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A B S T R A C T

This paper emphasizes the importance of integrating outlet discharge and observed internal variables in the
evaluation of distributed hydrological models outputs. It proposes a general methodology for a diagnostic
evaluation of a complex distributed hydrological model, based on discharge data at the outlet and additional
distributed information such as water level and surface soil moisture data. The proposed methodology is illu-
strated using the PUMMA model in the Mercier sub-catchment (6.6 km2). Model parameters are specified ac-
cording to field data and a previous study performed in a neighbouring catchment (Jankowfsky et al., 2014),
without calibration. The distributed water level and soil moisture network of sensors were useful in the model
evaluation process. Thus, model parameters are specified either using in situ information or results from pre-
vious studies. A stepwise approach is used for model evaluation. It includes standard water balance assessment
as well as comparison of observed and simulated outlet discharge, whether on annual or event timescales. Soil
moisture sensors are used to assess the ability of the model to simulate seasonal water storage dynamics based on
a normalized index. The water level sensors network is used on two timescales: on a seasonal timescale, sensors
network is used to assess the model’s ability to simulate intermittency; whereas on event timescales, sensors
network is used in determining the model’s ability to reproduce observed reaction as well as response times.
Event timescales do also focus on the correlation between hydrological response and either rainfall event or
antecedent soil moisture variables. Results show that the non-calibrated model is quite effective at capturing
water flow and soil water-storage dynamics, but it fails to reproduce observed runoff volume during events.
There is strong indication of a deficiency in the characterization of catchment storage and upstream flowpath
description. The soil water content and a network of water level sensors provide interesting information about
soil moisture and river flow dynamics. They however fail to provide quantitative information about catchment
storage. This study opens interesting perspectives for the evaluation of distributed hydrological models using
hydrological signatures. Furthermore, it highlights the requirement of quantitative as well as qualitative sig-
natures for improving such models.

1. Introduction

Distributed hydrological models are valuable in our understanding
of hydrological processes and watershed behaviour. They provide ex-
plicit representations of processes and components involved in hydro-
logical balance, and are able to integrate the natural variability of soil

and sub-soil, the spatial organisation of landscape and water manage-
ment practices. As such, they are powerful hypothesis-testing tools, as
they formalize our assumptions on the main drivers of catchment re-
sponse, and allow for testing their relevance against observed data
(Gupta et al., 2008; Fenicia et al, 2008; Clark et al., 2011).

In this hypothesis-testing framework, it is now well established that
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distributed models offer far better results when their outputs are com-
pared not only to the outlet discharge, but also to observed internal
variables (Hrachowitz et al., 2013, Smith et al., 2013). This ensures
more robust representations of the catchment’s internal process dy-
namics and improved internal models consistency, thus providing “the
right answers for the right reasons” (Klemes, 1986; Grayson et al., 1992;
Kirchner, 2006). Several studies show the importance of using internal
discharge gauges for model calibration and evaluation (e.g.:
Uhlenbrook and Sieber, 2005; Moussa et al., 2007). However, the use of
additional data sources, although called for in many papers
(Hrachowitz et al., 2013), is not so widespread.

A way of using such additional data is to incorporate them in model
calibration process using data assimilation techniques, as illustrated by
Pereira-Cardenal et al. (2011), Paiva et al. (2013) or Wanders et al.
(2014), who used remote sensing data in large catchments. Another
way is to incorporate such data in a diagnostic approach as defined by
Gupta et al. (2008). It consists of comparing the model outputs with
alternative indicators. Known as “hydrological signatures”, these al-
ternative indicators describe the behaviour of the catchment hydro-
logical response. Hydrological signatures are derived from field data
and provide physically interpretable metrics for functional behaviour of
catchments (McMillan et al., 2011, 2014), as opposed to traditional
performance criteria (Nash Sutcliffe efficiency, typically) that are too
restrictive to fully describe how well a model represents the different
aspects of hydrological response. The advantage of hydrological sig-
natures is also that they can point toward the causes of (model) bad
performance and provide elements to improve it (Gupta et al., 2008). In
the recent years, some authors recommended to perform diagnostic
evaluation on an uncalibrated model (e.g. McMillan et al., 2016). They
argued that, although uncalibrated models have generally lower per-
formance scores than calibrated models, they offer several advantages:
explicit link between the parameter values and the physics; no com-
pensations for biases in input forcing data (typically rainfall) or errors

in model structure (Clark et al., 2011). Therefore, uncalibrated ap-
proach seems particularly appropriate for diagnostic evaluation of a
model’s strengths and weaknesses and to assess the value of qualitative
distributed observations for such a diagnostic evaluation.

The main objective of this study is thus to build a diagnostic eva-
luation of a complex distributed model, based on additional distributed
data. Besides outlet discharge, two types of additional data were used:
surface soil moisture and water level in ephemeral streams. All these
data had been produced by previous research projects and were reused
opportunistically for the present study. This main general objective is
specified into three sub-objectives that are:

1. To assess usability of additional data in a model evaluation process,
and to assess strengths and weaknesses of corresponding hydro-
logical signatures. These data cannot be compared directly to model
outputs, either because their quality is not good enough (semi-
qualitative data) or because they do not have adequate spatial/
temporal resolution. So defining appropriate hydrological signatures
from this data is a challenging task.

2. To evaluate all components of the used model (surface runoff, in-
filtration in the soil, groundwater flow, routing in the stream net-
work), or specific catchment zones (specific sub-catchments, given
soil type/land use).

3. To test the model’s underlying, functioning hypotheses, as the last
part of the model diagnostic. This would allow prioritizing any
further developments of the model.

The case study used in this paper is the Mercier catchment
(6.6 km2), located near Lyon, France and the considered model is the
distributed peri-urban model PUMMA, Peri-Urban Model for landscape
Management, (Jankowfsky et al., 2014). PUMMA was used in this study
because its level of detail is well adapted to the size of the Mercier
catchment and to the resolution of the additional data. It also

Fig. 1. Location of the study area and simplified land use map, drainage network (natural and artificial), rain, discharge, water level and soil moisture measurements
stations in the Mercier catchment.
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incorporates urban hydrology processes that are of importance on the
Mercier catchment. However, the methodology proposed in the paper is
quite general and could be used for other case studies and/or dis-
tributed hydrological models. The paper is organised as follows. In
Section 2, study site, available data, modelling tool and model setup are
presented. Section 3 presents the model evaluation protocol that was
built and the signatures derived from the distributed soil moisture and
water level data. Results are presented in Section 4 and discussed in
Section 5. Finally, conclusions and perspectives are given in Section 6.

