, 2002). At the individual and population scales, some pollutants can 64 

lead to deleterious effects, such as altered metabolism, immunotoxicity, endocrine disruption or 65 

neurotoxicity (Köhler and Triebskorn, 2013). This issue is exacerbated by the fact that some pollutants 66 

tend to be accumulated by organisms, a process known as bioaccumulation. Bioaccumulation is a 67 

fundamental process in environmental toxicology and risk assessment because it controls the internal 68 

dose of potential toxicants in individual organisms (Arnot and Gobas, 2004). Additionally, some 69 

contaminants also become ecologically harmful because they accumulate through food webs, a 70 

process known as biomagnification. In these instances, pollutants found at low concentrations in 71 

natural environments can achieve harmful concentration for high-order organisms including human 72 

beings (Kelly et al., 2007; Köhler and Triebskorn, 2013; Van Oostdam et al., 2005). Studies aquatic 73 

ecosystems –marine systems (e.g. Romero-Romero et al., 2017; Sun et al., 2017), lakes (e.g. Liu et al., 74 

2018; Mazzoni et al., 2018), coastal environments (Bodin et al., 2007; Loizeau et al., 2001a; Loizeau et 75 

al., 2001b; Munschy et al., 2011) and rivers (Lopes et al., 2011)- but also in  terrestrial environments 76 

(e.g. Daley et al., 2011; Wang and Gao, 2016) demonstrated such biomagnification process occurs for 77 

hydrophobic organohalogenated contaminants. Being potentially persistent, bioaccumulative and 78 

toxic (due for instance to eurotoxic properties and/or endocrine disruption), Persistent Organic 79 

Pollutants (POPs) are of particular concern (see the Stockholm Convention on POPs as amended in 80 

2009 - UNEP, 2009) for human health (Belpaire et al., 2016; Berger et al., 2009) as well as for animal 81 

populations’ viability (Gilliers et al., 2006a; Gilliers et al., 2006b; Rochette et al., 2010). In this context, 82 

a comprehensive understanding of the ecodynamics of human-induced chemicals in coastal and 83 
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estuarine ecosystems is needed to better manage the ecological functions associated with these 84 

areas. 85 

Potential for bioaccumulation in organisms and biomagnification in food webs differ depending 86 

on the investigated contaminants, environmental contexts, and physiological characteristics of species 87 

(Bodiguel et al., 2009; Connolly and Glaser, 2002; Gobas, 1993). Therefore, accurate in situ assessment 88 

of bioaccumulation and biomagnification potential of pollutants in aquatic food webs is required, in 89 

order to inform management actions. 90 

Most empirical approaches used to understand trophic transfers of pollutants rely on the 91 

estimation of a Trophic Magnification Factor (TMF) from field data (Borgå et al., 2012). The TMF is 92 

used to assess the biomagnification of a given pollutant in a food web and to define environmental 93 

quality norms in some instances (see french envrionmental quality norms (NQE) - Migne-Fouillen et 94 

al., 2010). It is usually corresponds to the slope of the statistical regression between the chemical 95 

concentration and the trophic level of organisms within a food web. Although TMF is increasingly used 96 

to describe trophic dynamics of xenobiotics, its estimates present many uncertainties, reviewed by 97 

Borga et al. (2012) and Mackay et al. (2016). Among the manyassumptions, potential bias, pitfalls, and 98 

vigilance points reported in these reviews, uncertainty in measurements of contaminant 99 

concentrations, temporal or spatial variability of these concentrations, , inter and intraspecific 100 

variability in the bioaccumulation process, and uncertainty about the food web structure and trophic 101 

levels of individuals were emphasized. Recently, Munoz et al. (2017) evaluated different statistical 102 

methods to address these above-mentioned sources of uncertainty and bias, based on data on 19 103 

polyfluoroalkyl substances (PFASs) in the Gironde estuarine food web. The statistical approaches 104 

compared included linear mixed models from the ‘NADA’ (Lee, 2017) and ‘LMEC’ (Vaida and Liu, 2012) 105 

R-packages, accounting for censored responses and a random effect ‘species’, respectively. Both 106 

methods however assumed  that the trophic level of each individual —and consequently, the structure 107 

of the trophic network— are perfectly known, an assumption that rarely verifies in the real world, and 108 

particularly not in the Gironde estuary.  109 
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Theoretically, estimating the trophic level of a consumer species (or an individual) requires 110 

that its diet be estimated, i.e., the proportion, in biomass, of each prey and its respective trophic level, 111 

in the overall consumer’s diet. This is usually done through stomach content analyses, which reflect 112 

the quantitative and qualitative ingestion of species at a specific time, but sometimes raise problems 113 

of prey identification, suffers from some biases such as differential digestibility, and requires many 114 

samples to be analyzed. Stable isotope analyses represent more integrative records of food intake 115 

over longer time scale (Post, 2002) and are now widely used to explore food web structure (Boecklen 116 

et al., 2011; Layman et al., 2012). Stable isotopes of nitrogen are discriminated during digestion and 117 

assimilation, leading to an enrichment of the 15N/14N ratio (δ15N) of the consumer with respect to its 118 

prey. Since the enrichment factor is generally in the range 3 –4 ‰ (DeNiro and Epstein, 1981; 119 

Minagawa and Wada, 1984; Peterson and Fry, 1987), linear regressions can be used to convert stable 120 

isotope composition into trophic level (Post, 2002). This is the usual method chosen to estimate 121 

trophic level when investigating contaminant biomagnification (Borgå et al., 2012). Combined with the 122 

consideration of the isotopic ratio of other elements (e.g. 13C/12C or 34S/33S), it can be used to estimate 123 

the diet of species among a set of potential prey. This is the approach used by MixSIR, SIAR and 124 

MixSIAR, the mixing models classically used to estimate a species diet based on its isotopic 125 

composition, which is assumed to be a mixture of the isotopic compositions of the different prey 126 

(Moore and Semmens, 2008; Parnell et al., 2008; Parnell et al., 2010; Parnell et al., 2013; Stock et al., 127 

