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Abstract 10 

Suspicious observations, or the so-called outliers, are always present, to a greater or lesser extent, in agronomical 11 
and environmental datasets. Within field yield datasets are no exception. While most filtering approaches use 12 
expert thresholds and dedicated filters to remove these defective observations, more general and unsupervised 13 
methods will be required to process a growing number of yield maps. However, by using these last approaches, 14 
outliers would be solely identified and would remain unlabeled. This study proposes a methodology to provide a 15 
label to these defective observations so that users can better characterize the harvest process, e.g. functioning of 16 
the machine, driving of the operator, and provide guidelines for future improvements of equipment and operations 17 
processes. Here, it is assumed that outliers have already been detected by a non-parametric and unsupervised 18 
published approach. Clusters of outliers are first identified in the data to gather outliers with similar yield outlying 19 
characteristics. Once detected, these clusters are given a first-order label which describes the general yield outlying 20 
characteristics of the observations that belong to these clusters. Then, within each cluster, each outlier is given a 21 
second-order label to provide more information on the origin of the defective observation. Yield simulated datasets 22 
with known characteristics and labelled outliers were used to test the methodology. The proposed approach was 23 
then applied on real yield datasets with unlabeled outliers. This study shows that it might be conceivable to label 24 
outliers detected with an unsupervised approach but that some labels are more accurate than others, especially 25 
those related to an unknown cutting width of the harvester or to narrow finishes within the fields. Outlying 26 
observations behaved similarly between simulated and real datasets which made it possible to infer more precisely 27 
the label of defective observations. By labelling outlying observations, it was possible to provide an appropriate 28 
correction to one of the real yield dataset and to restore almost 15% of the outlying observations instead of 29 
removing them. This study is a first attempt to provide a label to yield outliers detected from an unsupervised 30 
manner. 31 

Keywords: Intentional knowledge, knowledge discovery, outliers clustering, outliers labelling, yield 32 

 33 

1. Introduction 34 

The agricultural sector faces an impressive and still increasing flow of data arising from multiple platforms, i.e. 35 
satellites, UAV, drones, or embedded and in-situ sensors (Baluja et al., 2012; Debuisson et al., 2010; Oliver, 2010; 36 
Santesteban et al., 2013). All these data are very helpful for the decision-making process but come along with 37 
varying degrees of quality or reliability. More specifically, defective observations, i.e. the so-called outliers, are 38 
likely to be present within these data (Simbahan et al., 2004; Sudduth et al., 2007). Those suspicious observations 39 
must be carefully considered before involving the datasets in complex agronomic processes or decisions. This is 40 
particularly the case for within-field yield datasets which are a valuable tool to highlight the within-field spatial 41 
variability and understand the underlying factors affecting this variability (Pringle et al., 2003). Yield datasets are 42 
negatively impacted by a noticeable amount of defective observations widely reported in the literature, e.g. filling 43 
and emptying time, speed changes, unknown cutting width when entering the crop, GNSS positioning, harvest 44 
turns and narrow finishes (Arslan, 2002; Lyle et al. 2013). It must be clear that these defective observations are 45 
not erroneous measurements from the yield monitors. These defective observations are problematical because they 46 
do not correspond to the yield that should be observed in the field. They are rather biased by the fact that a combine 47 
harvester passes through the field. In the case of within-field yield monitor data, Griffin et al. (2008) have shown 48 
that in half of their experiments, the quality of the filtering procedure would have supported different field 49 
management recommendations.  50 
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For the past twenty years, several approaches have been proposed in the literature to tackle the issue of yield 51 
defective observations (Blackmore and Moore, 1999; Leroux et al. 2017; Simbahan et al. 2013; Sudduth et al. 52 
2007; Sun et al. 2013). All these methodologies have come up with one single objective, which is to remove all 53 
the outliers from the datasets. This way of thinking is legitimate because (i) these suspicious observations influence 54 
the overall quality of the data, and (ii) yield datasets contain lots of yield records which means that these datasets 55 
can handle a loss of data. Among the multiple approaches that were published in the literature to filter yield 56 
datasets, most of them rely on manual expertise and/or dedicated expert thresholds and filters. With these 57 
approaches, the labelling of outlying observations, i.e. the fact of attaching information with respect to the origin 58 
of the outlier, is directly provided as each empirical or semi-automatic threshold/filter is specific to a type of 59 
defective observation. However, with the growing number of yield maps that will need to be processed in the near 60 
future, non-parametric and automatic methodologies might be preferred (Leroux et al., 2017; Spekken et al. 2013). 61 
In this latter case, as the filtering is thought from a holistic perspective, the labelling of each outlier is not known 62 
when defective observations are identified. There is effectively no information or description attached to the 63 
outlier, i.e. the origin of this outlying information, e.g. speed change, filling and emptying time, is not known. 64 

The labelling of outlying yield observations is especially relevant since there exists a lot of expert knowledge on 65 
(i) the types of defective observations and on (ii) the attributes associated to the yield records to help explain the 66 
origin of the errors (Arslan, 2002; Blackmore and Moore, 1999; Lyle et al. 2013). From a more general perspective, 67 
the labelling of observations has multiple interests such as the possibility to (i) explain what is causing these 68 
outliers, (iii) characterize the working of a machine or the driving of an operator, (iii) correct outlying observations 69 
instead of removing them or (iv) provide guidelines for future improvements of equipment and operations 70 
processes (Colaço et al., 2014). Once outliers are detected inside yield datasets, it seems therefore possible to 71 
provide a detailed description or at least a labelling of the suspicious observations. However, even though an 72 
expertise is available, it can sometimes be quite difficult to assess with a strong confidence whether a detected 73 
outlier is truly one. By performing a visual inspection on the field, it can be argued that some outliers are clearly 74 
visible, but this is not always the case. Moreover, such a visual inspection is cumbersome and may remain 75 
subjective when dealing with large amounts of data to analyze. To improve the identification and labelling process, 76 
one solution could be to use simulated datasets in which each observation would be labelled either as a normal or 77 
defective observation (Leroux et al. 2018). As the location and labelling of outliers would be known in advance, 78 
it would be much easier to validate a proposed procedure.  79 

