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dINRS-ETE, Université du Québec, 490 rue de la Couronne, Quebec City G1K 9A9, Canada

Abstract

Spatialized physically based models are necessary tools for assessing the fate of pesticides in natural environ-

ments transfered by diffuse pollution. In this study the CATHY (CATchment HYdrology) model is coupled

with reactive processes (adsorption and degradation). The resulting reactive subsurface component is evalu-

ated on laboratory data by (i) comparing the model performance on experimental data using a combination

of statistical criteria, (ii) conducting a Morris sensitivity analysis on both hydrological and solute transfer

variables, and (iii) improving the CATHY model parameter settings based on the sensitivity analysis results.

The sensitivity analysis produces a ranking of the factors wherein those that are particularly influential on

water flow and reactive solute transfer emerge. These are found to be the saturated hydraulic conductivity, the

retention curve parameters, and the sorption coefficient. After a calibration of influential parameters based on

Morris sensitivity analysis, the results obtained are largely consistent with laboratory data.

Keywords: integrated surface-subsurface model, reactive solute transfer, Morris sensitivity analysis,

experimental data, pesticides

Highlights

• The surface-subsurface model CATHY was extended to include reactive transport.

• The model is able to reproduce a tracer and pesticide laboratory experiment.

• Pesticide fluxes are primarily influenced by conductivity, porosity, and KOC .

• Calibration subsequent to Morris sensitivity analysis improves model performance.5
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Software availability

The CATHY (CATchment HYdrology) has been developped firstly in the 1990s by Claudio Paniconi (clau-

dio.paniconi@ete.inrs.ca, INRS-ETE, 490 rue de la Couronne, Québec G1K 9A9, CANADA) and Mario Putti

(mario.putti@unipd.it, University of Padova, via Trieste 63, 35121 Padova, Italy). Matteo Camporese (mat-

teo.camporese@unipd.it, University of Padova, via Trieste 63, 35121 Padova, Italy) and Stefano Orlandini10

(stefano.orlandini@unimore.it, University of Modena, via Pietro Vivarelli 10, 41125 Modena, Italy) also signif-

icantly took part in the project and settled the commonly used version of CATHY. The model is open source

and available at the following adress : https://bitbucket.org/cathy1 0/. CATHY is written in FORTRAN 90

and runs easily under Linux or Mac OS, the user only needs a Fortran compiler and common libraries. The

size of the code subroutines, input files and preprocessing files together does not exceed 20 Mo. Input and15

output files are text files and the corresponding documentation is available in the main subroutine of CATHY.

Some outputs are produced in a .vtk format and can be visualised in 3D with the VisIt software.

1. Introduction

Contaminant transfer from agricultural fields to aquatic environments is recognized to be an important

source of pollution of freshwater. This transfer results from a combination of complex processes interactions20

within a watershed that are not yet fully understood. These processes include advection, dispersion, degrada-

tion, and sorption of solutes. Spatialized physically based models are useful to describe interaction mechanisms,

but their parameterization and evaluation are critical challenges, requiring representative databases that are not

often available. In this paper, reactive processes are implemented in the CATHY model, a surface/subsurface

3D physically-based flow and transport model (Camporese et al., 2010; Weill et al., 2011). This new version25

will be tested on a detailed laboratory experiment including water and reactive/nonreactive solute transport

measured at high frequency. The model’s performance in a subsurface drainage context will be evaluated via

a rigorous methodological approach including analysis of several criteria and a global sensitivity analysis.

Contaminants found in surface waters and groundwaters are highly linked to hydrology and surface/subsurface

interactions in and on the soil. Solute leaching and the reactions through unsaturated and saturated soil, such30

as sorption and degradation, depend not only on the chemical properties. For example, the available time for

solute reactions can be drastically reduced when rapid flow occurs, which can lead to a significant transfer of

pesticides toward surface waters (Müller et al., 2003; Rabiet et al., 2010). Moreover, the transfer of water and

pesticides in the surface and subsurface domains of a watershed is also largely influenced by soil characteristics

and climatic conditions.35

Reflecting this complexity, many soil pesticide fate models exist that are valid at specific scales. At the plot

scale, RZWQM (Ahuja et al., 1999; Malone et al., 2004), MACRO (Larsbo and Jarvis, 2003, 2005), HYDRUS
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(Simunek et al., 2005, 2008), CRACK-NP (Armstrong et al., 2000), and SIMULAT (Aden and Diekkrüger,

2000) are widely used and share some common features, such as preferential solute transport and reaction

processes. Two reaction types are taken into account in most of these models: sorption and degradation.40

These are usually represented, respectively, by a linear or general Freundlich equation and by first order

decay or as a simple function of temperature. In addition, some models take into account volatilization,

heat flux, or root uptake (Kohne et al., 2009). These soil pesticide models, however, are usually based on

simplified representations of the governing processes (e.g., one-dimensional vertical flow), and/or they also do

not account for surface/subsurface interactions. Integrated surface-subsurface hydrological models (ISSHMs)45

such as CATHY (Camporese et al., 2010), HydroGeoSphere (Aquanty Inc., 2015), and ParFlow (Kollet and

Maxwell, 2006) can be effective in simulating spatially distributed hydrological processes (Sebben et al., 2013;

Kumar et al., 2013) and can be applied in a wide range of flow contexts (for example particular topography or

landscape elements, spatially variable boundary conditions, etc.). These are rigorous and well-tested models,

having undergone for instance several benchmarking trials (Maxwell et al., 2014; Kollet et al., 2017). However,50

the benchmark studies have thus far focused exclusively on flow processes. There is thus a need to start

incorporating and assessing the transport, and especially reactive transport, component of ISSHMs. These

models allow simulation of complex processes and require parameterizations and data that represent sources

of error or bias. These errors need to be taken into account and controlled when running and interpreting

simulations. In particular, both validation on field data and uncertainty and sensitivity analysis methods55

should be included in the diagnoses (Saltelli et al., 2008).