2016). This approach allows accounting for the uncertainty of stable isotope enrichment factors, and 128 

for intra- and interspecific variability. However, since the number of isotopic tracers is small (i.e., 129 

usually two) compared to the number of potential prey, isotope mixing models are generally 130 

underdetermined (Fry, 2013; Phillips and Gregg, 2003; Phillips et al., 2014). Consequently, precise 131 

estimates of enrichment factors must be provided for the mixing model to work, although these 132 

estimates are very sensitive parameters (Bond and Diamond, 2011). Furthermore, it is not possible to 133 

carry out the analysis using those mixing models over a full trophic network but only one predator 134 

after another. Finally, since biomagnification and food web analyses are generally carried out into two 135 
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independent steps, it is usually impossible (or very difficult) to propagate the uncertainty on estimated 136 

trophic levels to the estimation of biomagnification factors. For both scientific and management 137 

reasons, it is therefore necessary to provide an alternative rigorous method based on sound statistics 138 

to evaluate biomagnification factors (TMF) and associated uncertainty. 139 

The present work aimed at presenting such alternative method combining both biomagnification and 140 

food web analyses into a single model. We assume that using contaminants as additional diet tracers 141 

within trophic networks could mitigate the issue of underdetermination of mixing models. Conversely, 142 

incorporating the inference of trophic levels within biomagnification analysis allows propagating the 143 

uncertainty over trophic levels when estimating biomagnification factors such as TMF. Diet tracers 144 

such as isotopes can then be used to estimate contaminant transfers. Our model aims at (1) 145 

accounting for most of the sources of variability listed above on both biomagnification and isotopic 146 

fractionation, (2) estimating diets and related uncertainty for all predators of the food web at once, (3) 147 

estimating the biomagnification of contaminants and related uncertainty. Our model, named ESCROC 148 

(EStimating Contaminants tRansfers Over Complex food webs), is based on a generic mixing model, 149 

similar to those used for deriving diet composition from isotopic data, but allows incorporating 150 

contamination measures.  151 

To illustrate the relevance of this model, a large dataset describing the occurrence of a family 152 

of Persistent Organic Pollutants (POPs) in the Gironde estuary was used.  Located on the French 153 

Atlantic coast, in SW France and largest estuary in Western Europe (Lobry et al., 2003), the Gironde 154 

estuary case study is especially relevant since POPs are now an increasing issue in this area (Munoz et 155 

al., 2017; Tapie et al., 2011). Among those substances, the target selected compounds were 156 

polyfluoroalkyl substances (PFASs). Few studies have addressed the contamination of estuarine food 157 

webs by these emerging contaminants (de Vos et al., 2008; Naile et al., 2012; Munoz et al. 2017). As 158 

the dataset was previously described and analyzed by Munoz et al. (2017) with a set of various 159 

modelling approaches, this would also allow a comparison of the outcomes provided by the ESCROC 160 

model with those obtained with more traditional methods. 161 
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 163 

2 Material and methods / description of the model 164 

2.1 Context on TMF estimation 165 

2.1.1 Basis of TMF estimation 166 

Basically, TMF estimation consists in assessing the average factor of change in contaminant 167 

concentration per Trophic Level (TL). In that sense, it is similar to the enrichment factor in isotopic 168 

analysis. Considering biomass distribution in aquatic food webs as well as contaminants transfer 169 

efficiencies, the relationship between contaminant concentrations [C] and TL has an exponential form 170 

(Borgå et al., 2012). Therefore, TMF estimations are based on the linear regression between Log-171 

transformed contaminant concentrations Log10[C] and TL. The TMF is subsequently obtained as 10b, 172 

with b being the slope of the linear regression (Eq. 1, Figure 1) usually  estimated from simple 173 

regression models.  174 

 175 

Log10[C]=a + bTL Eq. 1 

 176 

Modifications to improve TMF estimation calculation were however recently proposed to better 177 

account for different sources of uncertainty and variability. For instance, Munoz et al. (2017) 178 

suggested to use linear mixed models with censored data (to take into account non-detected data), 179 

with random effects to integrate both inter-specific variabilities in physiological properties, errors in 180 

chemical concentration measurements and potentially low sampling effort.. These methods however 181 

still assumed that trophic levels were perfectly known. 182 

 183 
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If initially, the trophic positions of organisms in the food webs were directly assessed using stable N 184 

isotope ratios (δ15N), most recent studies (see Borga et al. 2012 or for instance Munoz et al. 2017) 185 

refined the estimation of trophic position by using integer-based TL. The TL of a primary producer 186 

being fixed to 1 by convention, a primary consumer has a TL of 2. Thus, for secondary consumers, the 187 

trophic level of a particular individual (TLi see Eq. 2) is estimated using the difference between its own 188 

stable N isotope ratio (δ15Ni, obtained using tissue measures of 15N/14N) and a source isotope ratio 189 

δ15Nbase at the base of the food web weighted by the trophic enrichment between TLs (∆15N). Different 190 

sources for benthic and pelagic food chains (δ15Nbase1 and δ15Nbase2) are often considered in marine 191 

coastal and/or estuarine environments, to reflect the complexity of trophic food webs in those 192 

systems. Each individual has to be allocated to one or the other of these food chains through an α 193 

coefficient (from totally benthic: α=1 to totally pelagic α=0), which has to be fixed a priori using expert 194 

knowledge on species’ feeding ecology and food web structure.  195 

 196 

TLi=  2+
[δ15Ni-{αδ15Nbase1+(1-α)δ15Nbase2}]

∆ N15
  Eq. 2 

 Then, a linear mixed model has to be fitted for each food web (benthic and pelagic) independently, by 197 

selecting species based on α values For species feeding on both pelagic and benthic preys and sources, 198 

α values can be comprised between 0 and 1.  When α>0.5 species are allocated to benthic food chain 199 

and to the pelagic one for α<0.5 for pelagic. 200 

 201 

Estimating trophic levels is therefore not straightforward, and subjected to multiple sources of 202 

uncertainty, including measurements of δ15N of individuals and sources at the basis of the food web, 203 

and estimations of α values associated to each species considered in the food web. Moreover, while a 204 

linear increase in δ15N with TL probably oversimplified the mechanism of isotope discrimination 205 

(Hussey et al., 2014) and equation 2 is not necessarily relevant in a situation where trophic chains are 206 

intertwined in complex interaction trophic networks. 207 
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 208 

2.2 ESCROC modeling framework 209 

The proposed model (ESCROC) was developed in a Bayesian framework. The Bayesian theorem allows 210 

(1) combining objectively different core metrics accounting for their sensitivity and variability and (2) 211 

providing rigorous uncertainty quantification.  212 

The approach in ESCROC was based on the same conceptual framework as stable isotope mixing 213 

models such as MixSIAR (Parnell et al., 2013; Stock et al., 2016). In such models, consumer species are 214 

assumed to feed on a combination of prey items (or sources) that are all known, and that the isotopic 215 

composition yi,e,t of an individual i of species e for tracer t results from the combined isotopic 216 

composition of the assimilated prey items.  217 

 218 

2.2.1 Model formulation 219 

In ESCROC, we combine isotope values and contaminant concentrations (in log scale) as chemical 220 

tracers of food web structure.  221 

We can therefore describe the mean concentration Y of a tracer t for a species e as a combination of 222 

its consumed prey (p) concentrations. In lieu of raw tracer concentrations, scaled values were used by 223 

subtracting the average value and dividing by the standard deviation: y𝑖,𝑒,𝑡
′ = ( yi,e,t − 𝑦𝑡̅) 𝜎𝑡⁄ ) so that 224 

all tracers share a common scale. This facilitates the integration of prioris and statistical inference of 225 

the model (Bolker et al., 2013). 226 

 227 

Based on stable isotope mixing model assumptions, the tracer composition of a predator was 228 

calculated using the tracer compositions of its prey items: 229 

 230 
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Ye,t=
∑ (ρe,p∙qp,t∙(Yp,t+ ∆t