Assuming that a person’s noise is another person’s signal, several studies, though much less than those related to 80 
outlier detection, have intended to provide a label to outliers so that users can better understand their characteristics 81 
and origin (Anguilli et al. 2012; Ertoz et al. 2004; Knorr and Ng, 1999; Marques et al. 2015; Micenková et al. 82 
2013). These studies have been either dedicated to categorical (Anguilli et al. 2009; Ertoz et al. 2004) or numerical 83 
data (Knorr and Ng, 1999; Micenková et al. 2013). Given that within a dataset, an observation is characterized by 84 
a set of m attributes, most of these works seek to provide a subset of k attributes (𝑘 ≤ 𝑚) that best explain the 85 
‘outlierness’ of each defective observation, i.e. the attributes which make the query observation most outlying. 86 
Outliers are generally given a score of ‘outlierness’ in each possible subset of attributes to record how much these 87 
suspicious points deviate from the rest of the data (Duan et al. 2015; Micenková et al. 2013; Vinh et al. 2016). For 88 
a given outlier o, the subset of attributes for which the outlying score of o is the highest is generally chosen to be 89 
the best descriptor of o. As suggested by Micenková et al. (2013), a reliable and valuable subset of attributes should 90 
highlight the ‘outlierness’ of the defective observations but at the same time be minimal in the number of attributes.  91 

The main contribution of this study is to propose a framework to label outlying within-field yield observations. It 92 
is considered that these outliers have already been detected by an unsupervised filtering approach, but they are still 93 
missing a label. To the authors’ best knowledge, very few unsupervised approaches have been dedicated to outlier 94 
detection in within-field yield datasets and none of them have been further extended to give a label to these 95 
defective observations once detected. Here, a procedure is proposed to provide outlying observations with a label 96 
so that users can extract and gain knowledge with regard to their data. The approach is first validated on simulated 97 
yield datasets with known labelled outliers and then tested on real yield dataset with unlabeled outliers.  98 

 99 

 100 

 101 
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2. Material and methods 102 

2.1 Theoretical considerations 103 

An important pre-requisite of this study is that outliers are already detected within the yield datasets. The aim is 104 
not to provide a way to find outliers but rather to help qualify and describe these defective observations. In this 105 
work, it is considered that yield outliers have been identified by a holistic and unsupervised filtering methodology 106 
proposed by Leroux et al. (2018). As stated in the introduction section, most of the existing filtering approaches 107 
provide a direct labelling of the outlying observations as empirical filters and expert thresholds are involved in the 108 
detection process (Simbahan et al., 2004; Sudduth et al., 2007). If the filtering process was to be made from a 109 
general, non-parametric and automation perspective, outlying observations would be identified but not labelled. 110 
These pre-requisites are becoming essential as more and more yield maps will need to be processed in the future. 111 
The objective here is to intend to provide a label to these outlying observations once they are spotted in the datasets. 112 
A brief summary of the approach of Leroux et al. (2018) is provided in the next section. 113 

2.1.1 Detection of spatial defective observations using a density-based clustering algorithm 114 

This approach is based on a spatial outlier detection problem in which the authors consider that an observation is 115 
defective if this latter is inconsistent with the observations in its neighbourhood. The methodology is divided into 116 
three major steps. Firstly, each observation xi is given two different neighbourhoods. (Fig. 1). The first one is a 117 
spatio-temporal neighbourhood (ST), which regroups the spatial observations near in space to xi  and which belong 118 
to the same harvest row as that of xi (Fig. 1). The other is a spatio-not-temporal neighbourhood (SNT), which 119 
gathers the spatial observations near in space to xi and which belong to adjacent harvest rows to that of xi. 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

Fig. 1. ST and SNT neighbourhoods of an observation. Each observation xi has a ST(xi) neighbourhood 133 
(observations are acquired in a short time interval) and a SNT(xi) neighbourhood (observations belong to different 134 
passes). Source: Leroux et al., 2018) 135 

Secondly, a robust metric of ‘outlierness’ which evaluates the degree of inconsistency between the yield of xi and 136 
that of the observations in both its ST and SNT neighbourhoods is computed. This step enables to create a bivariate 137 
plot of ‘outlierness’ which reports, on the x-axis, the ‘outlierness’ of each observation with regard to its SNT 138 
neighbours and, on the y-axis, the ‘outlierness’ of each observation with regard to its ST neighbours (Fig. 2, left). 139 
For instance, an observation in the top-right hand corner of the plot has a higher yield value than both its ST and 140 
SNT neighbours. Similarly, an observation in the bottom-left hand corner of the plot has a lower yield value than 141 
both its ST and SNT neighbours. Finally, a density-based clustering algorithm, i.e. DBSCAN, is used to identify 142 
outlying observations in the bivariate plot of ‘outlierness’ according to an automatic thresholding (Fig. 2, right). 143 
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 144 

Figure 2. Left – An example of bivariate plot of ‘outlierness’ with all the observations (black dots on the online 145 
version). Right – An example of bivariate plot of ‘outlierness’ with solely defective observations identified by the 146 
method of Leroux et al. (2018) (red dots on the online version). 147 

 148 

2.1.2 Making value of the available expertise on yield defective observations 149 

For the past twenty years, there has been a considerable amount of work towards the understanding of the sources 150 
of defective observations in yield datasets (Arslan, 2002; Lyle et al. 2013). The latter authors have provided users 151 
with a categorization of yield technical errors into four major groups: (i) harvesting dynamics of the combine 152 
harvester, e.g. lag time, filling and emptying times, (ii) continuous measurements of yield and moisture, e.g. 153 
global/local yield and moisture outliers, (iii) accuracy of the positioning system, e.g. loss of signal, observations 154 
outside the field boundaries and, (iv) harvester operator, e.g. speed changes, unknown cutting width when entering 155 
the crop, harvest turns, narrow finishes (Lyle et al. 2013). All these errors, except those related to the positioning 156 
system, originate changes in the yield value of each defective observation. Given that the approach of Leroux et 157 
al. (2018) evaluates the yield outlying characteristics of each observation with respect to its spatial neighbours (ST 158 
and SNT) and that each type of error originates specific yield variations, these errors should theoretically have a 159 
specific location within the bivariate plot of ‘outlierness’. 160 

Given the available knowledge with respect to these defective observations, let us infer the location of these main 161 
yield technical errors within the bivariate plot of ‘outlierness’ (Fig. 3). Filling and emptying times induce a yield 162 
underestimation at the beginning and end of each harvest row either because the grain flow has not reached a 163 
plateau or because the grain still continues to flow while the header is up. It can be therefore considered that the 164 
yield of an observation acquired during these periods of time should not be consistent with that of both ST and 165 
SNT neighbours. Filling and empting times should mainly lead to observations located on the bottom left-hand 166 
corner of the plot, i.e. bottom and left-hand because this observation should have a lower yield value than both ST 167 
and SNT neighbours (Fig. 3). However, it must be said that at the end of the filling time or at the beginning of the 168 
emptying time, the grain flow is still relatively close to the permanent regime of the machine. This aspect means 169 
that some of these outlying observations might have a higher yield than that of the outlying observations at the 170 
beginning of the filling time or at the end of the emptying time. As such, it might be possible to also find (in a 171 
relatively small proportion though) outliers related to filling and emptying time in the top right-hand corner of the 172 
plot (Fig. 3). Another specification could be added. It has been shown that the underestimation was stronger at the 173 
beginning than at the end of the row (Simbahan et al. 2004). As such, observations collected at the end of a harvest 174 
row should be closer to the centre of the plot than observations collected at the beginning of the row. 175 