In water quality and hydrology, such sensitivity analyses aim generally at a deeper understanding of vari-

ability and process representation, or at model improvement by highlighting the influential parameters (Saltelli

et al., 2008). The first goal can be illustrated with the physically based model of a vegetative filter strip, VF-

SMOD (Muñoz-Carpena et al., 1999), where the water table was recently added to study interactions with60

infiltration (Muñoz-Carpena et al., 2017). This new version was evaluated through a sensitivity analysis to

study the effect of the water table below a buffer strip on its efficiency to retain water, sediments, and pesticides.

Both of the sensitivity analysis methods used in these studies, Morris and extended Fast, suggested significant

interaction between saturated hydraulic conductivity and water table depth, and showed that the water table

should be considered as a key hydrologic factor in buffer strips (Lauvernet and Muñoz Carpena, 2018). The65

second objective of sensitivity analysis can be illustrated by the study of Zhou et al. (2012) using the HYDRUS

1D flow model applied on an agricultural experimental station. Through Morris sensitivity analysis, 8 of the

30 studied parameters were identified as irrelevant. Muma et al. (2014) performed a sensitivity analysis on

the CATHY model at a micro catchment scale and identified the saturated conductivity as a key parameter

regarding the volume exiting the catchment at the outlet. Finally, if a study aims at performance evaluation,70

sensitivity indices can be computed on comparison criteria with data instead of the model’s ouput variability
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with respect to a parameter, such as the Nash Sutcliffe coefficient of Efficiency (NSE) (Nash and Sutcliffe,

1970) or the root mean square error (RMSE). The NSE is considered as a reliable measure for assessing the

performance of a hydrologic model, however in some cases this single index is not sufficient to draw conclusions

(Jain and Sudheer, 2008). A good practice is to combine NSE with another criterion, such as the RMSE75

(McCuen et al., 2006; Gupta et al., 2009), and if possible to take into account uncertainty and possible bias in

the evaluation process (Ritter and Muñoz-Carpena, 2013).

Part of a model’s evaluation process is based on its capacity to reproduce data. Therefore the evaluation

quality is highly related to the database quality in terms of data quantity, variety, and accuracy. At the plot

scale, some studies are based on distributed (in space and time) field measurements that ensure a representative80

database. For example, Kampf and Burges (2007) used surface outflow, piezometric water levels, and volumetric

water content measurements from an experimental hillslope to validate the HYDRUS-2D model. Other studies

are based on laboratory experiments that have the advantage of being fully controlled: boundary and initial

conditions as well as soil characteristics are well-known. The Landscape Evolution Observatory (LEO) (Pangle

et al., 2015), for instance, is a hillslope scale complex infrastructure allowing various controlled experiments85

for model validation. Scudeler et al. (2016a) reproduced an isotope tracer experiment from LEO with the

CATHY model and compared simulation results with observed output flow and concentration responses. At

a smaller scale and complexity, several experiments on MASHYNS (Paris, 2004), a homogeneous tile drained

soil, provide a substantial and complete database on tracers and on a large range of reactive pesticide transfers.

The main objective of this study is to perform a robust evaluation of the CATHY model at the laboratory90

plot scale and to help gain a better understanding of reactive solute processes in the subsurface. Model

simulations of the MASHYNS experiment will be evaluated through classical criteria combined with statistical

analysis to achieve an uncertainty assessment associated to the model’s evaluation. In parallel, a sensitivity

analysis will be performed with the Morris method and will allow the identification of influential parameters and

the sensitivity of five key outputs to them: water table recharge volume for flow, peak concentration and timing,95

breakthrough timing, and NSE on output mass flow for solutes. The last step consists in applying the optimal

set of input parameters obtained from the Morris sensitivity analysis to other solutes from the MASHYNS

dataset in order to evaluate this reduced calibration. These three steps are complementary to reaching a good

understanding and evaluation of this ISSHM-class model to which a reactive transport component has been

added.100
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2. Materials and methods

2.1. Model description

2.1.1. Variably saturated flow and advective-dispersive transport

The CATHY (CATchment HYdrology) model (Camporese et al., 2010; Weill et al., 2011; Scudeler et al.,

2016b) is a 3D physically-based model for the simulation of surface and subsurface water flow and solute105

transport. In this study we used only the subsurface module of CATHY, described by the Richards and

advection-dispersion equations:

SwSs
∂ψ

∂t
+ θs

∂Sw
∂t

= O[KsKr(Oψ + ηz)] + qss (1)

∂θC

∂t
= ~O · (−~UC +D~OC) + qtss (2)

where t is time [T], Sw is the water saturation [−] (Sw = θ
θs

), ψ is the pressure head [L], θ is the volumetric

moisture content [−], θs is the saturated moisture content or porosity [−], Ss is the aquifer specific storage

[L−1], O is the gradient operator [L−1], Ks is the saturated hydraulic conductivity [LT−1], Kr is the relative110

conductivity [−], ηz = (0, 0, 1), z is the vertical coordinate directed upward [L], qss is a source (positive) or

sink (negative) term that includes the exchange fluxes from the surface to the subsurface [L3L−3T], C is the

solute concentration [ML−3], ~U is the Darcy velocity vector [LT−1], D is the tensor for both dispersion and

diffusion [L2T−1], and qtss is a solute mass source (positive) or sink (negative) term [ML−3T−1].