2. Case study, model description and set up

2.1. Mercier catchment and available data

The Mercier catchment is part of the Yzeron basin, located in the
south west of Lyon, France (Fig. 1). The Yzeron is representative of
periurban areas with a highly heterogeneous land use (Jacqueminet
et al., 2013), dominated upstream by forests and agriculture, and in-
creasing urbanization downstream. The Mercier semi-rural sub-catch-
ment has a surface of 6.6 km2 with altitudes ranging from 300m to
785m. Its geology consists mainly of gneiss and granite. The soils are
quite shallow, especially in upslope areas, leading overall to low water
storage capacity. Land use is 46% agricultural, 40% forests and 14%
urban and impervious areas (Braud et al., 2013). The climate is tem-
perate with continental and Mediterranean influences. The average
annual precipitation between 1997 and 2010 was 741mm with a
standard deviation of 156mm. The average response time of the Mer-
cier catchment varies between 1 and 3–4 h. The catchment is part of the
Observatoire de Terrain en Hydrologie Urbaine (OTHU) and has been
monitored since 1997.

2.1.1. Permanent data
Consists of rainfall measurements at two gauges (one starting in

1997 and the other in 2005) and discharge measurement at the
catchment outlet (since 1997). These data are available with a variable
timestep. Reference evapotranspiration at a hourly timestep was cal-
culated from the national SAFRAN database (Quintana-Seguí et al.,
2008; Vidal et al., 2010) by Braud et al. (2013), using the Penman-
Monteith equation (FAO, 1998).

2.1.2. Additional data from the networks of sensors
These data come from previous research projects conducted in-

dependently from the present study and in limited timeframes. We
opportunistically reused the existing data without possibility of chan-
ging the experimental setup since all sensors were already removed
from the field.

The network of water level sensors was installed for a PhD thesis,
which aimed at documenting the activation of ephemeral streams
during events and its links with topography (Sarrazin, 2012). Dis-
tributed series of water levels are available with a 2–5min timestep (17
measurement points located in permanent or ephemeral streams,
Sarrazin, 2012, see location in Fig. 1) from 2007 to 2010. Sensors were
located throughout the Mercier catchment, with upstream areas ran-
ging from 0.06 km2 to 6.6 km2 and contrasted land uses. The main
characteristics are presented in Table 1. Since sensor accuracy
(± 1.6 cm obtained by comparing the sensors and manual field mea-
surements, Sarrazin, 2012) is of the same order of magnitude as the
measured water levels, continuous series cannot be used directly for
model evaluation. However, simple flow/no-flow patterns (for con-
tinuous periods), as well as water level variations and response during
rainfall-runoff events can all be extracted (Sarrazin, 2012).

Surface soil moisture (0–5 cm depth layer) data were installed for a
project monitoring surface runoff (Dehotin et al., 2015) during one
year. Data are available at 9 locations with a 2min timestep from April
2010 to April 2011. This dataset is described in Dehotin et al. (2015).
Location of the sensors is shown in Fig. 1.

2.1.3. GIS layers
They were mainly obtained or purchased through research projects

(Braud et al., 2010): a Lidar Digitial Elevation Model with a 2m re-
solution, geology map in the scale 1:50000 digitized by Gnouma
(2006), and the pedological map of the French DONESOL program. A
detailed land use map was obtained by manual digitisation from a 2008
BDOrtho IGN image (Jacqueminet et al., 2013).

Fig. 1 shows the land use map (Jacqueminet et al. 2013) simplified
in four main classes, the natural and artificial drainage network and the
location of the various sensors used in this study.

2.2. Model description

The PUMMA model that is used in this study was specifically de-
signed for the hydrology of peri-urban areas. It is presented in detail by
Jankowfsky et al. (2014). In particular, it takes into account the po-
tential effect of each landscape object on hydrology, especially linear
objects (river network, roads, ditches, hedgerows, thin stripes of allu-
vial forest etc.), and urban objects (sewer networks, roads, impervious
surfaces), that are represented with the same degree of detail and in a
unified framework. These characteristics make PUMMA quite unique
among the existing distributed hydrological models – see Jankowfsky
et al. (2014).

PUMMA has the specificity of representing explicitly the hydro-
logical objects of the landscape that are interconnected thanks to the
use of the LIQUID modelling framework (Branger et al., 2010). Each of
these objects is represented by a specific module: HEDGE for agri-
cultural and forest areas, URBS for urban cadastral units, RIVER1D for
the natural river network and artificial sewer network, TDSO for storm
water overflow devices, SISTBA for lakes and retention basins. Addi-
tional modules allow the flow transfer between modelling units (WTI,
WTRI, OLAF) (Jankowfsky et al., 2014) (see Fig. 2). Model mesh con-
sists of irregular modelling units that follow the land use patterns.

The HEDGE runoff generation module simulates rural areas such as
forests and agricultural fields, as well as hedges. The soil is represented
using two interconnected compartments: drainable porosity where the
water table is computed and micro-porosity where infiltration and
evapotranspiration take place. Overland flow can occur when the soil
column is fully saturated. Hortonian runoff is not accounted for in this
module. The RIVER1D runoff routing module, based on the kinematic

Table 1
Main characteristics of the upstream catchments of the water level sensors. The
reach length includes the natural and artificial channels (ditches, sewer pipes)
connected to the stream network that is represented in the model. Upstream
areas and land use characteristics are taken from Sarrazin (2012). Upstream
stations are highlighted in bold.