The accuracy of yield and moisture sensors along with local harvest circumstances can influence the accuracy of 176 
yield measurements (Lyle et al. 2013). It might happen that yield records are effectively much higher or lower than 177 
expected and consequently that they significantly vary from those of their ST and SNT neighbours. Abnormal 178 
higher values should therefore be located on the top right-hand side of the bivariate plot of ‘outlierness’ while 179 
abnormal lower values should appear on the bottom left-hand side of the plot (Fig. 3). 180 
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Speed changes originate yield under or overestimates depending on if the speed of the harvester increases or 181 
decreases. In fact, during a speed change, the considered harvested area is flawed which impacts the quality of the 182 
resulting yield records and creates yield biases with respect to their ST and SNT neighbours. Accelerating would 183 
cause the observations to be located on the bottom left-hand part of the plot (a similar grain flow for a larger 184 
harvested area originates a decrease in yield) while a speed reduction should lead to observations appearing on the 185 
top-right hand side of the bivariate plot of ‘outlierness’ (Fig. 3).  186 

Unknown cutting width, harvest turns and narrow finishes lead to strong yield underestimates because the 187 
harvested area is much lower than actually considered. However, in that case, the underestimation is propagated 188 
throughout the whole section of the row harvested under these conditions. In other words, it means that yield 189 
records are lower than those of their SNT neighbours but are consistent with their ST neighbours. All these 190 
observations should therefore be located in the left-hand portion of the plot but relatively close to the horizontal 191 
axis (Fig. 3). 192 

It must be understood that Figure 3 is theoretical and has been created with the available knowledge on the main 193 
yield technical errors. The location of these errors will be validated later on with simulated and real datasets. Note 194 
that this figure could be complemented with other sources of defective observations and might help see interesting 195 
trends in the data. 196 

 197 

Figure 3. Theoretical location of the main sources of yield technical errors on the bivariate plot of ‘outlierness’ of 198 
Leroux et al. (2018).  199 

 200 

2.2 Finding knowledge in outliers 201 

The objective of the present study is to intend to explain why the outliers diverge from the rest of the population 202 
so that users can decide what to do with these defective observations. In this study, it is proposed to deal with these 203 
outliers using a two-step process: (i) the clustering of outliers so that defective observations that behave similarly 204 
are gathered, (ii) the categorization of outliers which aims at providing firstly a label to the clusters of outliers and 205 
secondly a label to the outliers within each considered cluster. These steps are described in the two following 206 
sections. A flowchart of the proposed methodology is proposed in Figure 4. 207 

 208 

 209 

 210 
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 211 

 212 

Figure 4. Flowchart of the methodology.  213 

2.2.1 Automatic clustering of outliers 214 

In the bivariate plot of ‘outlierness’, yield defective observations are clustered in specific portions of the plot (Fig. 215 
2). In this study, an automatic clustering of observations is proposed because it is considered beneficial for the 216 
future labelling of observations. Indeed, within each cluster, observations share the same yield outlying 217 
characteristics with respect to their spatial neighbours. Grouping observations might help depict general trends or 218 
behaviours in these data. To automate the clustering of outliers, an angle-based methodology was put into place. 219 

For each outlying observation xi, the angle that is formed between the horizontal axis and the vector 𝑂𝑥𝑖
⃗⃗ ⃗⃗ ⃗⃗   was 220 

computed; 𝑂 being the point of coordinates (0,0) in this plot (Fig. 5, left).  221 

 222 

Figure 5. Left – Location of outliers using an angle-based methodology. Right – Clustering of outliers. Outliers 223 
xi and xj have respectively an angle 𝛼 and 𝛽 with respect to the horizontal axis. 224 

A kernel density estimation (KDE) was then used to model the distribution of angles within the plot (Fig. 5, right). 225 
The number of clusters was chosen as the number of local minima in this distribution (Fig. 5, right). Each cluster 226 
was then set to contain all the observations lying between two consecutive local minima (Fig. 5, right). Within this 227 
methodology, an attention was paid to avoid the discrepancy between 360° and 0° (observations with these angles 228 
would be put in different cluster). 229 
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2.2.2 Categorization of outliers 230 

Labelling the clusters of outliers: the first-order label 231 

As the bivariate plot of ‘outlierness’ solely relies on the yield attribute, each cluster of outliers contains 232 
observations that have similar yield outlying characteristics with respect to their ST and SNT neighbours. As a 233 
primary description, these clusters can therefore be associated with a first-order label related to the yield 234 
component which expresses how this behaviour diverges from that of the cluster of normal observations (Fig. 6). 235 
The first-order label regarding the ST and SNT neighbours will be referred to as Yield ST and Yield SNT. For this 236 
first-order label, three classes are provided: 237 

(i) “Low” if the ‘outlierness’ of the centroid of a cluster of outliers is less than the first 20th 238 
percentile value of the distribution of the ‘outlierness’ values of the cluster of normal 239 
observations, e.g. Low Yield SNT, 240 

(ii) “Average” if the ‘outlierness’ of the centroid of a cluster of outliers lies between the first 20th 241 
and last 80th percentile values of the distribution of the ‘outlierness’ values of the cluster of 242 
normal observations, e.g. Average Yield ST, 243 

(iii) “High” if the ‘outlierness’ of the centroid of a cluster of outliers is more than the last 80th 244 
percentile value of the distribution of the ‘outlierness’ values of the cluster of normal 245 
observations, e.g. High Yield ST 246 

For instance, in Figure 6, cluster n°3 is given the following first-order label: “Low Yield SNT and Average Yield 247 
ST”.  248 

Labelling the outliers inside each cluster: the second-order label 249 

However, this first-order label might not be sufficient to discriminate each type of error, especially if some of the 250 
errors induce similar yield changes with respect to the ST and SNT neighbours of outliers. For instance, in Figure 3, 251 
even if the location of errors is theoretical, multiple sources of errors might risk to be mixed up. As such, within 252 
each cluster, the objective was also to propose a second-order label so that each defective observation could be 253 
identified more clearly (Fig. 6). To do so, a set of attributes, different from the yield component, was chosen to 254 
improve the labelling of outliers. The selection of these attributes was driven by the available knowledge on yield 255 
defective observations and by the typicity of spatial observations collected from on-the-go vehicle-based datasets, 256 
i.e. yield datasets in that case. Before introducing these attributes, one may question why these variables were not 257 
taken into account directly within the process of detecting of outliers. Those reasons are multiple. First, 258 
incorporating several new variables makes the detection of outliers more difficult because those defective 259 
observations are likely to have outlying characteristics with respect to one variable but not with respect to others. 260 
This problem is also referred to as the curse of dimensionality (Beyer et al., 1999). Secondly, multiple attributes 261 
are used to compute the yield, e.g. speed, grain flow, width of the cutting bar, which means that if the values of 262 
these attributes were to be abnormal, this should be reflected on the yield records. It can also be added that, given 263 
the expertise and knowledge available on yield technical errors, it might be better to first detect outlying 264 
observations and then to try to explain their origin. Finally, it could be argued that yield datasets are often in 265 
different formats and do not necessarily contain the same attributes which may be problematical for creating a 266 
general methodology to detect outliers. Something certain is that they contain at least the basic information 267 
required to compute the yield. 268 