Equations (1) and (2) are solved on a 3D grid that is constructed from a surface discretization replicated115

vertically to form a 3D tetrahedral mesh. The vertical layers can be of varying thickness. Boundary conditions

and atmospheric forcing can be dynamically prescribed. Numerically solving the advective-dispersive equation

can be complex, in particular because its mathematical behavior changes from parabolic form for dispersion

dominated problems to hyperbolic form for advection dominated problems (Rubio et al., 2008). The solution

chosen for CATHY is a time-splitting technique combining flux limited finite volumes for advection and a120

classical finite element scheme for dispersion (Mazzia and Putti, 2005; Weill et al., 2011). In the scheme the

transfer of concentration from nodes to tetrahedra between dispersion and advection can lead to numerical

dispersion. Since in this study advective processes are dominant, the dispersion module of CATHY was not

activated.

2.1.2. Inclusion of a reactive transport component125

Reversible instantaneous equilibrium sorption and first order decay reactions were implemented in CATHY

as part of this study. These processes are, respectively, represented as:

Kd =
CS
C

with Kd = KOC FOC (3)
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∂C

∂t
= −λC (4)

where Kd is the equilibrium constant [L3M−1], CS and C are the solute concentrations respectively in soil and

water ([MM−1] and [ML−3]), KOC is the soil organic carbon coefficient [L3M−1], FOC is the weight fraction

of organic carbon in soil [MM−1], and λ is the decay constant [T−1], which is inversely proportional to the130

half-life of the decaying solute.

First order decay reactions are based on the assumption that λ does not change with time. This is a

strong hypothesis since it implies that soil temperature and water content do not significantly influence the

degradation processes. Nonetheless equations 3 and 4 are known to represent correctly the major solute

reactions in soils (Kohne et al., 2009) and present as well the advantage of keeping to a minimum the number135

of new parameters: only Kd and λ are introduced in this new version of CATHY. Just as with the key hydraulic

parameters (saturated conductivity, porosity, and specific storage), the spatial variability of Kd and λ can also

be represented in the model. Equations (3) and (4) are solved on volumes and implemented after advection,

taking into account element concentration values produced by the advection computation. Adsorption is

implemented first, because it is considered here to be an instantaneous reaction. Decay is implemented after140

advection and computed on the solute concentration in water, implying that the solute adsorbed on soil particles

is assumed to not undergo degradation.

2.2. Sensitivity analysis: the Morris method

Different levels of sensitivity analysis can be used depending on the study objectives as well as the model

and database characteristics. One-at-a-time (OAT) sensitivity analyses, consisisting in varying one input145

parameter while fixing the others, are the most intuitive and thus the most popular in hydrology and pesticide

modeling (Persicani, 1996; Lenhart et al., 2002). However, although they are very simple to implement, they

do not take into account the effect of interactions between parameters, and they provide information only

very locally around the input parameter values. Global sensitivity analysis (GSA), on the other hand, aims

to find the contribution of each input factor to the variance of the model output as well as the parameter150

interactions. However, as they are based on Monte-Carlo sampling, the large range of simulations implies

a high computational cost. A good compromise between exhaustive results and computational cost is the

elementary effects method adapted by Campolongo et al. (2007) from Morris (1991). This screening based

approach is considered as a golden mean between one-at-a-time and global methods. It allows detection of the

effects of input parameters on the studied output variable (linear effects, nonlinear effects, and interactions)155

by considering both the mean and variance of the elementary effects, but it gives only qualitative results. Its

low computational cost makes it very attractive for large problems, and it has consequently been successfully

applied in ISSHMs as an exploration tool (see Herman et al. (2013) for a review). Considering p input
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parameters, the method consists in generating trajectories to explore the input hypercube of dimension p in

the most optimal way. Trajectories are generated per “level”, i.e. regular sections of the hypercube in all its160

dimensions (for example using 4 levels means dividing each parameter range in quartiles). In practice, the

user defines l the number of levels, ∆ the discretization length in each direction, and r the total number of

trajectories. ∆ is often defined as l
2(l−1) and r should be superior to 10 (Campolongo et al., 2007). The total

number of combinations, N , is defined by N = r(p + 1). Considering 8 parameters and 10 trajectories, the

total number of parameter combinations is equal to 90. This is very small compared to global methods such165

as Sobol (1990): with 8 parameters, between 5000 and 10000 runs would be necessary in a Sobol study.
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Figure 1: Schematic interpretation of the effect of a group of parameters on a model output (indicated by X) in a Morris graph

(adapted from Saltelli et al. (2004)).

After computation with all parameter combinations, the elementary effects mean and standard deviation

for each parameter is calculated for the studied output variable and presented in a Morris graph, such as in

Figure 1 : the absolute mean µ∗ in the horizontal axis reveals the influence of a parameter on the output

variable and standard deviation σ in the vertical axis provides information on nonlinear effects or interactions170

with other parameters. For example in Figure 1 the P2 parameter group has non negligible linear effects, the

P3 parameters have non negligible effects with interaction or nonlinear effects, and the P1 parameter group

has poor influence in both directions, meaning that its variations have little or no influence on model results.
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2.3. The MASHYNS experimental model and the SSTM experiment

MASHYNS is a laboratory scale model designed by Irstea Antony (France) and used since 1999 to improve175

solute transfer understanding in drainage systems (Figure 2a). It is 2 m long, 0.5 m wide, and 1 m high. Special

care was taken during construction of the experimental setup to ensure soil homogeneity, with the sand and

loam mixed in equal proportion. Homogeneity was confirmed from soil analyses (dry bulk density and gran

size sampled at several locations) whan MASHYNS was dismantled. Organic matter in the porous medium

was measured as less than 0.2%. A spraying device above MASHYNS ensures a homogeneous distribution of180

input rain, while an open drain at one of the bottom edges allows subsurface water to flow out.

  Water output

1 
m

2 m

0,5 m

Water table shape

Drain

Uniform water spraying

(a)

  

Dry Wet Recovery Washing

Batch 1 Batch 2

Batch 3

(b)

Figure 2: (a) The MASHYNS laboratory scale model. (b) Rainfall applied homogeneously on MASHYNS during the solute

transfer experiment. Three batches of different solutes were introduced for one hour at t = 0, t = 24 h, and t = 72 h, with different

rain intensities.