' ))p∈prey(e)

∑ (ρe,p∙qp,t∙)p∈prey(e)

+Ee,t with Ee,t~N(0,st
2)  

Eq. 3 

 231 

where 232 

Ye,t is the average value of tracer (either contaminant or isotope) t value for species e 233 

ρe,p is the dietary contribution of prey p for consumer e 234 

qp,t is the concentration of t in prey p 235 

Yp,t is the measured mean tracer t value for prey p 236 

∆𝑡
′  is the enrichment factor for tracer t. Note that this corresponds to the enrichment for the 237 

scaled values, which can be converted to the enrichment in the original scale: ∆𝑡 = 𝜎𝑡 ∙ ∆𝑡
′  238 

Ee,t is the species random effect for species e and marker t that accounts for inter-specific 239 

physiological variability  240 

As ESCROC is implemented in a Bayesian framework, priors can be defined for unknown parameters. 241 

Priors, corresponding to possible a priori distributions of the parameters, can be constructed using 242 

knowledge from various sources (expert knowledge, meta-analyses, other field data…). In the absence 243 

of external knowledge, uninformative or weakly informative priors can be built. 244 

Ye,t as described in Eq3 therefore corresponds to a weighted average of the prey tracer compositions 245 

(with weights corresponding to the importance of the prey in the predator’s diet and to the 246 

concentration of the tracer in the prey), to which we added an enrichment and a species effect. If qp,t 247 

are equal among prey items, equation 3 simplifies to: 248 

 249 

Ye,t= ∑ (ρe,p∙Yp,t)

p∈prey(e)

+ ∆t
' +Ee,t with Ee,t~N(0,st

2) Eq. 4 

 250 

 251 
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Note that the model does not work if two species are both prey and predator of each other because 252 

equations 3 or 4 become circular. 253 

 254 

Similarly, the variance of the values of the tracer t for a species e, denoted Ve,t, can be calculated from 255 

the variances of the different prey:  256 

Ve,t=
∑ (ρe,p

2 ∙qp,t
2 ∙Vp,t)p∈prey(e)

[∑ (ρe,p∙qp,t)p∈prey(e) ]
2

+ Bt 
Eq. 5 

 257 

With Bt a variable to add potential noise at each trophic level. 258 

If the concentration parameters 𝑞𝑝,𝑡 are all equals, then the equation simplifies to: 259 

Ve,t= ∑ (ρe,p
2 ∙Vp,t)

p∈prey(e)

+ Bt 

In equation 3, if Ye,t is the concentration of a contaminant (in log10 scale) and assuming that all 260 

concentration parameters are equal (as in equation 4), then ∆t corresponds to the enrichment in 261 

contaminant between a prey and its predator, i.e., the enrichment along the food web when trophic 262 

level increases by 1. Consequently, it corresponds to the slope of the line in Figure 1 and we obtain 263 

∆t=log10(TMF). 264 

 265 

The measured values of a given tracer on a given dataset are supposed to follow a Normal law whose 266 

parameters are calculated from previous equations. We thus assume that the distribution of the tracer 267 

t value, for an individual i of the species e can be written as:  268 

 269 

yi,e,t~Normal(Ye,t,Ve,t) Eq. 6 

 270 

In case of the concentration measurement of a given tracer is null or not reliable for analytical reasons 271 

(e.g. below the detection threshold of a given measurement method), it can be considered as a left-272 
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censored data. The cumulative distribution of the normal distribution is thus used instead of the 273 

density of probability. 274 

 275 

2.2.2 Model calibration and priors construction 276 

We propose here a selection of possible priors that can be implemented for most of the model 277 

applications, but adaptation can be made in relation with available data or expert knowledge. 278 

  279 

Selection of priors for main parameters 280 

Priors can be supplied for the enrichment factors either on the transformed scale or on the original 281 

scale. Informative priors for Nitrogen and Carbon TEF (∆N and ∆C see Eq. 3) can be inferred from the 282 

literature (e.g. Post 2002). For instance, these priors can be implemented as follows: 283 

 284 

ΔN~Normal(3,1) Eq. 7 

ΔC~Normal(0,1) Eq. 8 

 285 

corresponding to a TEF value for N around 3 and around 0 for C. 286 

 287 

A non-informative prior can be used for the enrichment factors of all tracers corresponding to PFAS 288 

concentrations: 289 

 290 

∆𝑡
′ ~Normal(0,10) Eq. 9 

 291 

Finally, non-informative priors can be used for other parameters (residual variation and random 292 

effect) of model formulation (Eq. 3 and Eq. ): 293 
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 294 

Bt~Inverse Gamma(0.01,0.01) Eq. 10 

σt~Uniform(0.01,10) Eq. 11 

 295 

Diet matrix  296 

Information on trophic interactions should be implemented in the model. At first, we can only specify 297 

if a prey p can be predated by a consumer e based on the evidence of predator-prey relationships 298 

using field data. 299 

 300 

An uninformative prior for the dietary contribution of prey p for consumer e (ρe,p see Eq. 3) can then 301 

be constructed by assuming that it follows a Dirichlet distribution: 302 

 303 

{ρe,1,…,ρe,n}~Dirichlet({λe,1,…,λe,n}) Eq. 12 

 304 

where λe,p = 1 if e feeds on p and λe,p = 0 otherwise; n being the number of species in the considered 305 

food web.  306 

 307 

Informative priors can be implemented if external data, such as stomach contents, are available. 308 

However, considering the implementation framework, trophic loops cannot be included in the food 309 

web description.  310 

Constructing priors for tracer values using data 311 

Average tracer compositions of predators are calculated from prey tracer compositions. However, if a 312 

species does not have prey (e.g. primary producers), or if some prey of a species are not present in the 313 

dataset (i.e., no contamination data or isotopic measurements), it is necessary to provide priors for 314 
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this species. We will see in the case study how an informative prior can be constructed. However, in 315 

the absence of external data, a weakly informative prior can be implemented as follows: 316 