For each observation 𝑥𝑖, three features were selected: (i) the change in speed between 𝑥𝑖 and the 269 
previously collected observation 𝑥𝑖−1 (Var_Speed), (ii) the spatial distance between 𝑥𝑖 and the nearest harvest pass 270 
(SpDist) and, (iii) the number of ST neighbours of 𝑥𝑖 (NST). The numbers of ST neighbours were evaluated within 271 
a distance of twice the length of the cutting bar. The attribute Var_Speed was selected because it should help 272 
discriminate the outliers that arise from an abrupt speed change. SpDist should bring insight into the operator-273 
based outliers, e.g. narrow finishes, unknown cutting width when entering the crop, harvest turns because those 274 
types of errors are very often located close to adjacent passes. Finally, NST could be helpful to label delay-based 275 
outliers as these latter are expected to have lower ST neighbours than the remaining dataset, i.e. these errors are 276 
located at the beginning and end of harvest rows. 277 

 278 

 279 
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 293 

Figure 6. An example of the proposed methodology to label outliers in cluster n°3. First, each previously defined 294 
cluster is given a first-order label. Then, within this cluster, each outlier is given a second-order label. 295 

To improve the labelling of outliers inside each cluster, the second-order (Var_Speed, SpDist, NST) labels 296 
were compared to those of the cluster of normal observations (Fig. 5). More specifically, for each attribute, three 297 
classes were provided: 298 

(iv) “Low” if the attribute value of the outlier within the considered cluster is less than the first 20th 299 
percentile attribute value of the distribution of normal observations, e.g. Low SpDist, 300 

(v)  “Average” if the attribute value of the outlier within the considered cluster lies between the first 301 
20th and last 80th percentile attribute values of the distribution of normal observations and, e.g. 302 
Average SpDist, 303 

(vi)  “High” if the attribute value of the outlier within the considered cluster is more than the last 304 
80th percentile attribute value of the distribution of normal observations, e.g. High NST 305 

For instance, in Figure 6, the observation 𝑥𝑖 within cluster n°3 is given the following second-order label: “Low 306 
SpDist”. Given the first- and second order labels that were put into place, Figure 3 can be improved to provide a 307 
classification of the main sources of errors as proposed in Figure 7. An accuracy index was put into place to 308 
evaluate whether the proposed classification was able to provide accurate labels to the defective observations. 309 
Considering a first and a second-order label, the accuracy index is the ratio of the number of true labels to the 310 
number of total observations labelled. In other words, the accuracy reports on the ability of the decision rules to 311 
identify a given type of observations. Once again, Figure 3 and Figure 7 are theoretical but will be tested and 312 
validated on simulated and real yield datasets. Be aware that all the outlying observations that would not be labelled 313 
with our proposed methodology, i.e. that do not belong to our theoretical clusters (Fig. 7), will be solely considered 314 
as local outliers. 315 
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 316 

Figure 7. Decision rules to label outlying observations in within field yield datasets.  317 

 318 

 319 

2.3 Evaluation of the proposed approach 320 

2.3.1. Simulated datasets with labelled outliers 321 

The approach was first validated on simulated datasets with known outliers’ labels. The first objective was to 322 
locate the main types of outliers within the bivariate plot of ‘outlierness’ to see whether they could be 323 
differentiated. The second goal was to identify the most relevant features of these defective observations. 324 
Simulated yield datasets were generated according to the methodology of Leroux et al. (2017). The simulation 325 
process starts with the creation of a spatially structured yield dataset to which are added specific yield defective 326 
observations reported in the literature (Fig. 8). Yield datasets were created with a mean of approximately 7 T/ha. 327 
The magnitude of variation, represented by the coefficient of variation, 𝐶𝑉, was set to 30%. Spatial structures (S) 328 
were modelled with exponential semi-variogram models. These datasets were set to contain 20% of outliers 329 
distributed between the different types of defective observations according to general findings in the literature and 330 
in personal datasets (Tab.1). Two yield datasets were simulated (Simu1 and Simu2), differing by the level of 331 
variance associated to the outliers to generate a diversity of case studies (Tab. 1) This variance can be understood 332 
as the influence of the outliers within the dataset. A low variance associated to the outliers would mean that outliers 333 
are relatively similar to their normal neighbours, and as such, are more difficult to identify (Simu1). On the 334 
contrary, a higher variance would mean that outliers have more diverging values from those of their normal 335 
neighbours (Simu2). In this case, outliers should be more easily identifiable. 336 
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 337 

Figure 8. Example of yield simulated dataset (left) along with corresponding simulated errors (right). These 338 
datasets were generated according to the methodology described in Leroux et al. (2017). 339 

2.3.2 Real datasets with non-labelled outliers 340 

The proposed approach was then tested on four real yield datasets from fields located near Evreux in the North-341 
western part of France. Fields were cropped in wheat and harvested with combines of different brands, especially 342 
New Holland (Turin, Italy) and Claas (Harsewinkel, Germany) combines. These datasets were selected for 343 
containing (i) different sorts of suspicious observations and (ii) outliers in different proportions (Tab. 2). Indeed, 344 
the filtering approach of Leroux et al. (2018) identified between 15 and 48% of outliers in the datasets. Defective 345 
observations were found responsible for lowering the mean yield and substantially increase the variability (CV) 346 
and skewness of the yield distribution (Tab. 2). Dataset 1 was considered as a typical yield dataset with a strong 347 
yield spatial structure, well harvested with mainly delay-based errors. Dataset 2 contains a couple of rows 348 
harvested with a not fully-used cutting width in the centre of the field. Dataset 3 was chosen because the wheel 349 
passages of a former fertilizer are very visible over the whole field and induced a decrease in yield. Dataset 4 350 
contains two specific features. First, there are multiple narrow finishes within the field. Secondly, when entering 351 
the field, the width of the cutting bar was not set appropriately, i.e. lower than it actually was. This width was 352 
corrected after a few minutes inside the field. The objective was to see whether these specificities could be 353 
observed within the bivariate plot of ‘outlierness’ and labelled correctly.  354 
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Table 1. Description of the two simulated datasets Simu1 and Simu2 with their associated outlying yield observations. Readers are referred to Leroux et al. (2017) for further 

details regarding the simulation process. 