In the subsurface solute transfer in MASHYNS (SSTM) experiment considered in this study, three represen-

tative hydrological conditions were generated by applying water inflow intensities corresponding, cumulatively,

to a typical hydrological drainage season (equivalent to 250 mm of rain) (Figure 2b), and a longer fourth stage

(200 h) was used to wash out the pesticides. The pesticide quantities applied were representative of farmer185

practices in a French drainage context (rape, wheat, maize). The characteristics of each of the four stages are

summarized in Table 1.

The monitoring strategy was based on leaching flux assessment. All drained water flows were sampled in

350 ml glass flasks, collected by an ISCO automatic sampler. One out of three samples from stages 1 to 3, and

selected samples from stage 4, were sent for chemical analysis, corresponding to 150 samples. Detection limits190

for the six applied pesticides were below 0.005 µg/l.

In the conditions of very low organic matter content and short tracer times that characterized the SSTM

experiment, we can reasonably assume that no biotic degradation occurred, abiotic degradation (photolysis,
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Table 1: Characteristics of the four stages of the SSTM experiment.

Stage Dry (0-24h) Wet (24h-72h) Recovery (72h-103h) Washing (103h-300h)

Season summer winter spring -

Cumulative rain 24 mm 177 mm 59 mm 755 mm

Water table low high intermediate high

Tracers amino-G uranine - -

Pesticides

Batch 1 : Batch 2 : Batch 3 :

-clomazone mesosulfuron bentazone

imazamox isoproturon sulcotrione

hydrolysis) could be neglected, and only hydraulic transfer and sorption processes were active.

2.4. Model setup for the SSTM experiment195

Hydrological parameters considered in the flow simulation were: the horizontal and vertical saturated

hydraulic conductivities (Ksh and Ksv), the porosity (θs), and the van Genuchten (1980) retention curve

parameters (n and α). Since MASHYNS is considered to be homogeneous, the same hydrological parameters

are applied for each numerical layer. Saturated conductivities were measured three times, with a standard

deviation described in section 3.2.1, and the mean value takes into account all the measurements. Retention200

curve parameters were assessed based on nine pressure measurements at various saturations. Two solutes per

batch with contrasting properties (adsorption and degradation coefficients, see Table 2) were chosen. The

equilibrium constant is expressed in the KOC form of equation (3), and Kd values are thus the product of

KOC from the pesticide properties database (Lewis et al., 2016) and the organic matter fraction in MASHYNS

(0.2%).205

CATHY simulations are performed with atmospheric conditions (rainfall input) at the surface and with

Dirichlet nodes set at atmospheric pressure head along one bottom edge of the domain to represent the drain

(see Figure 3). All other boundary conditions are set to zero flux to represent the closed domain. Initial

pressure in the domain represents a steady state of 1 mm/h rain (obtained after 300 hours, the same duration

as the SSTM experiment), and the initial concentration throughout the domain is zero. The surface mesh210

is discretized into 10 x 40 uniform cells of 5 cm x 5 cm resolution, and is projected vertically to 1 m depth

discretized into 16 layers of uniform thickness. The 3D mesh is composed of 7667 nodes and 12800 tetrahedral

elements.
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set at atmospheric

pressure head

Figure 3: 3D mesh of the simulated domain with applied boundary conditions for the CATHY model (mesh: 5 cm * 5 cm and 16

soil layers).

Table 2: Half-life and equilibrium constant for the six studied solutes. All values were extracted from the pesticide properties

database (Lewis et al., 2016) except (∗), which was obtained from the pesticide active ingredient database from Cornell University

(http://pmep.cce.cornell.edu/profiles/index.html).

Solute Half-life T 1
2

(d) Equilibrium constant KOC (m3g−1)

Batch 1
clomazone 89 300

imazamox 70 15 (∗)

Batch 2
isoproturon 12 122

mesosulfuron 45 92

Batch 3
bentazone 45 55

sulcotrione 25 36
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2.5. Input parameters and output variables for sensitivity analysis

The selection of model outputs for sensitivity analysis will depend on the objectives of the study and on215

the specific analysis method to be used. Fluxes in the unsaturated zones are more complex to simulate than

fluxes in the saturated zone and are strongly dependent on the hydrological soil parameters. Water table

recharge fluxes, i.e., fluxes from the unsaturated zone passing to the saturated zone, are a way to analyze the

hydrological responses in the unsaturated zone. Concerning solute transfers, the output mass flow is a relevant

output for assessing the solute transfer dynamic through the entire domain. To complete the model’s output220

variables, four integrative variables connected to the breakthrough curve were added to the sensitivity analysis:

timing of the solute concentration peak, concentration peak value, breakthrough timing (defined as the time

when concentration reaches 5% of its peak value), and NSE value on the output mass flow (g/s).

