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1. Introduction

Context

Space-time variability of flood occurrences

Consider the occurrence of 5-year autumn floods in France
(% denote the proportion of stations where a flood occurs each year)

1984 — 22% || 1985 = 0% 1986 - 8%

1982 - 78%

1990 = 5% || 1991 -13% || 1992 —43% || 1993 ~47% | 1994 — 36%
1. Strong evidence of spatial clustering
2. Maybe some temporal clustering? (flood rich/poor periods)

3. Managing floods at this national scale is not a smooth sail
through average years, but rather an alternation of
problem-free and catastrophic years! (slightly exaggeratedly)

What drives this space-time variability?
NAO AMO SOI AO PDO Ningg

1988 — 10% || 1989 — 1%

Problem: in some regions of the world, standard climate indices
such as above are poor predictors of hydrologic extremes (e.g.
Grantz et al. 2005, Giuntoli et al. 2013, Westra and Sharma 2009)

Objectives

The concept of Hidden Climate Indices (HCI)

1. Rather than relying on predefined climate indices, is it possible
to extract the relevant indices directly from the hydrologic data?

2. In other words, the relevant climate indices are HIDDEN,
and we want to uncover them using the hydrologic data

3. Examples of HCl-like approaches include Thyer &
Kuczera (2000), Renard & Lall (2014) and Ahn et al. (2017)

4. However, these approaches cannot be applied beyond a small
regional scale due to homogeneity assumptions
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Specific objectives

1. Develop a probabilistic model to describe the space-time
variability of hydrologic extremes, using Hidden Climate Indices

2. Should avoid strong homogeneity assumptions and hence be
applicable at a large (national/continental) spatial scale

3. Assess the HCI approach using both synthetic and real data

Grantz, Rajagopalan, Clark and Zagona. 2005. A technique for incorporating large-scale climate information in basin-scale
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2. HCl model

Hierarchical model

Occurrence data: Bernoulli distribution
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Inferred quantities

logit)(0(t, x))=

(Hidden Climate Index (HCI))  (HCI effect)

Note: the model can be extended to K hidden climate indices

logit (0(t,x)) = Xo(z) + Y 7(t) x Ap(z) (1)
k=1
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Final hypotheses

1. CONDITIONAL space-time independence of occurrences,
given the probabilities 6(¢, x)
Note: this does NOT imply that occurrences are independent!

2. ldentifiability constraint: all HCls have mean 0 and variance 1

Parameter estimation

1. Hundreds of unknown parameters to be inferred
(typical of such hierarchical models)

2. Classical Bayesian/MCMC approach for hierarchical models
3. Stepwise inference: one HCI at a time

4. MCMC sampling: customized block Metropolis sampler
taking advantage of the conditional independence assumptions

3. Synthetic case study

Data generation

True Hidden Climate Indices and their effects

First HCI
o

Second HCI
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Generate occurrence data

1. Compute probabilities of occurrence with eq. (1) (Ao = logit(0.2))

2. Generate occurrences (5-year extract below) |
3. Apply realistic missing values mask (less data in earlier years)
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Results
Estimated HCls

Remind that estimation solely uses occurrence data

95% credibility interval 95% credibility interval
. A Truth (using all available data) . (complete period 1965-2014)
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Comments

1. Feasability: HCIs can be retrieved from occurrence data alone
2. Allow using all available data, while recognizing that uncertainty
increases as data availability decreases (see earlier years)

3. Other (not shown): HCI effects and probabilities of occurrence are
also reliably retrieved

5. Conclusion and perspectives

Conclusion
The Hidden Climate Indices approach

1. A hierarchical model describing the space-time variability of data

2. Extract hidden climate indices directly from hydrologic data, rather
than relying on standard climate indices

3. Particularly useful in regions where the latter are poor predictors

Insights from the case studies

1. Feasability to uncover hidden climate indices from hydrologic data
2. Use all available data (more uncertainty during data-poor periods)

3. Climate interpretation of the first HCI: suggests that it is related to
a genuine climate mechanism, with potential predictability?

Perspectives

Development of the Hidden Climate Indices approach

1. Generalize the (flood occurrence / Bernoulli) setup, e.g. (flood
intensity / GEV), or even more generally, (variable / distribution)?

2. Move beyond simple correlation maps, and develop a genuine
predictive framework to estimate HCls (and hence flood probabilities)
directly from large-scale climate fields

Potential applications

1. Past reconstructions: e.g. using long reanalyses (20CR/ERA20C) to
estimate flood probabilities in the late 19th / early 20th century.

2. Future flood hazard projections (GCM projections as predictors)
3. Seasonal forecasting of flood hazard / early warning systems

4. Autumn floods in France
Data

Hydrologic data

1. 207 stations in France, 1904-2016, but very sparse before 1960

2. At each station, derive the series of autumn (OND) maxima

3. Set threshold = empirical 80% quantile of this series

4. Occurrence = autumn max. exceeds this threshold (=> proba ~20%)
5. See figure in introduction for a 14-year extract

Climate data

1. Atmospheric variables over the North-Atlantic (NCEP/NCAR and 20CR)
2. SST: global (NOAA ESRL) and Mediterraneean (CMEMS)
3. A selection of standard climate indices (NOAA)

Results

Estimated Hidden Climate Indices

1. HCI1: controls flood occurrence in the oceanic region (West, large effects)
2. HCI2: opposition Britany-Mediterranean

3. HCI3: highlights northeastern France, but effects become small (=> stop)
4. All HClIs are iid: no trend, autocorrelation or low-frequency variability

5. Estimated HCls are weakly correlated with standard climate indices

95% credibility ‘ 1982, 1994, 2003
interval (see following figure)

HCI effects
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Ability to describe the space-time variability of extremes

1. Spatial variability: for 3 example
vears, estimated probabilities are
consistent with the spatial structure
of actual flood occurrences

- () Flood did occur

occurrence  pop 025 050 075 1.00

2. Temporal variability: predicted -
frequency of occurrence accross o

available stations consistent with 0.25
1950 1975 2000

. Year
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Interpretation of the Hidden Climate Indices

1. First HCI shows coherent correlation patterns with several atmospheric
variables, giving hope for predictability from large-scale climate information

2. Large values of HCI1 (high flood proba. in Western France) associated with:
a. negative pressure anomaly and stronger westerlies over France
b. increased convection potential and stronger southerlies over the
northern Caribbean area => conditions favoring the transport of tropical
moisture accross the North Atlantic?
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3. No association between first HCl and SST
4. For second and third HCI, no association found, neither with atmospheric
variables nor with SST => poor predictability from large-scale climate