 317 

Ye,t~Normal (0,10) Eq. 13 

Ve,t~Gamma (0.01,0.0) Eq. 14 

 318 

2.2.3 Outputs and Implementation 319 

Outputs 320 

Main outputs of ESCROC consist in posterior distributions of the estimated parameters. Three main 321 

types of outputs can be obtained from ESCROC: diet compositions of each consumer of the 322 

investigated food web, enrichment factors for each tracer, and TMF estimates (with associated 323 

credibility interval).  324 

 325 

As a mixing model, ESCROC allows estimating a distribution of the proportion of each prey in the diet 326 

of the predators in the investigated food web. 327 

 328 

Furthermore, by considering posterior distribution of enrichment factors (see Eq. 3, Figure 4) for N 329 

and C isotopic ratios, ESCROC allowed re-estimating TEF values, which are usually empirically fixed in 330 

the literature on isotope-based trophic studies, with aforementioned uncertainty. TEF can indeed be 331 

estimated using the median of the distribution and 2.5% and 97.5% quantiles, providing associated 332 

95%-credibility intervals. In the same way, estimated posterior distributions of enrichment factors for 333 

contaminants can be used to estimate TMFs and associated credibility intervals. In this case, TMFs 334 

corresponds to 10∆t. Similarly, an estimation of TMFs can be provided using the median of the 335 

distribution and bounds of the 95%-credibility interval, computed from 2.5% and 97.5%-quartiles. 336 

Associated with TMF estimates, the probability of a contaminant to be biomagnified in the 337 
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investigated food web can then be computed by estimating the probability of ∆t to be positive (i.e. 338 

corresponding to a TMF value greater than 1).  339 

 340 

Implementation 341 

ESCROC was implemented using the R software (R Development Core Team, 2006) and the integrated 342 

development environment (IDE) R-studio (the model being run using coda and runjags packages). For 343 

the Bayesian part of the model, the JAGS language was used (Plummer et al., 2016). The model 344 

convergence can be checked using Gelman and Rubin tests (Brooks and Gelman, 1997; Gelman and 345 

Rubin, 1992). A first beta version of the R-package (escrocR) implementing the method is available on 346 

GitHub (https://github.com/Irstea/escroc). It can be cited as follows: 347 

Hilaire Drouineau, Marine Ballutaud and Jeremy Lobry (2018). EscrocR: a R package implementing the 348 

model ESCROC. R package version 0.0.0.9000. 349 

 350 

2.3 Illustrative example: PFAS in the Gironde estuarine food web 351 

In this illustrative example, the method was applied to a dataset on PFAS contamination in the 352 

Gironde estuarine food web. The main aims were to estimate (1) TMF values for a set of PFAS 353 

previously described and analyzed (Munoz et al. 2017), (2) enrichment factors of two isotopes of 354 

nitrogen and carbon and (3) the diets of all species within the trophic network.  355 

 356 

 357 

2.3.1 Dataset 358 

Data used in this study are taken from Munoz (2015) and Munoz et al (2017). Samples were collected 359 

between May and November 2012 in the mesohaline zone of the Gironde estuary. Amongst the initial 360 

dataset of 147 biological samples from 18 species or group of species, a subset of data was used 361 

https://github.com/Irstea/escroc
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comprising 138 samples from 16 species, for which both isotopic data (δ15N and δ13C) and PFAS 362 

concentrations were available. We selected 5 PFAS (L-PFOS, FOSA, PFOA, PFNA and PFUnDA, see Table 363 

S1) based on their occurrence in biota samples, the existence of censored data (considering PFAS with 364 

different proportions of censored data), the TMF values previously estimated, and the variety of 365 

chemical structures (ie., fluoroalkyl chain length or functional group - Table 1).  366 

 367 

2.3.2 Specific priors 368 

The priors for diet compositions were directly built from the trophic network illustrated in Figure 2. 369 

 370 

For two groups (gammarids and copepods), instead of using uninformative prior as proposed in 371 

equations 13 and 14, we built an informative prior to take advantage of pre-existing data on nitrogen 372 

and carbon isotopic ratios (David, unpublished data). We specified a normal prior parameterized with 373 

the mean and the standard errors in pre-existing available tracer composition data: 374 

 375 

Ye,t-yt̅

σt
~Normal (μe,t, set

2) Eq. 15 

 376 

with 377 

e species or group of organism (gammarid or copepods) 378 

t type of chemical tracer (carbon or nitrogen) 379 

µet arithmetic mean of tracer values in an independent dataset  380 

se et associated standard error  381 

 382 

Regarding the variances, the estimator of the variances in the samples follows the distribution: 383 

 384 
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υe,t~
Ve,t

σt
2∙ne,t-1

χ(ne,t-1)
2  Eq. 16 

 385 

with 386 

νe,t the estimator of the variance in the samples 387 

ne,t number of samples 388 

e species or group of organism (gammarid or copepods) 389 

t type of chemical tracer (carbon or nitrogen) 390 

 391 

Specific gammarid and copepod priors were thus built as follows: 392 

 393 

1

Ve,t
~

υe,t

σt
2∙ne,t-1

χ(ne,t-1)
2  Eq. 17 

 394 

2.3.3 Outputs and model implementation 395 

We set qp,t=1 for all species in the model. We also computed an index αe for each predator to compare 396 

to the α values (see section 2.1.1) arbitrarily assigned in the Munoz et al. dataset (2017).  397 

αe= ∑ (ρe,p∙αe)

p∈prey(e)

 

For gammarids and copepods, we set αe=0 (pelagic), and we set αe=0 (benthic) for nereids and crabs. 398 

The model was fitted using a MCMC (Monte Carlo Markov Chain) method. Three chains were used in 399 

parallel with 1 million preliminary iterations – burnin – followed by 150,000 iterations to assess 400 

posterior distributions. We run the model with JAGS software version 4.1.0 and check convergence 401 

using the Gelman-Rubin diagnostic (gelman.test< 1.05).  402 

 403 
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3 Results 404 

3.1 Model calibration and convergence 405 

Values of Gelman indices confirmed the model convergence for 68 parameters out of 70. The only two 406 

parameters for which the model did not converge corresponded to tracer composition of prey items 407 

with 100% of censored data.  408 

 409 

The model fitted observations as suggested by the plot of predicted posterior distributions of mean 410 

species tracer composition against observed values (Figure 3).  411 

 412 

3.2 Outputs 413 

3.2.1 Diet compositions 414 

Diet compositions were estimated for each predator of the Gironde estuarine food web for which 415 

both isotope and PFAS data were available (see Figure 4 as an example). A global diet matrix can then 416 

be obtained by compiling all the diet values estimated by ESCROC using both N and C isotopic ratios 417 

and the 5 PFAS concentrations (Table 2).  418 

 419 

For most species, the coefficients relating the species to the pelagic and benthic food webs were 420 

rather consistent with the expert knowledge used in Munoz et al. (2017) though the model tends to 421 

consider less species as benthic (Table 3). Those results confirm that it is very difficult to separate 422 

species into a set of two independent food-webs, as required by usual TMF estimation methods. 423 