 

Yield technical errors 

Filling and emptying times 
Sensor 

errors 
GPS errors 

Speed 

changes 
Not fully-used cutting bar 

Amount of errors (Percentage of 

the total number of outliers) 
50% 10% 

10% 

 (it can be single or 

groups of observations) 

10% 

20 %  

(all the observations inside a 

same harvest row are 

affected) 

Simulated dataset 

 

Simu1  

Yield underestimation of 40% at the beginning 

and 20% at the end of the rows [Bk parameter in 

Leroux et al. (2017)] 

20% 

noise 

Lag of 10% of the 

inter-row distance 

20% speed 

variation 

80% of the cutting bar is 

used 

Simu2 

Yield underestimation of 60% at the beginning 

and 40% at the end of the rows [Bk parameter in 

Leroux et al. (2017)] 

50% 

noise 

Lag of 20% of the 

inter-row distance 

50% speed 

variation 

50% of the cutting bar is 

used 
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The whole methodology was developed using the R statistical environment (R Core Team, 2013). 363 

Table 2. Descriptive statistics of the four raw and filtered real yield datasets. 364 

Dataset 
Surface 

(ha) 

Raw dataset (with outliers) Filtered dataset (without outliers) 

Mean 

(t.ha-1) 

CV 

(%) 
Skewness 

Mean 

(t.ha-1) 

CV 

(%) 
Skewness 

Outliers 

detected (%) 

1 14.5 7.1 28.1 -0.6 7.5 12.1 0.1 15.3 

2 20.5 7.74 34.1 6.5 8.3 10.2 -0.3 32.5 

3 30.9 9.6 28.7 8.4 9.9 6.0 -0.3 34.5 

4 2.2 8.7 47.3 0.05 9.5 9.1 -0.5 48.7 

 365 

3. Results and discussion 366 

3.1. A first insight into the simulated datasets 367 

3.1.1 Location of labelled outliers within the bivariate plot of ‘outlierness’ for simulated datasets 368 

In simulated datasets, the label of each observation, and more especially that of the outliers along with the type of 369 
defective observation, is known. This means that it is possible to locate each outlier generated in the bivariate plot 370 
of ‘outlierness’ to explore how they behave. This will also be a first way to evaluate the veracity of the theoretical 371 
location of yield technical errors that was provided in Figure 3. Figure 9 displays the location of all the observations 372 
in the simulated datasets within the bivariate plot of ‘outlierness’ (Fig. 9, left) and also that of all simulated outliers 373 
(Fig. 9, right). The two simulated datasets Simu1 and Simu2 are presented. From a general standpoint, it appears 374 
that several defective observations have effectively a specific location within the bivariate plot of ‘outlierness’. 375 
This position within the plot appears relatively consistent with what was proposed in Figure 3 but is also much 376 
fuzzier. The bivariate plot of ‘outlierness’ appears to be clearly impacted by the level of divergence between 377 
normal and defective observations (Fig. 9, right). Indeed, for Simu2, one can distinguish much more easily several 378 
groups of observations through a visual inspection of the plot. It can be noted that when outliers are more deeply 379 
rooted in the dataset, i.e. outliers are more similar to normal observations (Simu1), the bivariate plot of ‘outlierness’ 380 
seems more homogeneous without strong deviations from the centre of the plot. 381 

As expected, observations collected with a not-fully used cutting bar (“Cutting Width”) are mostly located 382 
on the left-hand part of the plot, i.e. they are very consistent with their ST neighbours but exhibit relatively different 383 
values to those of their SNT neighbours (Fig. 9, right). Local outliers can be spotted on the extremities of the plot, 384 
i.e. on the bottom-left hand corner because, in this simulated dataset, global outliers were generated with a low 385 
yield value. Suspicious observations collected within the filling and emptying time periods, or during a speed 386 
change appear on the main diagonal of the plot. However, several observations of these last types of error appear 387 
also near the centre of the plot of “outlierness” (Fig. 9, right). The thing is that all the outlying observations do not 388 
have the same influence on the dataset quality. For instance, within the filling time period, the underestimation 389 
associated to the first few observations will be much stronger than that associated to the last observations collected 390 
during this filling time. The primary observations within the filling time will therefore strongly deviate from the 391 
normal population while the last ones will be much closer to the distribution of the normal population. To put it 392 
simple, observations with the major impact on the yield local distribution will be located far from the centre of the 393 
bivariate plot of ‘outlierness’. Finally, by observing more carefully the shape drawn by the outliers, it seems that 394 
several populations can be depicted within the plot. Indeed, it seems possible to fit straight lines with similar slopes 395 
but different intercept, especially for the observations collected with a not-fully used cutting bar with respect to 396 
the rest of the data. The change of cutting width, which originated a strong decrease in the yield values, have 397 
produced a substantial change in the yield distribution of these specific outliers that is highlighted by a shift in the 398 
bivariate plot of ‘outlierness’. 399 

 400 
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 401 

Figure 9. Location of simulated-based outliers in the bivariate plot of ‘outlierness’. In Simu1, outliers are relatively 402 
similar to normal observations. In Simu2, outliers are more diverging from normal observations. a. Unlabeled 403 
observations. b. Labelled observations 404 

3.1.2 Automatic detection and clustering of outliers in simulated datasets 405 

Figure 10 reports how outliers are handled by the proposed approach, i.e. detection of outliers (Fig. 10, left) and 406 
clustering of outliers (Fig. 10, right). First, it can be seen that multiple outliers are not detected by the approach of 407 
Leroux et al. (2018). As discussed in the previous section, these suspicious observations appear near the centre of 408 
the plot where observations are considered normal in the aforementioned methodology.  These outliers, i.e. much 409 
more similar to the normal observations, are more difficult to detect and can be referred to as false-negative 410 
outliers. From a practical standpoint, by considering the example of the delay-based outliers, it is much more 411 
important to remove the observations at the beginning of the filling period, i.e. outliers that lay far from the centre 412 
of the plot, than to remove those when the filling time is almost finished, i.e. outliers that are located in the centre 413 
of the plot. In other words, it is more interesting to focus on removing the variance associated to the outliers than 414 
a specific number of defective observations.  415 

By using the proposed angle-based methodology, several groups of outliers were identified automatically 416 
(Fig. 10, right). The proposed approach has generated two and three major clusters for the simulated datasets 417 
Simu1 and Simu2. It appears that this delineation comes out more robust when outliers are relatively different to 418 
the normal population, i.e. Simu2 (Fig. 10, bottom right). In this case, clusters effectively correspond to major 419 
sources of yield errors. For Simu1, cluster n°5 seems relatively wide as it gathers several types of outliers. 420 
However, for Simu1, the relative consistency that exists between outliers and normal observations makes it 421 
difficult to properly split the cluster by solely relying on the yield attribute. In both simulated datasets, relatively 422 
small clusters are being identified, e.g. clusters n°1,2 and 4 for Simu1. Those clusters will not carry much 423 
information as they contain very few data.  424 