2.6. Model performance evaluation

Hydrological and water quality models should be evaluated with methods that consider both accuracy225

and precision (Harmel et al., 2014). Typically, the NSE, which is commonly applied in hydrological studies,

is very sensitive to extreme values, and to the number of data points. It is necessary to combine it with

methods that consider bias, extreme values, and outliers. FITEVAL (Ritter and Muñoz-Carpena, 2013) is

an evaluation method that combines 2 indicators, the NSE and the RMSE, and derives their approximated

probability distributions by bootstrapping. The advantage of this proposed methodology is that it provides not230

only a criteria deterministic value but also statistics on the model evaluation. The performances are given with

a goodness-of-fit evaluation represented by probability ratings: Unsatisfactory (NSE under 0.65), Acceptable

(NSE from 0.65 to 0.80), Good (NSE from 0.80 to 0.90), and Very good (NSE above 0.90). Hence, the resulting

detailed overview of model performance reduces modeler subjectivity. The NSE probability distribution for

each evaluation and each simulation is given in the supplemetary materials (Table 8).235

The subsurface part of the CATHY model version adapted for solute transport will be evaluated with

respect to hydrology and reactive solute transport on the MASHYNS experimental apparatus following three

successive steps. First, initial model performance will be evaluated on simulations without optimization, using

the available measured parameters as input. Performance will be computed on two tracers and two solutes per

batch (see Figure 2b) based on comparison of the observed and simulated ouptut mass flow. The second step240

consists in a sensitivity analysis performed with the Morris method on the two solutes of batch 1 (clomazone

and imazamox) and the two solutes of batch 2 (isoproturon and mesosulfuron). Eight parameters related to

hydrology and solute transfer will be considered (see Table 6) and the analysis of various outputs will allow the

identification of influential and interactive parameters. In a third step, the Morris analysis will allow selecting

in the sampling the optimal parameter sets for the four solutes of batch 1 and batch 2. This parameter set245

will be applied on the two solutes of the third batch, and NSE will be computed on the output solute mass of

each simulation to get an idea of the simulation performance.
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3. Results

3.1. Initial model performance on the SSTM experiment

In these simulations, input parameters correspond to measured values except for porosity (see Table 6). As250

the simulated water flow exiting the system reacted more slowly to rain variation than during the experiment,

the porosity was lowered from 0.43 to 0.3 in order to accelerate water flows observed. The 0.3 porosity may

reflect the mobile water, in a quasi saturated context where the water in some fraction of the pore space remains

relatively immobile. Initial simulations with the CATHY model on the SSTM experiment show an outflow

response (Figure 4a) in accordance with the dry, wet, recovery, and washing periods described earlier. Data255

and simulation dynamics are similar, except at around 72 h, where a sharp fall appears in the experimental

data, due to the handling of input water when the supply water was changed before the third batch solution.

(a)

(b)

Figure 4: Water and nonreactive solute fluxes in the SSTM experiment: (a) water outflow; (b) solute outflow shown as a mass

flow for the amino-G (batch 1) and uranine (batch 2) tracers.

For nonreactive solute transport, the mass flow is shown for two tracers: amino-G for batch 1 and uranine

for batch 2 (Figure 4b and Table 3). Both tracer simulations show a very accurate breakthrough timing. The

mass flow peak is higher in simulation than in observation for uranine, with a sharper mass flow curve decrease.260

In the observations and simulations the breakthrough timing is nearly the same for the tracers of batch 1 and
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Table 3: Performance of the water and nonreactive solute fluxes simulation in the SSTM experiment (95% confidence intervals in

brackets).

NSE RMSE

Water flow 0.78 [0.350-0.915] 0.346 [0.189-0.502]

Amino-G 0.553 [0.105-0.837] 1.2e−6 [4.7e−7-1.9e−6]

Uranine -0.01 [-0.781-0.672] 1.2e−6 [5.3e−7-1.9e−6]

Table 4: Performance of the reactive solute fluxes simulation in the SSTM experiment (95% confidence intervals in brackets).

NSE RMSE

Batch 1
Clomazone -39.90 [-916 - -2.1] 1.4e−6 [8.6e−7-1.9e−6]

Imazamox -0.05 [-1.41-0.55] 2.2e−6 [1.1e−6-3.2e−6]

Batch 2
Mesosulfuron 0.32 [-0.34 - 0.52] 8.1e−7 [6.2e−7-9.4e−7]

Isoproturon -1.56 [-6.22 - 0.19] 1.1e−6 [6.5e−7-1.5e−6]

Batch 3
Bentazone -1.81 [-5.32 - -0.28] 2.5e−6 [1.6e−6-3.5e−6]

Sulcotrione -1.31 [-2.3 - -0.45] 3.0e−6 [2.1e−7-3.7e−6]

batch 2, respectively around 55 h and 60 h. This indicates that the flow during the dry period doesn’t contribute

much to the solute transfer. The NSE computed for Amino-G is just below the Acceptable limit (the probability

of fit being Unsatisfactory is 76.7 % and 19.9 % of being Acceptable), as the NSE computed for Uranine is

clearly Unsatisfactory, due to the misfit between simulated and observed concentration peak. The uncertainty265

of the evaluation criteria NSE and RMSE (values in brackets) is quite large for the three results, and shows

that the computed goodness-of-fit indicators are highly variable along the entire experiment timeline.

The solute breakthrough is delayed for the six reactive products except for mesosulfuron. Since the tracers

did not exhibit this same inaccuracy, it may be that the Kd values are optimal or appropriate. The calculation

of Kd from KOC may not be adapted to cases where the organic matter rate is very low. For example the270

generally neglected soil minerals contribution to sorption may be non negligible when the organic matter rate

is very low (Sheng et al., 2001). NSE results are largely Unsatisfactory (with probabilities of fit of almost

100 % for all solutes), which is not surprising considering the delay between observation and simulations.

Mesosulfuron, which is the solute with shortest delay, show more encouraging NSE values. Despite a poor

mathematical evaluation, the increasing and decreasing portions of the mass flow curves are well represented275

even while shifted by the delay.

Table 5 reports the experimental and simulated mass balances for each studied solute, calculated as the

ratio between the initial mass put into the system and the cumulative mass that has exited the system at

the end of the simulation. As implemented, the adsorption is reversible thus after the washing stage the total
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Figure 5: Reactive solute fluxes in the SSTM experiment. (a) Mass flow for clomazone and imazamox (batch 1), mesosulfuron

and isoproturon (batch 2), and bentazone and sulcotrione (batch 3)

amount of input mass has theoretically exited the domain. Clomazone and bentazone show less than 10%280

variation between data and simulations, at 4% and 1% respectively. The mass balance variation for imazamox

is the higher, at 33%. The mesosulfuron results can be explained by the lack of data. Isoproturon, with a 21%

mass variation, is the only solute whose total output simulated mass is markedly smaller than the measured
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Table 5: Mass balance for the six simulated reactive solutes. The column recovery represents the ratio between the initial mass

put into the system and the cumulative mass that has exit the system at the end of the simulations.