 424 

3.2.2 Enrichments and TMF 425 

TEF values and the associated uncertainty were estimated, as well as TMFs estimates and 426 

biomagnification probabilities (Figure 4 and Table 4).  427 



20 

 

 428 

Non-informative priors were used for the PFAs enrichment factors, as highlighted by the flat curve 429 

lines in Figure 4. In these cases, ESCROC provided informative posterior estimates for contaminants 430 

TMFs. Conversely, informative priors based on literature were used for isotopes TEFs. Although the 431 

estimated posterior distribution appeared consistent for δ15N, it was significantly different for δ13C 432 

even if the classical value used in the literature and in our prior definition (TEF = 0) is comprise in the 433 

posterior credibility interval.  434 

 435 

 436 

4 Discussion 437 

4.1 Limits and benefits of the ESCROC model formulation 438 

4.1.1 Bayesian framework, a priori information and uncertainty propagation 439 

ESCROC was implemented in an innovative and flexible Bayesian framework to estimate TMFs and 440 

associated uncertainty. This modeling approach presents several advantages.  441 

 442 

Unlike frequentist methods previously mentioned (e.g. linear models and mixed models), the Bayesian 443 

framework allows to account rigorously for uncertainty propagation in measurements (e.g., TL 444 

estimates) to TMF estimates. Starrfelt et al. (2013), for instance, recommended the use of Bayesian 445 

inference to account for measure uncertainty in contaminants concentrations and isotope ratios 446 

(δ15N), as well as for variability and uncertainty related to TL estimates, in order to improve the 447 

precision of TMF estimations. ESCROC goes even further, by providing credibility intervals for all 448 

parameters, in particular for contaminants TMFs and isotopes TEFs. By doing so, ESCROC represents a 449 

noteworthy methodological advance as compared to traditional methods for TMF estimation. 450 

 451 
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Based on both a contaminant propagation model and an isotope mixing model, ESCROC combines and 452 

enriches both modeling approaches. The contaminant propagation model therefore benefits from 453 

integrated diet estimations. As such, TMF estimates are of more generic nature, as they no longer 454 

depend on a pre-specified trophic chain structure that the model user provides (and usually simplify). 455 

This model rather accounts for the whole food web complexity at once, and provides generic TEF 456 

estimates. Similar to widely-used mixing models (Parnell et al., 2008; Parnell et al., 2010; Parnell et al., 457 

2013; Stock et al., 2016), ESCROC allows estimating diet compositions in investigated food webs (See 458 

Supplementary Materials S2 for a preliminary comparison of both approaches). It allows going even 459 

further than classical mixing models. Indeed, using contaminants in addition to isotopes data increases 460 

the number of chemical tracers and allow the estimation of isotope enrichment factors, a significant 461 

improvement as compared to the use of fixed a priori -values from the literature (usually from Post 462 

(2002)), values which are known to not perform as well in various environmental contexts or for 463 

contrasted food webs).  Furthermore, our modelling approach partly addresses some of the 464 

recommendations listed by Hussey et al. (2014) for estimating isotope discrimination. The full 465 

Bayesian estimation framework indeed provides a pragmatic and very flexible estimation of 466 

enrichment factors. The framework is thus generic and can be applied in all ecosystem contexts. 467 

Furthermore, a random effect ‘Species’ is added in the model. Thus, although the TEF and TMF 468 

estimation are still considered globally constant through the food web, they are modulated species by 469 

species. By doing this, ESCROC did not specifically consider that isotope discrimination varies with 470 

trophic position but it allowed the estimations to vary for every species. 471 

In the Gironde estuarine case study, the TEF for δ13C estimated from ESCROC considerably differs from 472 

the one in literature. This is mostly explained by the fact we used data from studies on marine 473 

environments to compute the prior distribution while estuarine ecosystems are usually enriched on 474 

continental organic carbon which signature is different. However the model allowed not only 475 

estimating more accurately the TEF distribution for δ13C in the estuarine context but the estimates 476 

remains consistent with the reference literature (e.g. Post, 2002).  This result further highlights the 477 
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need for accurate TEF estimates based on the best available knowledge, as already advocated in 478 

multiple reviews of isotope-based ecological studies (Martinez del Rio et al., 2009; Layman et al., 479 

2012; Bastos et al., 2017).  480 

 481 

Additionally, prior knowledge incorporation is a really significant advantage of both ESCROC and 482 

MixSIAR approaches (Parnell et al., 2010; Parnell et al., 2013). Indeed, the Bayesian framework is 483 

especially well-adapted to integrate a priori information such as expert knowledge or external 484 

datasets. For instance, in the present case study, external information about copepods isotopic 485 

composition were combined in an informative prior as available data were uncertain. Similarly, expert 486 

knowledge and food web data (such as stomach contents) could have been used to compute more 487 

informative prior on trophic interactions, instead of using an uninformative prior for the contribution 488 

of each prey in each consumer diet.  489 

 490 

4.1.2 Computing TMF and associated bioaccumulation probabilities 491 

Although the initial purpose of the model was to compute TMF estimates and associated uncertainty, 492 

the ECROC modeling approach provides a comprehensive framework for the understanding of 493 

contaminants transfers in a complex food web. In relation with the Bayesian framework used, ECSROC 494 

indeed provides a biomagnification probability, which corresponds to the probability of a particular 495 

contaminant to be biomagnified in the investigated food web. This innovative feature is especially 496 

relevant for risk assessment. In fact, this probability directly expresses the risk a manager would take 497 

by classifying a given contaminant as “biomagnifiable” in a given food web. As such, ESCROC model 498 

represents an important tool to support decision making. For instance, estimated thresholds of risks 499 

could be used to define contamination levels for which additional monitoring is required, as well as 500 

levels for which specific management measures appear mandatory. 501 

 502 
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4.1.3 Limitations 503 

Despite the aforementioned advances and advantages, ESCROC modeling approach also presents two 504 

major limitations.  505 

First, considering the implementation framework, trophic loops cannot be considered in the food web 506 

description, although such phenomena may exist in nature. We can cite cannibalism as an illustrative 507 

example, a process relatively common in aquatic food webs, in which adult consumers sometimes 508 

prey upon juveniles from the same species (Livingston, 2002). In our case example, we assumed such 509 

flows to be be negligible or, at least much weaker than direct prey-predator trophic flows. This 510 

assumption seems reasonable with regards to available knowledge on food webs in our study system 511 