Sensor Upstream
area (km2)

Reach
length
(m)

Land use
Agriculture
(%)

Land
use
Forest
(%)

Land use
Residential
(%)

Land
use
Roads
(%)

@1 1,46 2000 8 91 0 4
@2 0,65 950 21 68 8 2
@3 6,6 4500 46 40 10 4
@4 2,45 2500 18 74 5 3
@5 0,21 300 38 57 2 3
@6 1,75 1450 53 36 8 4
@7 0,20 200 25 55 16 6
@8 0,11 250 6 87 0 7
@9 0,34 500 2 94 0 4
@10 0,23 500 0 99 0 1
@11 0.06 700 30 0 57 13
@12 3,29 3500 30 57 10 3
@13 5,62 3500 40 46 10 4
@14 0,88 1200 49 41 6 4
@15 0,65 1200 44 41 11 4
@16 0,09 400 64 0 28 8
@17 2.27 2250 56 31 10 3
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wave equation and simplified channel geometry (trapezes), assures
routing of water towards the outlet. The lateral subsurface flow is si-
mulated by the Water Table Interface (WTI) module. It uses the Darcy
law to calculate the subsurface flow between agricultural fields, hedge
rows and urban cadastral units. The WTRI (Water Table River Interface)
is similar to the WTI interface. It calculates the groundwater exchange
between a model unit, and a river reach or a lake. Instead of the Darcy
equation, it uses the Miles approach (Miles, 1985), which considers the
water table deformation close to the river based on the Du-
puit–Forchheimer assumption. For built areas, the URBS module is the
LIQUID implementation of the Urban Runoff Branching Structure

model by Rodriguez et al. (2008). Each cadastral unit is divided into
natural, built and road areas, each one having its own water balance.
The latter is computed using three reservoirs representing respectively
the surface, the non-saturated and saturated zones. Interception by
trees is also taken into account. The water table level is computed as the
average of the three components and is used to compute rain water
drainage by sewer pipes. The Threshold Dependent Stormwater Over-
flow module (TDSO) simulates the storm water overflow between sewer
network and natural streams. The overflow is calculated with a weir or
orifice equation based on a water-control depth threshold value.
Overland flow from the surface reservoirs of the HEDGE module and
the natural part of the URBS module is calculated with the OLAF
(OverLAnd Flow) interface. The flux between two units is computed
based on the Manning Strickler approach. Finally, the SISTBA (SImu-
lation of STorage BAsins) module simulates retention basins and lakes.
It represents retention basins or natural lakes with a simple linear re-
servoir.

According to the principles of the LIQUID framework (Branger et al.,
2010), the way the PUMMA model handles timestep is as follows: each
module manages its own variable timestep, according to inner numer-
ical constraints (typically variation of state variables within a timestep).
Moreover, each module has the ability to interrupt itself and to re-
calculate a new timestep if required (for example if a new value is re-
ceived by another module). This is the way the modules exchange data.
Timesteps for a model like PUMMA range typically from a few seconds
to several hours, depending on the module and on the rainfall situation.

2.3. Model set up

The simulation was performed for five years from January 1st 2006
to December 31st 2010. In the continuous simulation, year 2006 was
considered as the warm-up period and model results were only analysed
and discussed for the 2007–2010 period.

2.3.1. Model mesh
The object-oriented model mesh of the PUMMA model is composed

of a combination of Hydrological Response Units (HRUs) (Flügel, 1995)
for rural land use units and urban hydrological elements (UHE)
(Rodriguez et al., 2008) for urban cadastral units, including roads. In
the Mercier catchment, agricultural and road ditches were mapped
using field survey and were incorporated to the natural river network.

Fig. 2. Structure of the PUMMA model and coupling between the modules
(from Jankowfsky et al., 2014). The main modules, representing hydrological
processes within the peri-urban objects are shown with a continuous line. In-
terfaces, calculating lateral fluxes between the main modules are shown in
dashed lines. Arrows indicate possible water fluxes.

Fig. 3. Mercier catchment PUMMA model mesh. The different colours correspond to the various PUMMA modules: HEDGE representing natural areas, SISTBA
representing lakes, URBS representing urban cadastral units. The river network (composed of natural, rain water and ditches network) is shown in blue.
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In the small urban area located in the catchment, rain water is collected
in a separate sewer system, which was also incorporated to the natural
river network. The river network presented in Fig. 3 incorporates all
categories of reaches (natural river, road and agricultural ditches,
sewers) and forms the basis for the RIVER1D module that simulates
flow routing. Note also that water flow in some reaches is intermittent.
Furthermore, ephemeral streams were represented using the RIVER1D
module. HRUs were obtained using GIS overlay of available land-use,
geology, soil and sub-basin maps (Jankowfsky, 2011). Using the 2m
Lidar DTM, rural sub-basins were calculated using the flow direction
forcing technique (Kenny and Matthews, 2005) in order to determine
one sub-basin for each river and artificial ditch branch (Jankowfsky
et al., 2013). The UHEs encompass one cadastral unit (typically house
plus surrounding garden) and half of the adjoining street. UHEs and
HRUs, as well as lakes and retention basins (for the SISTBA module)
were merged in order to get a non-overlapping model mesh. The object
oriented model mesh consists of irregular vector objects: polygons for
HRUs/UHEs and lakes/retention basins, and lines for the drainage
network. It is shown in Fig. 3 with the associated PUMMA process
modules. Note that UHEs exclusively composed of roads represent 18%
of the URBS modules surface. Each model elements is characterized by
various geometric attributes (average altitude, slopes, etc…) which
were computed using the DTM.

The WTI/WTRI interfaces are line objects defined by intersection
between polygons. Pre-processing methods were also developed to ex-
tract the interface geometries and their connections automatically
(Jankowfsky, 2011). The automatic preprocessing also provides the
flow routing on the irregular model mesh for the OLAF module and
determines the urban pipe connections. The model mesh considered in
this study is based on the original land use map of Jacqueminet et al.
(2013).

2.3.2. Model inputs
Due to its specific handling structure, PUMMA model is able to take

into account input series (rain, potential evapotranspiration) at any
timestep relevant for the simulation. In this case, we used the highest
temporal resolution available for input series: variable timestep for
rainfall at both permanent rain gauges, and hourly timestep for re-
ference evapotranspiration. Rainfall was interpolated to the model
mesh using weighting averages of the Thiessen polygons. Reference
evapotranspiration was considered homogenous over the whole catch-
ment. Crop coefficients are used in PUMMA to modulate ET0, according
to the vegetation type. Values proposed by Jankowfsky were used
(2011).

As stated in the Introduction, an uncalibrated approach was chosen
for this study. Therefore, parameters were set according to available
data, physical considerations of hydrological processes or the literature.
Model parameters were set as in Jankowfsky et al. (2014) for the
neighbouring Chaudanne catchment. Soil parameters were specified for
each model unit using the DONESOL soil data base and in situ mea-
surements (Gonzalez-Sosa et al., 2010). For the urban UHEs, built, road
and natural areas were computed from the detailed land use map of
Jacqueminet et al. (2013). Natural and road permeability were assigned
values proposed by Jankowfsky et al. (2014), study which -based on a
sensitivity study – shows that some parameters sets were more con-
sistent with observations. Their recommendations were used in this
study given the proximity between both catchments for interception
reservoirs of built areas, roads and natural areas. The link coefficients,
representing the fraction of runoff from both built and road areas di-
rectly connected to the network were similarly specified to 0.6 and 0.5
respectively. Jankowfsky et al. (2014) recommended the use of a
variable soil depth, with larger values at lower altitudes. A uniform soil
depth of 1m was used in this simulation and the evaluation of the
variable soil depth is left for further sensitivity studies. Table 2 sum-
marizes the main parameters and input data and how they were ob-
tained.