Solute
Initial mass Experiment Simulation

(g) Mass (g) Recovery (%) Mass (g) Recovery (%)

Clomazone 9.0e−5 8.4e−5 93 8.7e−5 97

Imazamox 1.0e−4 5.7e−5 57 9.0e−5 90

Isoproturon 6.9e−4 4.8e−4 69 3.3e−4 48

Mesosulfuron 7.0e−6 4.6e−6 62 6.0e−6 86

Bentazone 1.42e−3 1.13e−3 80 1.12e−3 79

Sulcotrione 2.3e−4 1.6e−4 68 1.95e−4 85

one. This may be because it is the only solute whose half-life (12 days) is close to the experiment duration

(12.5 days).285

3.2. Morris sensitivity analysis

3.2.1. Probability density functions for the model inputs

Input parameter probability density functions for sensitivity analysis should be based on scientific literature,

data, or expert judgment (Saltelli et al., 2005). Because of the homogeneity of the soil in MASHYNS, the

number of tested parameters is quite low. Eight parameters are taken into account: horizontal and vertical290

saturated hydraulic conductivity (Ksh and Ksv), retention curve parameters (n and α), porosity θs , input flow,

equilibrium constant KOC , and solute decay constant λ. All parameters, including the horizontal and vertical

saturated conductivities, vary independently in the Morris method and are described by their probability

density functions (see Table 6).

The saturated conductivity is commonly represented by a lognormal distribution (Coutadeur et al., 2002;295

Paris, 2004; Fox et al., 2010; Schwen et al., 2011) and the standard deviation is often taken to be equal to

the mean when there is no information on its value (Muñoz-Carpena et al., 2010). In this work, the mean

values of the vertical and horizontal saturated conductivities were chosen to satisfy three conditions: (i) that

the measured anisotropy ratio is respected; (ii) that all measured conductivity values are covered by the

distribution; and (iii) that the expected value is high enough to exclude all non representative behavior, in300

particular water saturation and overflow due to low Ks value. The porosity and retention curve parameters

follow a normal distribution, with a coefficient of variation of 10% according to Schwen et al. (2011) and Alletto

et al. (2015). The rain intensity conditioning the initial steady state is not usually considered in sensitivity

analysis; in this work we represented it as a uniform distribution with a 100% variation coefficient. The decay is

considered to follow a normal distribution with a 20% coefficient of variation, based on Boivin (2003), Holvoet305
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Table 6: Morris sensitivity analysis parameters with probability density function described by the mean µ and variance σ2 (LN

= lognormal, N = normal, U = uniform, T= triangular).

Parameter Unit Probability distribution

Horizontal saturated conductivity Ksh ms−1 LN(9e-05, 1.39e-8)

Vertical saturated conductivity Ksv ms−1 LN(5.62e-5, 5.43e-9)

Porosity θs - N(3.0e-1, 9.0e-4)

VG parameters
n - N(1.8, 3.24e-2)

α m−1 N(1.2e-2, 1.44e-6)

Initial rain IC ms−1 U(2.7e-7, 2.6e-2 )

Decay constant λ s−1

clomazone imazamox

N(1.30e-7, 6.76e-16) N(1.65e-7, 1.09e-15)

isoproturon mesosulfuron

N(9.65e-7, 3.7e-14) N(2.57e-7, 2.64e-15)

Equilibrium constant KOC m3g−1

clomazone imazamox

T(139,300,608) T(5,15,143)

isoproturon mesosulfuron

T(36,122,241) T(26,92,354)

et al. (2005), and Lewis et al. (2016). The KOC ranges are based on the literature for each solute and a

triangular law is applied to those values (Durkin, 2010; Van Scoy and Tjeerdema, 2014; Lauvernet and Muñoz

Carpena, 2018).

3.2.2. Sensitivity analysis results

The sensitivity of soil water flow is assessed at 3 different times corresponding to the end of the dry, wet,310

and recovery periods of the experiment (Table 1, Figure 6). The water table recharge volume, which represents

the cumulative amount of water moving from the unsaturated to the saturated zone, allows examining more

in detail the unsaturated zone hydraulic behavior. As expected, the reaction parameters (KOC and λ) do not

have influence on the hydrological variables, since they are not used in the soil water flow equations. Ksh,

Ksv, and n emerge as having linear effects (high values on the horizontal axis) but also nonlinear effects (high315

values on the vertical axis) on the water table recharge volume. At 25 h, IC (the rain conditioning the initial

steady-state pressure) and θs also have an influence, but only during the first period. We note that n, which

is related to the pore size distribution, has more influence in dry contexts. In all cases, results indicate an

interaction between both horizontal and vertical conductivities. Contrary to the porosity and to the retention

curve parameter n, α has a negligible effect on this output.320
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Figure 6: Morris sensitivity analysis results on the water table recharge volume at three times : at the end of the dry period

(t = 25 h), at the end of the wet period (t = 72 h), and at the end of the recovery period (t = 93 h). µ∗ is the absolute mean and

σ the standard deviation of elementary effects.

The sensitivity analysis results for reactive solute transport are presented in Figure 7 for clomazone and

imazamox (batch 1) and for isoproturon and mesosulfuron (batch 2), considering four integrative output

variables: breakthrough timing, peak timing, peak concentration, and NSE value relative to the output mass

flow compared to observed data. The four dominant parameters for the recharge volume (Ksh, Ksv, θs, and

n) also play an important role in solute transfer. In addition to these hydrological parameters, the sorption325

coefficient KOC has a major influence on these four outputs, especially for the breakthrough and peak timing.