 425 

 426 

 427 

 428 
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 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

Figure 10. Analysis of outliers in the simulated datasets with low outlier variance (top) and moderate outlier 445 
variance (bottom). a. Identification of outliers by the approach of Leroux et al., (2018). b. Known labelling of the 446 
outliers within the dataset. c. Clustering of the outliers within the dataset 447 

3.1.3 Labelling of outliers in simulated datasets 448 

For both simulated datasets, Table 3 reports: (i) the first-order label associated to each cluster, (ii) the 449 
second-order label associated to each outlier within the previously-defined clusters, (iii) the final label associated 450 
to each outlying observation and (iv) the accuracy of the labelling (ratio of the number of true labels to the number 451 
of total observations labelled). Unsurprisingly, it appears that the labels’ accuracy is better for Simu2 because in 452 
that case, outliers are more different to the normal population. From a general perspective, the labelling of outliers 453 
is relatively accurate. Note that when the first-order label did not match any of the theoretical outlying clusters that 454 
were proposed in Figure 7, the respective outlying observations were simply labelled as local outliers. As all types 455 
of errors can be considered as specific forms of local outliers, the accuracy index for the label local outliers does 456 
not make much sense.  457 

Be aware that the labelling is generally bad when it comes to detecting observations acquired during the 458 
filling and/or emptying times with a first-order label “High yield ST/SNT” (top right-hand corner of the bivariate 459 
plot of ‘outlierness’). For the remaining clusters, the accuracy is relatively high enough meaning that the outlying 460 
observations can be automatically labelled given the first- and higher-order labels that are provided. This 461 
classification, i.e. that of Figure 7, will therefore be used to analyze the real datasets (see next section).  462 

 463 

 464 

 465 

 466 

 467 

 468 
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Table 3. Labelling of outliers in simulated datasets. 469 

Simulated 

Dataset 
Cluster 

First-order 

label 

Second-order 

label 
Final label 

Accuracy 

 (%) 

Simu1 

1 

Average yield 

SNT 

Low yield ST 

- Local outliers - 

2 

Average yield 

SNT 

Average yield 

ST 

- Local outliers - 

3 
High yield 

ST/SNT 

Low NST Filling/Emptying times 5 

Low Var_Speed Speed decrease 35 

4 

Average yield 

SNT 

Average yield 

ST 

- Local outliers - 

5 
Low yield 

ST/SNT 

Low NST Filling/Emptying times 45 

High Var_Speed Speed increase 100 

      

Simu2 

1 

Average yield 

SNT 

Low yield ST 

- Local outliers - 

2 
High yield 

ST/SNT 

Low NST Filling/Emptying times 13 

Low Var_Speed Speed decrease 78 

3 

Low yield 

SNT 

Average yield 

ST 

Low NST Filling/Emptying times 61 

Average NST and 

Low SpDist 
Partially-used cutting bar 97 

High Var_Speed Speed increase 100 

4 
Low yield 

ST/SNT 

Low NST Filling/Emptying times 91 

High Var_Speed Speed increase 80 

 470 

It must be understood that, here, the accuracy shows whether an outlying observation is given a good final label 471 
considering the first and second-order labels that are defined. However, it does not specify if, within the whole 472 
dataset, all the observations that should have been given a specific label actually received it. For instance, one can 473 
be pretty sure that the outlying observations in Simu2 that were given the label “Partially-used cutting bar” are 474 
observations that were collected when the width of the cutting bar was not used entirely. Nevertheless, one cannot 475 
be entirely sure that all the observations collected with a partially-used cutting bar were found in the whole dataset.  476 

To provide users with a more comprehensive overview of the reliability of each label, the ratio between accurate 477 
labelled outliers and the total number of outliers of each type in the whole dataset is presented in Table 4. As 478 
should be expected, ratios are lower for Simu1 than for Simu2 given the construction of both datasets. From a 479 
general perspective, by looking at Table 4, ratios seem to be relatively low, especially for Simu1. Note also that 480 
no observations collected with a partially-used cutting bar could be found in Simu1 given the clusters that were 481 
identified in Figure 10 and the associated labelling rules. Obtaining relatively low ratios should not be very 482 
surprising given that several outliers were not identified by the filtering approach of Leroux et al. (2018), i.e., those 483 
are located near the centre of the bivariate plot of outlierness. As the labelling procedure solely labels observations 484 
that were identified as outliers, not all the outliers could be labelled. Be aware that the ratios would have been 485 
higher if solely the detected outliers had been considered (and not all the outliers in the dataset). On top of that, it 486 
must be clear that those ratios represent solely a percentage of outlying observations and do not convey any 487 
information regarding the variance associated with these outliers. For instance, only 43.5% of the observations 488 
acquired during a filling or emptying time were correctly labelled for Simu2 but those observations accounted for 489 
most of the variance associated to the filling/emptying time label (data not shown). The outlying observations near 490 
the centre of the bivariate plot of outliers (that were not labelled) are not that different from their neighbours (the 491 
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influence of these outliers is expected to be relatively low) while those far away from the centre of the plot are 492 
much more influencing (Fig. 10b). This last statement echoes some of the points that were addressed in section 493 
3.1.1 where it was discussed that not all the outlying observations had the same influence on the quality of the 494 
dataset. The same reasoning can be applied to the other outlying observations, e.g. those collected during a speed 495 
change. Indeed, some very slight speed changes can also be found near the centre of the bivariate plot of outlierness 496 
(Fig. 10b). From a general perspective, the labelling outputs on the simulated datasets necessarily depend on the 497 
way yield datasets were simulated (Leroux et al., 2017). 498 

Table 4. Reliability of the labelling in simulated datasets. The table presents the ratio between accurate labelled 499 
outliers and the total number of outliers of each type. 500 