2.3.3. The evaluation presented in the remaining of the paper uses the
simulation configuration described in this section. Model outputs

PUMMA is able to produce outputs at a variable timestep and for
each modelling unit. In order to save computation time, most of the
variables were set at a fixed timestep of 6min. This is done by inter-
polating linearly between the actual calculated variable timesteps. Then
comes temporal aggregation (daily means for example) if required for
comparison with field data. Observed discharge data at the catchment
outlet were interpolated linearly to a 6-min timestep for comparison
with the model output.

3. Model evaluation protocol

Model evaluation protocol is designed following the three specific
objectives presented in the introduction.

3.1. Assessing how additional data can be processed in the model evaluation

“Hydrological signatures” computed for model evaluation and the
hydrological processes they document are presented here.

3.1.1. Hydrological signatures derived from soil moisture data
Soil moisture is quite commonly monitored in field experiments.

The use of soil moisture data for model evaluation raises several issues,
among which the issue of scaling (point measurements vs. integrated
modelling units) and the issue of representativeness (how to compare
model values using conceptual storage for soil compartment). In this
study, soil moisture data were available only in natural areas, where
hydrological processes were simulated using the HEDGE module.
Although the soil is divided into layers in this module, soil moisture
output of each layer was not available. Only total water storage (mm) of
the whole modelling unit was available. The observed soil moisture,
however, was a point surface measurement. Moreover, the model was
run based on Thiessen polygons calculated from a mere 2 rain gauges –
which means that very local variations of rainfall, to which surface soil
moisture sensors are sensitive – are likely to be lost. Therefore it was
unnecessary to compare observation and model at short, event-based
timesteps. As a result, model outputs and data were processed at a daily
timestep and normalized values were considered for both soil water
storage and surface soil moisture, as shown in Eq. (1), where X is the
variable value; min, max, and norm respectively for minimum, max-
imum, and normalized.

= −
−

X X X
X Xnorm

min

max min (1)

Such an indicator provides information about seasonal variations of
soil moisture.

3.1.2. Hydrological signatures derived from the water level sensor networks
Distributed water level network consists of a dense network of

sensors located in (sometimes ephemeral) streams (Maréchal, 2011).
These sensors do not necessarily provide accurate numerical values
(“soft” pieces of information according to Hrachowitz et al., 2013), but
they can document how water in the streams is distributed spatio-
temporally in response to rainfall events. Such piece of information can
also be obtained from direct observation of ephemeral streams activa-
tion during events (Maréchal et al., 2013). Similar experiments (with
temperature sensors) were conducted in ecohydrology for documenting
the streamflow patterns of ephemeral streams (Constantz et al., 2001)
and snowmelt spatio-temporal dynamics (Lyon et al., 2008). In our
case, quantitative water levels cannot be used directly, as they are
highly dependent on local stream conditions at the location of the
sensor, which a model can never reproduce. It was also impossible to
estimate stable rating curves and convert water levels into discharges.
No volume/water balance indicators could thus be derived from the
water level data. However, we could derive two types of information:
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flow/no flow patterns and characteristic times.
(a) Flow/no flow patterns: Sarrazin (2012) estimated that a

threshold of 1 cm is representative of these patterns and distinguished
three flow categories that he calculated for fortnight periods:

• If water level remains above the threshold for the whole period, it is
a “flow” period

• If water level remains below the threshold, it is a “no flow” period

• The last case (water level varies above and below the threshold)
corresponds to an “intermittent flow” period.

In terms of hydrological processes, these stream intermittency pat-
terns can be linked with the base flow dynamics in the catchment.
Independently from rainfall events, the seasonal patterns, with drying
out of streams in summer and incrementally continuous flow in autumn
are good indicators of how this base flow is generated and transferred
through the catchment.

(b) Characteristic times. Characteristic times used in this study are
reaction and response to rainfall events. Reaction time is the time be-
tween the beginning of rain and the beginning of significant increase in
water level. Response time is defined in this paper as the time between
the beginning of the rain and the peak flow. Hdeb and Hmax are re-
spectively water depth at the reaction and response times (see Fig. 4).

These characteristic times can document fast flow generation pro-
cesses (surface runoff, quick subsurface flow), especially for the up-
stream sensors for which the reach routing process can be neglected and
appears in bold in Table 1.

A selection of 32 rainfall events made by Sarrazin (2012) was used
for this purpose. It was found that below a cumulative rainfall of 10mm

and/or a rainfall intensity of 2mm hr−1, no significant water level
response was recorded in the downstream stations, which were the
most reactive. In addition, for being able to jointly analyse hydrological
response at the various locations, it was necessary to spatially select
homogeneous rainfalls, based on available rain gauges. Only events
with rainfall accumulation differences and timing lower than 30% were
kept. This led to the 32 events sample used subsequently. For these

Table 2
Input Parameters for the PUMMA Modules.

Module Name Parameter Type Parameter Description (unit) Source Parameter range

HEDGE Soil Drainable porosity (−) Field, Rawls and Brakensiek, 1985) 0.16–0.28
Retention porosity (−) Idem 0.08–0.25
Soil depth (m) Estimated 1

Vegetation Crop coefficient, depending on land use (−) Viaud et al. (2005), Jankowfsky
(2011)

0.35–2.0

RIVER1D Network Reach Manning roughness parameter (−) Field observation, Chow (1973) 0.013–0.08
Slope (−) Derived from a 2m DTM 0.001–0.71
River width (m) Field survey 0.15–3.4

WTI Model Unit Lateral hydraulic conductivities (m s−1) Average of adjacent model units 4.3e-7–1.e-5
WTRI Model Unit Lateral hydraulic conductivities (m s−1) Permeability of adjacent model unit 9.0e-7–1.e-5
URBS Trees Min. level of interception reservoir (m) Rodriguez et al. (2008) 0.0003–0.001

Scaling parameter for intercepted water draining to the surface reservoir (−) Rodriguez et al. (2008) 0.0067
Root depth (m) Estimated 1.1