(see for instance Lobry et al., 2008; Selleslagh et al., 2012; Tecchio et al., 2015 for French estuaries).  512 

Another limitation of the ESCROC modeling approachlies in technical aspects. First, computing time 513 

can reveal quite long depending on food web complexity and computer devices used. Second, data 514 

about multiple tracers need to be included to avoid any underdetermination issues, as TMFs and TEFs 515 

are estimated together and at the whole trophic network scale, SSince, the number of tracers (either 516 

isotopes or contaminants) should be large enough to avoid any underdetermination issue. This implies 517 

considerable efforts in sample collection, preparation, and chemical analysis, an even higher than for a 518 

classical mixing model such as MixSIAR. 519 

 520 

4.2 Diagnosis about PFAS in the Gironde estuary 521 

The computed TMF values of the five investigated PFAS are not significantly greater than 1 with a α-522 

risk at 95%. This implies that, considering the results of the present study, none of the five 523 

investigated contaminants can be considered as ‘biomagnifiable’ in the Gironde estuarine food web. 524 

However, when considering the biomagnification probabilities associated with TMF estimates, results 525 

are more contrasted. The diagnosis actually depends on the risk-level a manager is ready to accept. 526 

For instance, if a risk-level was fixed to 30% in a precautionary approach, PFUnDA, FOSA, and more 527 
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particularly L-PFOS would be considered to be biomagnified in the food web with 72%, 86% and 92% 528 

of certainty, respectively (Table 4). These considerations give sense to the computation of 529 

biomagnification probabilities within the ESCROC modeling tool.  530 

 531 

Our ESCROC-based diagnosis about PFAS contamination in the Gironde estuarine food web are slightly 532 

different from previous assessment from Munoz et al. (2017). In the latter study, the 5 investigated 533 

contaminants were considered to have been magnified at both the benthic chain and the whole food 534 

web levels, whereas only one TMF estimates (FOSA) was greater than one when considering the 535 

pelagic chain. Differences between Munoz et al. (2017) and our interpretation probably arises from 536 

differences in the methodological approaches. First, pelagic and benthic data were combined in 537 

ESCROC’s estimates as well as in the Munoz’s pooled estimates (Table S17 in Munoz et al., 2017). As 538 

we saw in section 3.2.1, such combination is probably more realistic than separating benthic and 539 

pelagic food chains, and this difference  can lead to significant contrasts  in TMF estimates. Second, 540 

the Bayesian model formulation provides a better integration of uncertainty propagation than 541 

traditional linear models. This leads to greater associated uncertainties and larger credibility intervals 542 

than the confidence intervals estimated with the LMEC method used in Munoz et al. (2017) for pooled 543 

TMFs. Third, Munoz et al. (2017) study was based on TMF estimates only whereas ESCROC provides 544 

both TMFs estimates and biomagnification probabilities. Considering only TMFs estimates however, 545 

both studies also led to contradictory results. When considering biomagnification probabilities as well, 546 

our and Munoz et al. (20174)’s diagnoses remain different, but partly converge for PFUnDA, FOSA and 547 

L-PFOS (see above). Finally, previous diagnoses from Munoz et al. (2017) based on classical TMF 548 

estimations through linear regression appear questionable, with regards to aforementioned statistical 549 

consideration, although such a method can still be seen as a simple and useful approach to perform 550 

comparative studies for comparing biomagnification of selected chemicals in a given ecosystem. 551 

Nevertheless, the results obtained in the present study also plead for a precautionary approach when 552 
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interpreting contaminant transfer data, and for using biomagnification probabilities rather than TMF 553 

values alone. 554 

 555 

4.3 Perspectives for the ESCROC modeling approach 556 

More than an innovative estimation framework for TMFs in complex food webs, ESCROC can also be 557 

viewed as an improved mixing model for food web analyses. Considering more chemical tracers than 558 

the classical N and C isotopes indeed clearlyimproves diet matrix estimations. Results obtained for the 559 

Gironde estuarine food web are in line with those previously obtained by Pasquaud et al. (2008) and 560 

Pasquaud et al. (2010) using both stomach contents and isotope data, and by Lobry et al. (2008) using 561 

literature compilation and mass-balance modeling. Moreover, in the ESCROC modeling approach 562 

presented herein, tracers are contaminants, but other kind of isotopes (e.g. δ34S) can be used as well. 563 

As highlighted by Mackay et al. (2016), several processes related for instance to hydrophobicity or 564 

rates of biotransformation and growth can influence contaminant biomagnification. However, as far as 565 

they biomagnify, any type of tracer can be used in the ESCROC modeling framework. In their Best 566 

practice in Ecopath with Ecosim food-web models for ecosystem-based management, Heymans et al. 567 

(2016) underlined that: “Diet estimates for functional groups can also be obtained from stable isotopic 568 

analyses using Bayesian isotopic mixing models.” By providing rigorous estimates of diet matrices (and 569 

associated uncertainty) based on chemical tracers (eventually combined with expert knowledge 570 

and/or external information), diet composition estimates from ESCROC modeling could so be used to 571 

calibrate diet matrices in mass-balanced food web models.  572 

 573 

Other perspectives could also relate to mass-balance equations (similar than the ones used in 574 

Ecopath) which could also be implemented in the ESCROC model formulation, in order to provide an 575 

innovative modeling framework of ‘biomass propagation’. This would allow a very integrated view of 576 
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aquatic ecosystem food webs, with simultaneous estimations of biomass, contaminants, and isotopes 577 

transfers.. 578 
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Table 1. Data summary with Average [Min; Max] values for each tracer (5 PFAS, d13C and d15C). n: number of samples on which contaminants and isotopes were measured for each species. – 1 
corresponds to censored values (i.e. values below the limit of quantification for each specific contaminant). Contaminant concentrations are given in ng g

-1
 wet weight of the whole-body (from 2 

Munoz et al., 2017).  3 

 4 

Species 
L-PFOS  

(ng g-1) 

FOSA 

(ng g-1) 

PFOA  

(ng g-1)  

PFNA  

(ng g-1) 

PFUnDA  

(ng g-1) 

 δ13C 

(‰) 

δ15N 

(‰) 

n 

 

Anchovy 3.58 [1.6;6.3] 1.52 [0.9;2.2] 0.12 [-;0.1] 0.25 [0.0;0.1] 0.31 [-;0.2] -18.71 [-19.4;-18.2] 7.99 [8.8;12.0] 6 

Brown shrimp 6.57 [3.8;8.0] 3.75 [1.5;5.4] 0.37 [0.3;0.5] 1.44 [0.8;2.1] 0.51 [0.5;0.6] -18.07 [-18.7;-17.1] 12.60 [11.5;13.3] 3 