 Filling/emptying times Speed changes Partially used cutting bar 

Simu1 16.8 8.7 0 

Simu2 43.5 18.6 91.1 

 501 

 502 

3.2. Clustering and labelling of suspicious observations in real yield datasets 503 

The defective observations that were identified in the real datasets by the filtering approach of Leroux et al., (2018) 504 
are depicted and clustered in Figure 11. First of all, it can be seen that the structure of the bivariate plots of 505 
‘outlierness’ shares many similarities with that of the simulated datasets (Fig. 11, left and middle). More 506 
specifically, multiple observations expand towards either the top-right, bottom-left or left-hand part of the plot. 507 
This aspect is satisfying because it proves the interest of the theoretical data to study and help label outliers. Note 508 
that all the datasets seem to have similar types of clusters (the angles that are formed between the cluster and the 509 
horizontal axis are very similar). Each dataset also has its own specificities as the number of outliers’ clusters 510 
varies across the yield datasets, from two to five main clusters between datasets 1 and 5. These groups of outliers 511 
are relatively well identified especially for datasets 1, 2 and 4. The delineation of the clusters appears more abrupt 512 
for dataset 3, e.g. for instance between clusters n°3 and 4, but there effectively seems to be two different 513 
populations in the data. It is acknowledged that the clustering using the proposed angle-based approach can be 514 
considered quite brutal at the edges of the outliers’ clusters. Some confusion might effectively remain, but it must 515 
be noted that the main groups of outliers are being spotted. Interestingly, the aspect of different statistical yield 516 
distributions that was previously discussed with respect to simulated datasets, i.e. the impression of parallel straight 517 
lines that could be fitted to the data, is particularly visible on dataset 4. 518 
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 519 

Figure 11. Labelling of outliers in the real yield datasets. Left. Detection of outliers. Middle. Clustering of outliers. 520 
Right. Location of the clusters within the field. 521 

 Given the findings in the simulated datasets and the location of each outlier’s clusters within the field 522 
(Fig. 11, right), yield outliers could start being labelled. For the four datasets under study, the clusters located on 523 
the diagonal of the bivariate plot of ‘outlierness’ (Low yield ST/SNT and High yield ST/SNT) are relatively well 524 
identified. Observations inside these clusters were labelled as filling/emptying times, speed changes and local 525 
outliers following the decision rules that were used for the simulated datasets (Fig. 7). Regarding dataset 1, some 526 
observations lying within the clusters n°2 and n°3 appear to be located in the centre of the field. These observations, 527 
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that were labelled as local outliers according to the proposed methodology (data not shown), are in fact due to the 528 
presence of a change in soil conditions which originated a short-range variation in yield. These observations are 529 
therefore not outlying observations but rather expected yield records. Note that without a soil map, this distinction 530 
is relatively difficult to make. 531 

In the case of simulated datasets, the cluster on the left-hand side of the plot (Low yield SNT and Average 532 
yield ST), i.e. cluster n°3, was mostly standing for observations collected with a low cutting width. This is why the 533 
second-order label “Low SpDist” was put into place for this specific cluster. However, when looking at the 534 
observations in cluster n°3 within dataset 3, many of these observations appear to be regularly spaced within the 535 
field, which is not particularly a feature of passes harvested with a low cutting width (Fig. 11). These observations 536 
could be spotted by the second-order label “Average SpDist”. These observations were found to represent the 537 
wheel passages of a former fertilizer or other agricultural machinery. It must be clear that this labelling was not 538 
proposed in the initial labelling framework (Fig. 7). Without using the second-order label “Average SpDist”, these 539 
regularly spaced observations would be given the final label ‘local outliers’. To provide a better labelling of these 540 
observations, it was therefore decided to add a new rule to the labelling framework (Tab. 5). This rule was 541 
specifically applied to this dataset, but could certainly be used in a more general perspective in the proposed 542 
approach. 543 

 544 

Figure 12. Analysis of cluster n°3 in datasets 2 and 3. The attribute SpDist helps improve the labelling of 545 
observations inside this cluster. 546 

A last interesting aspect to consider was the relatively large cluster n°2 of dataset 4 that expands towards the right-547 
side (High yield SNT and Average yield ST) of the bivariate plot of ‘outlierness’ (Fig. 11, dataset 4). In the case 548 
of dataset 4, these observations have effectively a somewhat questioning behaviour because they can be found 549 
mostly on the edges of the field. It was found that this cluster n°2 corresponded to the operator’s error in setting 550 
the appropriate width of the cutting bar when he started harvesting the field. The cutting bar was effectively set 551 
lower than it actually was, which led to an overestimate of the yield (see material and methods section 2.3.2). This 552 
dataset enabled to propose an additional rule to the initially proposed labelling framework (Tab. 5). Here again, 553 
this rule was specifically applied to this dataset, but could certainly be used in a more general perspective in the 554 
proposed approach.  555 

Table 6 sums up the results of the labelling process, i.e. an estimate of the proportion of each type of outlying 556 
observations, on the four real datasets using the initial labelling framework (Fig. 7) to which additional rules were 557 
joined (Tab. 5). These summary statistics are obviously not perfect and depend on the methodology that was used 558 
in this work. Be aware that global outliers (header up, zero yield values, very abnormal yield value…) are not 559 
accounted for in Table 6, because they were removed before the spatial outlier detection process in Leroux et al. 560 
(2018). Note also that some of these global outliers might have been labelled with one of the main sources of 561 
technical errors but these outliers were found so diverging from the normal population that they were removed 562 
prior to applying the spatial outlier detection algorithm. Table 6 highlights that all datasets are unique in the sense 563 
that they all have different outliers and those latter are present in different proportions. It must be reminded that 564 
the label “Local outliers” contains the outlying observations that could not be labelled in any of the other classes 565 
of technical yield errors. This is why the percentage of observations having this label is quite high. The labelling 566 
of filling and emptying time errors seems slightly low, especially for datasets 2 and 3, when comparing with the 567 
literature. This may be due to the removal of such errors with the global filter introduced in Leroux et al. (2018) 568 
or because some of these errors were mixed up with others and were labelled as local outliers. 569 

 570 

 571 
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Table 5. Additional decision rules arising from the analysis of the real yield datasets.  572 

Dataset Cluster First-order label Second-order label Final label 

3 3 
Low yield SNT and 

Average yield ST 

Low SpDist Unknown cutting width 

Average SpDist Wheel passage of a former fertilizer 

4 

2 
High yield SNT and 

Average yield ST 
 Error in setting the width of the cutting bar 

5 
Low yield SNT and 

Average yield ST 
Low SpDist Unknown cutting width / Narrow finishes 

 573 

Table 6. Summary of the technical errors within each real dataset. The total number of outliers is the sum of the 574 
number of each type of outliers. 575 

Dataset 
Filling/Emptying 

time 

Speed 

change 

Unknown 

cutting width / 

Narrow 

finishes 

Local 

outliers 

Others (wheel 

passages, error 

in settings) 