Surface Maximal capacity of street surface reservoirs (m) Jankowfski et al. (2014) 0.008
Maximal capacity of built surface reservoirs (m) Jankowfski et al. (2014) 0.002
Maximal capacity of natural surface reservoirs (m) Jankowfski et al. (2014) 0.015
Saturated hydraulic conductivity of street (m s−1) 10* Rodriguez et al. (2008) 7.5e-7
Saturated hydraulic conductivity of built (m s−1) Rodriguez et al. (2008)

Soil Natural saturated hydraulic conductivity (m s−1) 100* Rodriguez et al. (2008) 4.3e-5–1.e-4
Scaling parameter of the hydraulic conductivity (−) Rodriguez et al. (2008) 0.2
Representative position of the vadose zone (m) Rodriguez et al. (2008) 0.5
Water content at natural saturation (m3 m−3) Field, Cosby et al. (1984) 0.4–0.43
Retention curve exponent (−) Field, Cosby et al. (1984) 4.6–6.4
Suction head at air entry (m) Field, Cosby et al. (1984) 0.11–0.22

Sewer Depth of drainage pipes (m) Estimated 1
Groundwater drainage coefficient (−) Jankowfski et al. (2014) 20
Groundwater drainage exponent (−) Jankowfski et al. (2014) 2

Link coefficient Percentage of water from saturated zone draining into the rain water network
(−)

Jankowfski et al. (2014) 1

Percentage of surface runoff from natural areas leading to overland flow (−) Jankowfski et al. (2014) 1
Percentage of surface runoff from streets directly connected to the drainage
network (−)

Jankowfski et al. (2014) 0.5 (1 for roads)

Percentage of surface runoff from roofs directly connected to the drainage
network (−)

Jankowfski et al. (2014) 0.6

OLAF Land Manning roughness parameter (−) Depending on land use (Chow, 1973) 0.035–0.24
SISTBA Storage basin Maximal level of reservoir (m) From size 1–2

Retention parameter (−) No discharge at the bottom –

Fig. 4. Conceptual scheme of a flood hydrograph showing the reaction and
response times.
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events observed between 2007 and 2010, cumulative precipitation
volumes range between 4.75 and 73.75mm and their durations range
between 0.2 and 11.5 h.

Sarrazin (2012) also tested several hypotheses in terms of control of
the hydrological response by evaluating correlations between Hmax and
Hmax-Hdeb and various rainfall and antecedent soil moisture character-
istics on the other side. Rainfall events were characterized using the
total rainfall amount, event duration, average intensity, and maximum
intensity. Antecedent soil moisture was characterized using an ante-
cedent rainfall index and the cumulative rainfall amount in the last 5,
10 or 30 days. The correlation between water level values and these
rainfall and soil moisture characteristics was computed using the
Spearman rank correlations to identify possible cofluctuations.

3.2. Evaluation of the model’s components

We followed a stepwise approach by using standard criteria such as
water balance assessment and comparison of observed and simulated
discharge at the outlet. Then, we used previously defined signatures
derived from additional data to successively evaluate the soil water
balance component, base flow component and fast flow component.
This evaluation was done using both water level data and statistical
analysis of the runoff response’s main controls.

3.2.1. Water balance assessment
On an annual scale, model outputs were analysed in terms of water

balance and contribution from various components. For each year in
the simulation period (2007–2010), rainfall, runoff, actual evapo-
transpiration (AET) and change in soil storage (ΔS) were computed in
order to assess interaction or correlation between those elements.
System behaviour under dry or wet conditions was analysed through
computation of water balance components – which are: contributions
from surface runoff or sub-surface flow, and contributions from natural
or artificialized areas. Consistency of these contributions was discussed
in light of previous findings or observations.

3.2.2. Comparing outlet discharge data to simulation results
The model was evaluated based on the discharge calculated at the

Mercier outlet compared to discharge data observed at that location.
Two types of comparison were performed: (1) long-term continuous-
based comparison; and (2) short-term event-based comparison.

For (1), the Nash-Sutcliffe efficiency (NSE) and the bias (PBIAS)
were calculated according to Eqs. (A1) and (A2) in Appendix. Criteria
were calculated for each year from 2007 to 2010 as well as over the
entire simulation period (January 2007 to December 2010) at hourly
and daily timesteps. NSE was calculated both for discharge and square
root of discharge, which contrary to NSE on discharge gives less weight
to high values.

For the event-based analysis (2), simulations were evaluated using
differences in peak value, and peak time (Eqs. (A3) and (A4) in ap-
pendix), NSE and volume errors to analyze the capacity to simulate
runoff events. For this comparison we also added the Pearson correla-
tion coefficient R2 and weighted correlation coefficient ωR2 defined by
Krause et al. (2006) (see Eqs. (A5) and (A5)). These criteria were cal-
culated at a 6-min timestep, for the selection of 32 events. Eight of these
events were not observed at the outlet (gaps in the data) and 4 had
spurious observed data, resulting in 20 events retained for the statistical
analysis.

3.2.3. Evaluation of the soil water balance component using soil moisture
data

Soil water storage (also expressed as soil moisture) is the main state
variable of the hydrological system. It is influenced by rainfall, eva-
potranspiration and soil infiltration and drainage properties. In
PUMMA, the soil infiltration component is the core component of the
model. Comparison with soil moisture data focuses directly on this

component.
The comparison between observation and model was conducted

using the Pearson and Kendall τ correlation coefficients between ob-
served and simulated normalized soil moisture defined by Eq. (1) in
order to assess the ability of the model to reproduce the seasonal dy-
namics of soil filling and emptying. Both absolute values of the nor-
malized values and increments from one day to the next were com-
pared.

In terms of model parameters, the soil-filling process is controlled
mainly by the rainfall and the modelling-unit’s soil depth and porosity
(total soil water storage capacity). Soil emptying is driven by evapo-
transpiration, which is potential evapotranspiration modulated by the
vegetation-related crop coefficient, soil wetness, and the lateral con-
ductivity of WTI interfaces (groundwater lateral flow). Since in HEDGE
only saturation excess runoff is represented, no additional parameter is
involved for surface runoff. When considering only soil moisture in-
crements (i.e. relative variations), soil drainage capacity and lateral
conductivity are the main governing parameters.