Common seabass 6.68 [3.0;14.3] 1.39 [0.4;2.2] 0.30 [-;0.2] 0.39 [0.1;0.5] 0.63 [0.3;1.4] -17.58 [-19.8;-15.7] 12.65 [10.7;15.0] 9 

Copepods 1.24 [0.8;1.6] 0.33 [0.3;0.4] 0.31 [0.1;0.5] 0.56 [-;0.1] 0.32 [0.1;0.2] -23.43 [-26.4;-21.6] 9.04 [10.6;13.1] 3 

Crabs 2.42 [1.8;3.0] 0.22 [0.2;0.2] 2.42 [1.7;3.0] 1.40 [0.8;2.3] 0.31 [-;0.4] -14.84 [-15.8;-13.3] 6.03 [7.9;10.1] 3 

Flounder 5.71 [0.7;21.7] 0.90 [0.1;3.8] 0.40 [-;1.6] 1.18 [0.2;7.9] 0.73 [0.1;1.9] -18.00 [-23.8;-14.1] 10.53 [10.7;15.2] 13 

Gammarids 2.36 [1.5;2.8] 0.52 [0.4;0.7] 1.00 [0.3;2.1] 0.48 [0.3;0.6] 0.44 [0.4;0.5] -22.51 [-24.2;-19.4] 9.10 [8.4;9.1] 3 

Goby 2.35 [2.0;2.4] 0.18 [0.2;0.2] - [-;-] 0.14 [0.1;0.2] 0.41 [-;0.4] -19.21 [-19.2;-19.0] 11.53 [11.2;11.8] 3 

Meagre 4.39 [2.5;10.7] 3.30 [2.3;5.4] - [-;-] 0.34 [-;0.3] 0.39 [0.2;0.8] -16.89 [-18.4;-16.3] 14.19 [13.1;14.8] 12 

Mullet 2.53 [0.8;4.0] 0.36 [0.1;0.8] - [-;-] 0.36 [-;0.3] 0.94 [-;4.0] -21.55 [-28.2;-16.5] 10.11 [8.7;13.6] 12 

Mysids 3.14 [2.4;3.8] 1.20 [0.9;1.5] 0.86 [0.1;0.1] 0.15 [0.1;0.2] 0.15 [0.1;0.2] -21.35 [-22.8;-19.9] 10.75 [8.2;13.3] 2 

Nereis 2.90 [2.0;21.0] 0.59 [0.4;0.8] 5.21 [3.6;8.2] 6.01 [3.7;8.3] 0.49 [0.1;0.3] -16.40 [-18.2;-15.2] 4.85 [9.9;10.7] 5 

Oyster 0.52 [0.1;0.1] 0.74 [0.4;0.8] 0.16 [-;0.0] 0.11 [-;0.0] 0.16 [-;0.0] -19.66 [-21.2;-18.7] 7.86 [6.1;8.5] 4 

Scrobicularia 0.31 [0.2;0.5] 0.27 [0.2;0.3] 0.26 [-;0.0] 0.31 [0.0;0.0] 0.49 [0.0;0.1] -16.25 [-17.5;-15.5] 7.65 [7.6;7.7] 3 

Sole 9.12 [0.7;19.2] 1.22 [0.1;2.4] 0.83 [0.0;2.5] 3.73 [0.2;11.8] 0.47 [0.1;1.3] -14.19 [-20.8;-14.3] 13.11 [11.1;14.9] 31 

Spotted seabass 4.87 [2.2;10.5] 2.22 [1.0;4.2] 0.41 [-;0.7] 0.27 [-;0.7] 0.39 [0.1;1.0] -16.45 [-20.1;-14.8] 13.78 [11.8;15.4] 28 

Sprat 1.64 [0.3;3.8] 3.03 [1.7;4.7] - [-;-] 0.15 [-;0.1] - [-;-] -17.19 [-17.4;-16.8] 11.60 [11.3;11.9] 3 

White shrimp 3.02 [2.7;3.0] 3.24 [2.7;3.6] 0.39 [0.3;0.4] 0.39 [0.3;0.4] 0.42 [0.3;0.5] -14.00 [-20.9;-19.4] 8.00 [10.5;11.2] 3 
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 8 
Table 2. Diet matrix of the Gironde estuarine food web. Each value corresponds to the proportion of the prey in line in the 9 
diet of the predator in column. It was computed as the median value of the proportion of each of the listed preys in the diet 10 
composition of the predators estimated by ESCROC using both N and C isotopic ratios and 5 PFAS concentrations.  11 
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Anchovy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Common seabass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Spotted seabass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Flounder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Goby 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Meagre 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mullet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sole 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sprat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

White shrimp 0.00 0.08 0.23 0.00 0.00 0.17 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Brown shrimp 0.00 0.09 0.00 0.00 0.00 0.16 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mysids 0.41 0.38 0.15 0.00 0.83 0.11 0.06 0.00 0.00 0.49 0.54 0.00 0.00 0.00 0.00 0.00 

Gammarids 0.12 0.29 0.19 0.71 0.17 0.09 0.00 0.47 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Copepods 0.46 0.00 0.13 0.00 0.00 0.10 0.94 0.00 0.41 0.51 0.46 1.00 0.00 0.00 0.00 0.00 

Nereis 0.00 0.06 0.28 0.05 0.00 0.35 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Crab 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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 14 

 15 
Table 3. αe coefficients (1=benthic, 0=pelagic) estimated by the model (quantiles of the posterior distributions) for the 16 
different species and comparison with the values estimated a priori by Muñoz et al. (2017). 17 

 
Species 

ESCROC 
(quantiles of posterior distributions) Muñoz et al. 

(2017) 2.5% 50% 97.5% 

Anchovy 0.00 0.00 0.00 0.00 

Common seabass 0.00 0.06 0.26 0.13 

Spotted seabass 0.06 0.28 0.52 0.23 

Flounder 0.11 0.29 0.64 0.82 

Goby 0.00 0.00 0.00 0.05 

Meagre 0.10 0.35 0.60 0.44 

Mullet 0.00 0.00 0.00 0.96 

Sole 0.04 0.22 0.51 0.67 

Sprat 0.00 0.00 0.00 0.00 

White shrimp 0.00 0.00 0.00 0.00 

Brown shrimp 0.00 0.00 0.00 0.00 

Mysids 0.00 0.00 0.00 0.00 

Gammarids 0.00 0.00 0.00 0.00 

Copepods 0.00 0.00 0.00 0.00 

Nereis 1.00 1.00 1.00 1.00 

Crab 1.00 1.00 1.00 1.00 
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 21 
Table 4.  Estimates and associated 95% -credibility interval of isotopes TEF and contaminants TMF in the investigated Gironde 22 
estuary food web with associated biomagnification probabilities. Munoz et al. (2017) are TMF values via LMEC methods when 23 
pooling all samples. See text for details.  24 

Tracers Median 
Bounds of the  

95% credibility interval 
Biomagnification 

probability 
Munoz et al.  