Total number 

of Outliers 

1 4.8% 1.9% - 8.6% - 15.3% 

2 1.5% 3.7% 5.5% 21.8% - 32.5% 

3 0.7% 5.4% 1.5% 19.6% 7.3% 34.5% 

4 12.4% 2.8% 5.3% 18.6% 9.6% 48.7% 

 576 

From a general perspective, by looking at the labelling rules that are proposed in this study (Fig. 7), one could 577 
suggest that the second label alone would be successful to separate each error. It is effectively acknowledged that 578 
the second-order labelling could be efficient in itself but it is also stressed that the clustering and first-order 579 
labelling of outlying observations have also their interest. First, it is clear that defective yield observations are 580 
clustered in specific portions of the bivariate plot of outlierness (Fig. 2, right; Fig. 10, Fig. 11). When looking at 581 
these figures, one might be very tempted to intend to group these outliers in terms of their yield behaviour with 582 
respect to neighbouring observations to see whether specific patterns can be identified. The approach to 583 
automatically split outlying observations in different clusters was done in that sense. Secondly, when focusing on 584 
the real yield datasets, it should become clearer that this first order labelling was relevant. In fact, for dataset 3, if 585 
cluster n°3 with the first-order label ‘Low yield SNT and Average yield ST’ is not separated from the rest of the 586 
outlying observations, it would not have been possible to identify the wheel passage of a former fertilizer or 587 
agricultural machinery. Indeed, these observations have a second order label “Average SpDist”. If this labelling 588 
rule was used on all the outlying observations, many specific observations would have been mixed. Same goes for 589 
cluster n°2 in dataset 4, the settings error in the cutting bar width would not have been clearly separated from the 590 
other types of outlying observations.  591 

The proposed approach enables to provide users with a clearer interpretation and analysis of their yield datasets. 592 
Some of these results might be used to improve the quality of the datasets by correcting some of these errors 593 
instead of removing them (see next section). Another possibility would be to analyze the way operators drive 594 
within the fields (speed changes, operator-based outliers) or to characterize the functioning of the harvester. 595 
Economic considerations might also come up such as whether investing in systems that measure in real-time the 596 
width of the cutting bar is relevant if the outlying-related observations can be spotted and corrected. Once again, 597 
these results come along with a given uncertainty, but they might be used to depict general trends in the data. Be 598 
aware that the proposed method is a first attempt to provide a label to yield outliers. This approach can be sensitive 599 
to the thresholds that have been set, more especially the 20th and 80th percentile values that were used to help label 600 
the clusters of outliers and the outliers within each cluster. The choice of these thresholds would require further 601 
investigation. One possibility could be for instance to test the sensitivity of the method to the values of these 602 
thresholds through a Monte Carlo approach, but this is beyond the scope of this work. Note however that these 603 
thresholds are relatively easy to parametrized. 604 

 605 

 606 

 607 
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3.3 What can be done with the labelled outliers ? 608 

When outliers are labelled and described with a proper subset of attributes, they become meaningful and 609 
understandable. As such, it becomes possible for users to make a decision with regard to these suspicious 610 
observations. Two major case studies can be observed. In the first case, outliers can be considered as noise meaning 611 
that these observations are not reflecting a real phenomenon and as a consequence should not have been generated. 612 
This noise can have multiple causes such as the process of data acquisition in itself, e.g. the pass of the combine 613 
harvester within the field, or a technical failure, e.g. loss of positioning signal. To tackle this noise, defective 614 
observations can be either corrected or removed. Performing a correction on a defective observation is conceivable 615 
when the phenomenon which originated the outlier is fully known and controlled. Here, it is suggested that, when 616 
possible, the correction should be preferred to the removal of outliers because the final dataset would contain more 617 
information and should therefore be more accurate. If the origin of an outlier is known but the accuracy of the 618 
correction could be questioned, the outlier should be removed to make sure the quality of the dataset is not affected. 619 
This was especially considered for technical errors such as speed changes or filling and emptying times which 620 
have a complex influence on the yield output. In the second case, the outlier might really shed light on a 621 
phenomenon of interest which could be either expected or unexpected. In such situations, users should be warned 622 
so that they can intend to get a deeper understanding of this specific phenomenon. 623 

Here, the output of the processing that was applied to dataset 4 is displayed in Figure 13. In this case study, more 624 
specifically, a correction was applied to the outliers in clusters n°2 and 5 while other defective observations were 625 
removed. Indeed, most suspicious observations of cluster n°2 are due to bad settings in the cutting width of the 626 
harvester, which can be corrected by weighing the yield values with an appropriate factor depending on what was 627 
set by the operator (this information was available in the yield dataset). The outliers belonging to cluster n°5 628 
especially reflect passes harvested with a low cutting width. For these specific observations, a weighing factor, 629 
related to the spatial distance to the previously harvested pass, can be applied to calculate the yield that should 630 
have been found with the portion of the cutting width that was used.  631 

 632 

Figure 13. Making value of the labelling of outliers to propose a correction for dataset 4. Dashed polygons contain 633 
the observations that were restored. 634 

This correction helped retrieve lots of yield observations within the dataset (almost 15%) to improve its quality 635 
and reliability (Fig. 13, right). Note for instance that most of the yield information on the edges of the fields were 636 
restored. However, it was decided not to propose any correction for the remaining clusters. One effectively knows 637 
the general impact that a speed change or the delay-time might cause on the yield attribute, i.e. an increasing or 638 
decreasing trend, but it is much more difficult to evaluate it precisely. Some convolution filters might be proposed 639 
to cope with that issue, but they were considered relatively complex to put into place as the parameters of the 640 
model convolution are not easy to define properly (Arslan and Colvin 2002). Nevertheless, it must be said that 641 
yield datasets contain quite a large amount of information which means that removing outliers is not too critical if 642 
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a proper and accurate correction cannot be proposed. Be aware that this case study is an application example of 643 
the proposed methodology and that applying this methodology would require having a discussion with the operator 644 
to validate the origin of the errors. 645 

4. Conclusion 646 

This study proposes a methodology to cluster and label outlying observations in yield datasets after that these latter 647 
have been detected by a holistic and unsupervised filtering approach. Defective observations are first labelled in 648 
terms of yield characteristics with respect to their spatial neighbours. They are then further labelled with 649 
appropriate spatial and non/spatial attributes so that they can be classified more accurately into the main types of 650 
yield technical errors, e.g. filling/emptying times, speed changes, unknown cutting width when entering the crop, 651 
narrow finishes. While some observations are more accurately classified (speed changes or unknown cutting 652 
width), others are slightly more complex to be given an appropriate label (filling/emptying times). The proposed 653 
labelling approach also enabled to identify specific observations in real yield datasets, i.e. the wheel passages of a 654 
former fertilizer or agricultural machinery and settings errors in the cutting bar width. The proposed methodology 655 
provides users with a set of interpreted outlying observations which can then be used for multiple purposes: (i) 656 
understanding of the main sources of errors in each user’s yield dataset, (ii) correction of the outliers instead of 657 
removing them if possible, (iii) characterization of the way the operator drives within the field or how the combine 658 
works during harvest, and (iv) provision of guidelines for future improvements of equipment and operations 659 
processes. Future work will focus on improving the ability of the proposed methodology to properly label outliers 660 
and testing the approach on more datasets, i.e. not only related to yield. 661 
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