3.2.4. Evaluation of the base flow component using water level data
The ability of the model to reproduce stream intermittency was

tested using the same classification as observed data, for the continuous
year 2009, which was divided in 24 (approximate) fortnight periods
(see Section 3.1.2). That year was selected because a maximum of
sensors were operating then. In addition, a few technical sensors issues
were resolved so that the 1 cm threshold could be considered as reliable
(Sarrazin, 2012). Because modelled stream reaches are quite simplified
as compared to terrain reality (trapeze cross-sections, uniform width
throughout the reach), the same 1 cm threshold was deemed irrelevant
for the simulated water levels. Three different thresholds were tested:
0.5 cm, 0.7 cm and 1 cm. Assuming the model’s actual evapotranspira-
tion calculation performs well, model parameters corresponding to base
flow generation in PUMMA are: soil depth in HEDGE (it influences the
groundwater depth in each modelling unit), the lateral conductivity in
WTI interfaces, and topology (spatial organisation of the modelling
units, which control water pathways). For the two sensors corre-
sponding to drainage areas with significant residential zone, the para-
meter controlling groundwater drainage in the URBS module by sewer
pipes is also important.

3.2.5. Evaluation of fast flow components using water level data
In the PUMMA model, fast flow corresponds to surface runoff. On

forest or agricultural areas, it is generated by the HEDGE module. In
HEDGE, surface runoff is produced when the whole soil profile is filled
up. This surface runoff is routed between modelling units by the OLAF
module. The corresponding parameters are soil depth and porosity, and
topology of the OLAF module. Whereas for residential areas and roads,
URBS module is prefered. The main drivers for controlling surface
runoff are the interception reservoir, the surface hydraulic conductivity
and link coefficients (corresponding to the fraction of surface runoff –
especially on impervious road and built surfaces – directly connected to
the drainage network). As for the surface, runoff collected from road
and built surfaces is directly connected to the stream network. No
specific routing parameters are to be taken into account if the length of
the stream reach is small enough.

The reaction and response times of the basin at different stations of
Mercier were calculated. A comparison is done between the model
outputs and the observed values for the 32 events using the Pearson
correlation coefficient. Stations @2, @5, @7 to @11 and @16 are lo-
cated in small head watersheds and the length of the stream reach in the
upstream catchment is< 1000m (Table 1). For these stations, we
consider that only surface runoff processes are involved in the model’s
response. For the other stations, interpretation is more difficult as the
stream routing component of the model cannot be neglected. Therefore,
the comparison highlights these upstream stations, for which the
dominant land uses are respectively forest (stations @8, @9, @10),
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forest and agriculture (stations @2, @5, @7) and residential-agri-
culture (stations @11 and @16).

In addition, the same correlations as defined in 3.1.2 between water
level values Hmax or Hmax-Hdeb, and rainfall and antecedent soil moisture
characteristics were also calculated using the model outputs to verify
whether the model was able to reproduce the observed correlations.
These correlations are interesting as Sarrazin (2012) showed. For some
stations, amplitude of the response Hmax or Hmax-Hdeb were more cor-
related to antecedent rainfall and rainfall amounts. This means that the
hydrological response is more sensitive to catchment wetness. Other
stations, on the other hand, were more related to rainfall intensity. Thus
meaning that the hydrological response is more sensitive to infiltration
capacity and routing towards the outlet.

4. Results

4.1. Water balance assessment

Table 3 shows components of the annual water balance for the four
years and Table 4, discharge components. Table 3 shows that simulated
runoff is generally lower when rainfall is lower (2009), but 2010 is an
exception: the computed runoff is low and underestimated as compared
to observation. Note also the significant simulated change in water
storage from one year to the next. The catchment stores water during
wet years, but releases it during dry years such as 2009 where decrease
of soil water storage is used to fulfil AET. The different behaviour of
year 2010 may be explained by a dry winter when AET is low and more
rainfall in summer when vegetation is active.

In terms of runoff components, 2010 is also different from other
years, with more sub-surface flow than surface runoff and a larger
contribution of URBS (Table 4). This is mainly related to infiltration in
sewer networks, which is proportionally higher than other years. Re-
sults from Table 4 show that contribution of direct runoff from the
natural part of URBS is low (1%), but contribution from HEDGE is large
(16–33% of rainfall). Maps of average ponding (see Fig. 10 in Sanzana
et al. 2018) show that ponding is higher in downstream catchment area
with agricultural land use than it is in the forested area in upstream
catchment. This result is consistent with runoff observations from
Dehotin et al. (2015) and with saturated hydraulic conductivity

estimations provided by Gonzalez-Sosa et al. (2010) showing higher
values in forest than in cultivated areas. But this result might also be
due to the unique soil depth taken in the model set up, which is
probably overestimated in the upstream catchment and underestimated
downstream.

4.2. Comparison between observed and simulated discharge at the outlet

4.2.1. Continuous long-term comparison
Table 5 shows statistical criteria for each year and the whole period.

Table 5 shows contrasted results from one year to the next in terms of
NSE with a value of 0.01 for the whole period, hourly values, and 0.15
for daily values. NSE is negative for 2007 and 2009, and positive for
2008 and 2010. The year 2008 is particularly well simulated but in-
cludes the highest discharge event ever recorded in the catchment
(November 1–3), event which is well simulated by the model (see
Fig. 5e), with a large positive impact on the NSE computed for year
2008. NSE on the square root of discharge is much larger than NSE on
discharge, with positive values, except on daily values for 2010. This
means that the model captures fairly well the general hydrological re-
gime and the base flow, which has low values in summer and higher
values in winter. PBIAS is satisfactory with values of less than 10% in
absolute values, except for year 2010 where model runoff is under-
estimated by 43%. Note however that winter 2009–2010 was affected
by snowfalls and frost that perturbed rainfall measurement that may
have been underestimated during this period. In addition, snow pro-
cesses are not included in the model, which may explain model un-
derestimation during the 2009–2010 winter.

According to Moriasi et al. (2007) simulation results are satisfactory
if NSE > 50% and PBIAS < 25%. Based on these thresholds, the
model can be deemed satisfactory only for the 2008-period’s daily
timesteps. Model performance is therefore quite poor according to
statistical criteria. Additionally, the model is uncalibrated and captures
variations in seasonal discharge quite well. It is however generally too
reactive to small and moderate events rainfall with a very noisy simu-
lated discharge.