(2017) 

Isotopes TEF      

δ15N 2.76 1.55 3.80 NA  

δ15C 1.60 -0.23 3.09 NA  

Contaminants TMF      

L-PFOS 1.65 0.77 3.28 0.92 1.5 [1.5;1.6] 

FOSA 2.29 0.48 6.50 0.86 1.9 [1.9;2.0] 

PFOA 0.28 0.04 1.50 0.06 2.0 [1.9;2.1] 

PFNA 0.69 0.13 4.22 0.32 1.5 [1.4;1.6] 

PFUnDA 1.30 0.47 3.02 0.72 1.1 [1.0;1.2] 

 25 

 26 

 27 

 28 
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 1 
 2 

Figure 1. Basis of Trophic Magnification Factor (TMF) estimation. Log10[C]: log-transformation of the 3 

contaminant concentrations [C]; a: intercept of the regression ; b: slope of the regression. LOQ: limit 4 

of quantification. See text for details. 5 
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 8 
Figure 2. Synoptic diagram of the Gironde estuarine food web (from Pasquaud et al., 2010) 9 

  10 
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 11 
Figure 3. Predicted posterior distributions (boxplot) and observations (points) of tracer values by species. Values are scaled 12 
(see text for details) 13 
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 15 
 16 
Figure 4. Probability density (in y-axis) of the proportion (in x-axis) of each of the listed preys in the diet composition of the 17 
common seabass in the Gironde estuary estimated by ESCROC using both N- and C- isotopic ratios and 5 PFAS 18 
concentrations. 19 

 20 

  21 



5 

 

 22 

 23 
 24 
Figure 5. Graphical representation of priors (curves in red) and posteriors (histograms in black) distributions of enrichment 25 
factors for each investigated tracer (d15N: δ

15
N, d13C: δ

13
C, and contaminants concentrations: L-PFOS, FOSA, PFOA, PFNA 26 

and PFUnDA). 27 
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Table S 1. List of PFAS compounds targeted in the present study 2 

Acronym Compound name Molecular formula 

L-PFOS 
n-perfluoro-1-octanesulfonic 
acid 

C8F17SO3H 

FOSA perfluorooctane sulfonamide C8F17 SO2NH2 
PFOA perfluoro-n-octanoic acid C7F15COOH 
PFNA perfluoro-n-nonanoic acid C8F17COOH 
PFUnDA perfluoro-n-undecanoic acid C10F21COOH 

 3 

 4 
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S2. Comparisons between ECSROC and MixSIAR 6 

 7 

As an illustrative example, we calibrated MixSIAR to estimate the sole diet, using the same data that 8 

were used to fit ESCROC.  9 

 10 

To be consistent with our ESCROC approach (see text for details),  11 

- We used exactly the same isotope data 12 

- We used exactly the same a prior for diet composition than in ESCROC 13 

- We used two alternative priors for N and C TEFs (∆N and ∆C in Eq 7 and 8 in the text) 14 

o First, we used exactly the same priors as in ESCROC (see Eq. 7 and 8 in the text): 15 

ΔN~Normal(3,1) and ΔC~Normal(0,1) 16 

o Second, we used priors corresponding to the TEF posterior distributions from ESCROC 17 

(see Figure 5 in the text) 18 

Then, we also fitted ESCROC, but, contrary to the article, using only C and N (i.e., ignoring 19 

contaminants concentrations) data to directly compare with MixSIAR outputs. Note that with such a 20 

limited dataset, ESCROC is likely to be underdetermined. 21 

 22 

The results presented in the figure S2 below are based on the direct plotting of the posterior 23 

distributions for both ESCROC and MixSIAR. They first highlight that: 24 

(1) Adding contaminants in ESCROC allows to better discriminate the proportions of the main 25 

prey in the sole diet (Figures S2 A and C). 26 

(2) Using the posterior distribution of TEF from ESCROC, MixSIAR provides very similar results to 27 

ESCROC (Figures S2 A and D). 28 

(3) Using naive priors for TEF and using posterior distributions from ESCROC in MixSIAR provide 29 

quite different diet estimates (Figures S2 B and D). This is due to the fact that the naive prior is 30 

rather different from the posterior distribution (especially for C). This underlines that MixSIAR 31 

is especially sensitive to TEF prior specifications. 32 



3 

 

 33 

Outputs from ESCROC and MixSIAR (Figures S2 C and D) are different but not contradictory. Actually, 34 

they mainly differ in the proportion of white shrimps in the sole’s diet. However, the prosterior density 35 

is very flat and rather uninformative for this particular species in the MixSIAR outputs and does not 36 

allow to really conclude on the proportion of this shrimp in the sole’s diet. Indeed, most of the 37 

ESCROC simulated results could correspond to the MixSIAR posterior distribution.  38 

 39 

Although based on the same transfer equations, these differences between ESCROC and MixSIAR 40 

could be explained by: 41 

(1) the fact that ESCROC estimates are computed for the whole food web at one time. This allows 42 

using mutual information to compute more accurate estimates.   43 

(2) the use of a random effect ‘Species’ Thus, although the TEF and TMF estimation are still 44 

considered globally constant through the food web, they are modulated species by species. By 45 

doing this, we did not specifically consider that isotope discrimination varies with Trophic 46 

Position but we allowed the estimation to vary for every species. 47 

(3) a different way to account for uncertainty in both models. In particular, posterior sources and 48 

consumers’ isotope compositions are computed in ESCROC using both observation data and 49 

parameters estimates. This leads to an a posterori quite different set of data between both 50 

approaches.  51 
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 54 

 55 

 56 

 57 

 58 

 59 

ESCROC MixSIAR 

 
A. (ESCROC with both isotopes and PFASs) 

 
B. (MixSIAR with TEF priors = TEF priors ECSROC) 

 
C. (ESCROC using only C and N isotopes data) 

 
D. MixSIAR (TEF priors = posteriors ESCROC) 

 60 
Figure S2. Probability density (in y-axis) of the proportion (in x-axis) of each of the listed preys in the diet composition of the 61 
sole in the Gironde estuary. Comparisons of outputs from ESCROC (A. based on both isotopes and contaminants data; C. 62 
based only on isotopes data) and MixSIAR (B. using initial TEF priors implemented in ESCROC; C. using estimated posterior 63 
TEF estimations from ESCROC).  64 

 65 
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