This confirms that the delay observed in initial simulations (see Figure 5) may be largely due to unadapted

KOC values in this context. For IC and α, on the other hand, the elementary effects are negligible for all

outputs and solutes. λ has a linear effect for the NSE of isoproturon and imazamox in this context of short

term simulation, being negligible for other molecules and outputs.330

3.3. Improvement of the CATHY model parameter settings

The NSE index on mass flow is used as an indicator of the most efficient parameter sets (Figure 8). The

selected combination is coherent across solutes, which suggests that the model is not overparameterized. In

the top five NSE values, one parameter set is the same for three of the four solutes : clomazone, imazamox,

and isoproturon (in red Figure 8), and one parameter set is the same for the four solutes (in blue Figure 8).335

The blue parameter set was then used to simulate the two solutes in batch 3, bentazone and sulcotrione, and

the results are presented in Figure 9 as a subsequent calibration.

Compared to the initial parameterization, the horizontal saturated conductivities and KOC are lower in

this parameter set, whereas n, Ksv, θs, and λ are only slightly changed. The match between simulation and
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Figure 7: Morris sensitivity analysis results for clomazone and imazamox (batch 1) and isoproturon and mesosulfuron (batch 2)

for four outputs: breakthrough timing (B. time), peak timing (P. time), peak concentration (P. conc) and NSE value relative to

the output mass flow compared to observed data. µ∗ is the absolute mean and σ the standard deviation of elementary effects.

data was much improved by the selection of this parameter set compared to the initial simulation (Figure340

5). The simulated breakthrough timing is no longer delayed for sulcotrione, and less delayed for bentazone :

the delay of 40 h originally has improved to a delay of 15 h with the optimal parameter set. In the chosen

parameter set, θs, n, and α define a retention curve that is lower in saturation for low pressure (under −0.25 m)

than the original one, but gets closer of the original retention curve from −0.25 m to 0. This explains the

breakthrough timing improvement despite the fact that porosity and saturated conductivities are not higher345

than the original ones. The selection of optimal parameters improved the evaluation quality and strongly

decreased the associated uncertainty. Sulcotrione improved the most with an average NSE of 0.63, however

the probability of the model fit being considered Unsatisfactory, Acceptable, Very good and Good, are 57.4 %,
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Figure 8: Representation of the five best simulation sets from the Morris sampling for each solute, according to the NSE on

mass flow. Parameter values are ranked between 0% and 100%, which corresponds to the minimal and maximal values of each

parameter distribution in the Morris sensitivity analysis. The red and blue combinations of parameters are the same, respectively,

for clomazone, isoproturon and imazamox, and for the four solutes.

33.7 %, 5.3 % and 3.6 % respectively (see Table 8).
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(a)

Figure 9: Results of output mass flow compared to measured data for batch 3 solutes. The simulations are performed here with

the best parameter set resulting from the Morris sensitivity analysis.

Table 7: Performance of the reactive solute fluxes simulated with the best parameter set resulting from the Morris sensitivity

analysis (95% confidence intervals in brackets).

NSE RMSE

Bentazone -0.33 [-0.943-0.846] 1.8e−6 [6.7e−7-3.0e−6]

Sulcotrione 0.63 [0.486-0.892] 1.0e−6 [4.5e−7-1.5e−6]

Conclusions350

In this study, the reactive transport version of the CATHY model is presented and evaluated in three

steps. First, the model is evaluated on its ability to reproduce measured data from the MASHYNS laboratory

experiment, without calibration, at three progressive levels: hydrological, nonreactive tracer, and reactive

solute responses. The results show a satisfiying correspondance between observations and simulations for

tracer breakthrough and a significant delay for reactive solute breakthrough. The performed evaluation is355

highly influenced by the delay and produces poor values for NSE, despite a coherent shape of mass output

curves. For the solutes, four simulated mass balances out of six differ by more than 10% from the observed ones.

In a second step, a Morris sensitivity analysis is performed for eight parameters and four solutes on the coupled

flow and reactive transport model. Various outputs were taken into account, and five parameters emerge as

particularly influential: the horizontal and vertical saturated conductivities Ksh and Ksv, the porosity θs, the360

retention curve parameter n, and the sorption coefficient KOC . Although of these five factors only KOC is

directly related to solutes, it is difficult to assess whether the first order decay parameter λ is influential or not

in this context due to its generally high value compared to the experiment duration, except for isoproturon.

The sensitivity analysis brings out the robustness of the model with respect to parameter variations in this

context, and highlights parameter interactions that are not easily discerned from the input parameterization.365
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In the third step of the study, one efficient parameter set is chosen from the sensitivity analysis sampling based

on the NSE value on output mass flow through time. This parameter set is applied to the two solutes that were

not considered in the sensitivity analysis. The results in terms of evolution of output mass flow are improved:

there is less or no more delay in the breakthrough timing and NSE values have increase.

This study demonstrated that the CATHY model is able to realistically reproduce experimental data with370

reactive solute transport at a small plot scale, after a calibration of its most influential parameters. It represents

a solid first step in validating ISSHMs in a solute transport context, including problems of nonpoint source

pollution in agriculture. In follow-up work we will upscale the study to the hillslope scale, and take into account

surface/subsurface interactions.

Supplementary material375

Table 8: NSE probability distribution (get by bootstrapping) and corresponding NSE statistical significance as defined in Ritter

and Muñoz-Carpena (2013). ’After SA’ lines correspond to the simulations performed with the best parameter set resulting from

the Morris sensitivity analysis.