4.2.2. Short-term event-based comparison
Table 6 shows performance criteria statistics at the 6-min timestep

for the 20 events mentionned in Section 3.2.2. Fig. 5 illustrates model
results for six representative events. Results show that the model gen-
erally captures event dynamics well with relatively low peak-flow-lag-
error values. This is quite remarkable as no roughness coefficients ca-
libration (in the flow routing module) was done to better fit peak times.

Table 3
Catchment averaged components of the simulated water balance for years 2007–2010. The values are calculated for the Mercier catchment. AET is actual evapo-
transpiration. Percentage is the proportion of rainfall for each component.

Year Rainfall (mm) Runoff (mm) AET (mm) ΔS (mm) Observed runoff (mm)

2007 892 236 (26%) 631 (71%) +25 (2.8%) 201
2008 882 259 (29%) 550 (62%) +73 (+8.3%) 212
2009 607 141 (23%) 626 (103%) −160 (−26%) 125
2010 885 133 (15%) 642 (72%) +110 (+12%) 201

Table 4
Components of the river+ lakes discharge (%) as computed by the model for
years 2007–2010. The percentages are calculated with reference to the total
discharge volume.

Components of the river discharge 2007 2008 2009 2010

Direct surface runoff from URBS elements 21 21 23 22
Built 3 3 3 6
Road 17 17 19 15
Natural 1 1 1 1
Direct surface overland flow from HEDGE 33 33 33 16
Sub-surface flow from HEDGE 18 22 22 21
Sub-surface flow from URBS 27 24 21 42
Total surface runoff 55 54 56 38
Total sub-surface flow 45 46 44 62
Total Runoff from HEDGE (natural areas) 52 55 55 37
Total Runoff from URBS (artificialized areas) 48 45 45 63

Table 5
Indicators for the model evaluation of outlet discharge for continuous long-term
evaluation.

Hourly time step Daily time step

Period NSE_Q NSE Q_ PBIAS (%) NSE_Q NSE Q_
2007 −0.77 0.20 1.9 −0.58 0.24
2008 0.41 0.39 9.3 0.53 0.44
2009 −0.33 0.45 1.3 0.01 0.47
2010 0.10 0.02 −43.0 0.08 −0.05
2007–2010 0.01 0.27 −8.0 0.15 0.29
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Performance is not so good in terms of PBIAS, as the model generally
overestimates the volume (median of about 63% for PBIAS). This
consistently leads to very poor values of NSE (negative median). On the
other hand, R2 and ωR2 show much higher values, thus confirming
model’s ability to reproduce the dynamics. Volume overestimation is
greater under dry conditions (Table 6), consistently leading to better

model performance in wet conditions. The shape of the simulated hy-
drographs shows that the model is generally too reactive, with a much
peakier behavior than through observation. Such model over-reaction
leads to general overestimation of peak discharge.

Fig. 5. Observed and calculated outlet hydrographs for 6 representative rainfall events. Note that the scale for discharge and rainfall is different from one figure to
the other. Rainfall intensity is provided with the original variable time step, as used as input of the model and discharge values are 6-min time step average values.

Table 6
Statistics of the performance indicators for the model evaluation of simulated discharge using 20 events. Statistics are provided for the whole sample and for events
occurring in dry and wet conditions using data with 6 time steps.

All events (20 events) Dry conditions (8 events) Wet conditions (12 events)

Median Min Max Median Min Max Median Min Max

NSE_Q_6min −3.5 −47.8 0.7 −6.5 −47.8 0.7 −2.4 −17.5 0.5
R2_6min 0.6 0.0 0.9 0.4 0.0 0.7 0.7 0.4 0.9
ωR2_6min 0.4 0.0 0.7 0.2 0.0 0.7 0.4 0.2 0.7
PBIAS_6min (%) 62.7 −57.4 275.0 86.9 17.4 275.0 46.7 −57.4 120.7
Peak flow lag time (h) −0.4 −13.9 5.3 −0.4 −6.3 0.6 −0.4 −13.9 5.3
Peak flow error (−) 1.4 −0.4 8.9 2.2 0.2 8.9 0.9 −0.4 2.0

M. Fuamba et al. Journal of Hydrology 569 (2019) 753–770

761



4.3. Evaluation of soil water component

Fig. 6 shows comparison between simulated normalized daily soil-
water storage and observed normalized surface soil moisture (top), and
correlation between daily increments (bottom). Table 7 summarizes
coefficients of determination of the Pearson regression and the Kendall
τ for rank correlation between both variables for all the measurement
points.

Results show that the model captures seasonal variations of soil-
water storage well, and more precisely when soil-water storage is per-
manently high. Results are also very good for increments. It shows that
the model reproduces soil-water storage dynamics quite well. This is
less true for station #7, where surface soil moisture does not show an
increase in autumn; increase however seen with simulated soil water
storage. Discrepancy may be due to particular features of the soil
moisture sensor location. For this station, the τ Kendall for the increments
is nevertheless correct. Note also that the τ Kendall is generally higher
than the coefficient of determination. It means that both observed and
modelled variables have similar variations, but that this relation is not
necessarily linear, which is expected for variables that are different.

In terms of modelled processes and parameters, this means that at
daily timestep, reconstitution of local rainfall using Thiessen polygons
on the 2 rain gauges is relevant. The representation of

evapotranspiration processes and emptying of the soil profile through
lateral subsurface flow seem to be correct as well.