Unsatisfactory Acceptable Good Very good

NSE < 0.65 0.65 < NSE < 0.80 0.80 < NSE < 0.90 0.90 < NSE

Water flow 19.7 % 38.2 % 36.3 % 5.8 %

Tracers
Amino-G 76.7 % 19.9 % 2.8 % 0.6 %

Uranine 94.4 % 4.8 % 0.8 % 0 %

Batch 1
Clomazone 100 % 0 0 0

Imazamox 97 % 2.3 % 0.7 % 0

Batch 2
Isoproturon 100 % 0 0 0

Mesosulfuron 100 % 0 0 0

Batch 3
Bentazone 100 % 0 0 0

Sulcotrione 100 % 0 0 0

After SA
Bentazone 96.1 % 0.9 % 0.9 % 2.1 %

Sulcotrione 57.4 % 33.7 % 5.3 % 3.6%
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thesis, ENGREF (AgroParisTech), 2004.

D. Persicani. Pesticide leaching into field soils: sensitivity analysis of four mathematical models. Ecological

Modelling, 84(1):265 – 280, 1996. doi: 10.1016/0304-3800(94)00136-7.

M. Rabiet, C. Margoum, V. Gouy, N. Carluer, and M. Coquery. Assessing pesticide concentrations and fluxes

in the stream of a small vineyard catchment – effect of sampling frequency. Environmental Pollution, 158

(3):737–748, 2010. doi: 10.1016/j.envpol.2009.10.014.

A. Ritter and R. Muñoz-Carpena. Performance evaluation of hydrological models: Statistical significance for

reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480:33–45, 2013. doi: 10.1016/j.

jhydrol.2012.12.004.

A. Rubio, A. Zalts, and C. E. Hasi. Numerical solution of the advection-reaction-diffusion equation at different

scales. Environmental Modelling & Software, 23(1):90–95, 2008. doi: 10.1016/j.envsoft.2007.05.009.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A Guide to Assessing

Scientific Models. John Wiley & Sons, 2004.

A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo. Sensitivity analysis for chemical models. Chemical

Reviews, 105(7):2811–2828, 2005. doi: 10.1021/cr040659d. PMID: 16011325.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola. Global

Sensitivity Analysis: The Primer. John Wiley & Sons, 2008.

A. Schwen, G. Bodner, P. Scholl, G. D. Buchan, and W. Loiskandl. Temporal dynamics of soil hydraulic

properties and the water-conducting porosity under different tillage. Soil and Tillage Research, 113(2):

89–98, 2011. doi: 10.1016/j.still.2011.02.005.

25

Author-produced  version  of  the  article  published  in  Environmental  Modelling  & Software,  Volume 113, 2019, Pages 73-83. 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.envsoft.2018.12.006



C. Scudeler, L. Pangle, D. Pasetto, G.-Y. Niu, T. Volkmann, C. Paniconi, M. Putti, and P. Troch. Multiresponse

modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape

Evolution Observatory. Hydrology and Earth System Sciences, 20(10):4061–4078, 2016a. doi: 10.5194/

hess-20-4061-2016.

C. Scudeler, M. Putti, and C. Paniconi. Mass-conservative reconstruction of Galerkin velocity fields for trans-

port simulations. Advances in Water Resources, 94:470–485, 2016b. doi: 10.1016/j.advwatres.2016.06.011.

M. L. Sebben, A. D. Werner, J. E. Liggett, D. Partington, and C. T. Simmons. On the testing of fully integrated

surface–subsurface hydrological models. Hydrological Processes, 27(8):1276–1285, 2013. doi: 10.1002/hyp.

9630.

G. Sheng, C. T. Johnston, B. J. Teppen, and S. A. Boyd. Potential contributions of smectite clays and organic

matter to pesticide retention in soils. Journal of Agricultural and Food Chemistry, 49(6):2899–2907, 2001.

doi: 10.1021/jf001485d.

J. Simunek, M. T. van Genuchten, and M. Sejna. The HYDRUS-1D software package for simulating the

one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of

California-Riverside Research Reports, 3:1–240, 2005.

J. Simunek, M. T. van Genuchten, and M. Sejna. Development and applications of the HYDRUS and

STANMOD software packages and related codes. Vadose Zone Journal, 7(2):587–600, 2008. doi:

10.2136/vzj2007.0077.

I. M. Sobol. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2

(1):112–118, 1990. doi: 1061-7590/93/04407-008.

M. T. van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.

Soil Science Society of America Journal, 44(5):892–898, 1980.

A. R. Van Scoy and R. S. Tjeerdema. Environmental fate and toxicology of clomazone. In Reviews of Envi-

ronmental Contamination and Toxicology. 2014.

S. Weill, A. Mazzia, M. Putti, and C. Paniconi. Coupling water flow and solute transport into a physically-

based surface–subsurface hydrological model. Advances in Water Resources, 34(1):128 – 136, 2011. doi:

10.1016/j.advwatres.2010.10.001.

J. Zhou, G. Cheng, X. Li, B. X. Hu, and G. Wang. Numerical modeling of wheat irrigation using coupled

HYDRUS and WOFOST models. Soil Science Society of America Journal, 76(2):648–662, 2012. doi: 10.

2136/sssaj2010.0467.

26

Author-produced  version  of  the  article  published  in  Environmental  Modelling  & Software,  Volume 113, 2019, Pages 73-83. 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.envsoft.2018.12.006


	Introduction
	Materials and methods
	Model description
	Variably saturated flow and advective-dispersive transport
	Inclusion of a reactive transport component

	Sensitivity analysis: the Morris method
	The MASHYNS experimental model and the SSTM experiment
	Model setup for the SSTM experiment
	Input parameters and output variables for sensitivity analysis
	Model performance evaluation

	Results
	Initial model performance on the SSTM experiment
	Morris sensitivity analysis
	Probability density functions for the model inputs
	Sensitivity analysis results

	Improvement of the CATHY model parameter settings