4.4. Evaluation of base flow component using water level data

The results are presented in Fig. 7 for each station and each period.
Summary statistics are presented in Table 8. Observed intermittency
patterns are quite balanced, with a predominance of continuous flow
(average 46% over the year) in winter, 36% of intermittent flow and
15% only of no-flow, which occurs predominantly in summer. The
model does not succeed in reproducing these general patterns. What-
ever the threshold, intermittent flow is strongly dominant (53% for
0.5 cm threshold to 72% for 1 cm threshold). Frequency of flow (41%
for 0.5 cm and 14% for 1 cm) and no flow (6% for 0.5 cm and 14% for
1 cm) periods are both underestimated compared to observations. The
model is more successful in reproducing winter predominance of con-
tinuous flow periods, although this remains underestimated. The more
realistic picture seems to be obtained with the 0.7 cm threshold, which
best reproduces the length of the continuous flow period from January
to May, and presents a few continuous flow spots at the end of the year.
The 1 cm threshold generates an overall dry picture, whereas the 0.5 cm
threshold produces unrealistically long continuous flow periods. On the
other hand, whatever the threshold – occurrence of dry periods during
summer is missed by the model. But this is less problematic since the
distinction between intermittent flow and no flow is quite subtle, and
probably also very uncertain and dependent on local conditions at the
sensor’s location. Looking more closely, we notice that discrepancies
come mainly from stations @2 and @7 to @10 which are all upstream
stations dominated by forests. On these stations, the simulated beha-
viour is too dry, with absence of baseflow during the winter months –
whatever the threshold. In the model, this can be mainly due to soil
depth and lateral flow conductivity, or topology. Comparison with soil
moisture data shows that lateral flow conductivity seemed adequate.
But this was tested only for agriculture land use where soil moisture
sensors were located, and not forests. In the wooded areas, it is possible
that we underestimated soil depth and lateral conductivity. But the
first-order factor could be topology. Indeed, PUMMA is based on irre-
gular modelling units, and in the wooded upstream areas – units which
are very large (see Fig. 3). This can create erroneous flow paths and
inaccurate flow transfers between units, since the model takes into
account only the mean altitude of each unit. On the other hand, the
model behaves much better for stations located in agricultural or re-
sidential areas, and areas with small upstream and smaller modelling
units (stations @11, @5, @16). The stations where the model over-
estimates baseflow are @14 @6 and @13 (only @14 for 0.7 cm
threshold) which are located downstream each other in this order.

4.5. Evaluation of fast flow component using water level data

Fig. 8 shows comparison between the model output and observed
values of reaction and response time, as well as of Hmax-Hdeb on the
Mercier catchment. Points are colored according to the dominant land
use: forest, forest-agriculture and residential-agriculture. Table 9 pre-
sents the values of the regression equations Ymod= b+ a*Xobs and
square coefficient R2 for different partitions of the data set according to
land use, upstream/downstream location (see Table 1), event duration
(threshold of 4 h), rainfall depth (threshold of 20mm), maximum in-
tensity (threshold of 10mm hr−1) and antecedent rainfall over the last
10 days (threshold of 20mm).

A low overall correlation between the model and observations can
be noticed for reaction time. The slope of the regression is 0.05 over the
whole sample; far enough from the target value of 1 to conclude that
the model generally reacts too quickly and underestimates reaction
time. Table 9 shows that reaction is better simulated for long duration
events (R2= 0.33 for D > 4 h) and low intensities (R2= 0.15 for
Imax < 10mm/h) as reaction can be determined more accurately under

Fig. 6. (Top) Time series of normalized simulated soil water storage (black) and
normalized observed surface soil moisture (red) at station #6. (Bottom)
Scatterplot of normalized daily increments of modelled soil water storage
versus normalized daily increments of surface soil moisture at station #6.

Table 7
Coefficients of linear regressions between normalized soil water storage and
normalized soil moisture, and Kendall τ value for rank correlation τ Kendall.
Results are provided for the absolute values (left) and daily increments (right).

Snorm= f(θnorm) ΔSnorm= f(θnorm)

Soil moisture R2 τ Kendall R2 τ Kendall

#1 0.36 0.51 0.26 0.41
#2 0.45 0.63 0.56 0.44
#3 0.25 0.33 0.17 0.34
#4 0.49 0.53 0.57 0.48
#5 0.57 0.65 0.28 0.61
#6 0.79 0.71 0.56 0.53
#7 0.04 0.01 0.20 0.46
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these conditions. Indeed, observation shows that values are quite un-
certain due to sensor accuracy and fluctuations, especially for low va-
lues (about a few cm), so that change in just a few centimetres must be
detected to determine that there is a reaction. Model results are more
stable and it is easier to identify the onset of the hydrological reaction.
This may partly explain reaction times underestimation by the model.
In terms of processes, reaction can provide information on the ability of
the model to generate more or less quick surface runoff by infiltration
excess or saturation excess. Reaction is therefore very sensitive to flow
paths and model topology for surface runoff. The latter is supposed to
be less accurate in the wooded part due to larger modelling units. This
may explain the absence of significant correlation for forested catch-
ments as compared to agricultural ones (see Table 9). For downstream
stations, correlation in terms of response is not significant and is very
low (0.03) for upstream stations (Table 9). This may be related to more
complex transfer processes in downstream stations, not properly

simulated by the model.
The model better simulates response time than reaction time with

an overall R2= 0.39. The model showed a tendency to satisfactorily
simulate reaction time for forested and forested-agricultural land use,
with a general model’s underestimation, as shown by values of the re-
gression slope of less than 1. None of the factors is well simulated for
the residential-agriculture land use, but the sample size is probably too
small to be representative. Response is better simulated for the up-
stream stations, long duration events, low rainfall amount, low max-
imum intensity events, and high antecedent rainfall events. Response is
the sum of reaction and of the rising limb on the hydrograph. It reflects
the velocity with which runoff generated in the sub-catchment is
transferred to the outlet. The modelled response depends on the way
water pathways are represented into the model. Water pathways are
shorter in upstream catchments than in downstream ones, thus simu-
lation of the response is less prone to errors than downstream.

Amplitude of the response is also globally not well simulated by the
model with an overall correlation of 0.16, reaching 0.32 for forest-
agriculture catchments. High correlation is not expected as change in
water level is very dependent on local configurations at the sites of
observations, which are not represented in the model. The orders of
magnitude of simulated and observed response amplitude are very
different with slopes of the regressions – generally around 0.3. Results
are not very sensitive to the type of rainfall or antecedent soil moisture
as performance is very similar between the various classes.

Tables 10 and 11 present each station’s Spearman rank correlation

Fig. 7. Comparison of Simulated (Top and Bottom Left) and Observed (Bottom Right) stream intermittency patterns for year 2009 divided into 24 approximate
fortnight periods for water level stations @1 to @16.

Table 8
Average frequency of each flow pattern for all the stations with comparison of
observed values and simulated values for the three tested thresholds.

Frequency (%) No flow Intermittent flow Continuous flow

Observation (NA values: 3%) 15 36 46
Simulation – 1 cm 14 72 14
Simulation – 0.7 cm 9 66 24
Simulation – 0.5 cm 6 53 41
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coefficients between Hmax and Hmax-Hdeb and variables describing
rainfall events and antecedent soil moisture. Only values with a sig-
nificant correlation test (p < 0.1) are reported.

For both variables, observations show high correlation with rainfall
volume, maximum rainfall intensity or both for half of the stations.
Consistent with observation, the model simulates those relationships
between amplitude of the hydrological response, rainfall amount and

maximum intensity. But these are stronger and more systematic than
observed. In addition, correlations are not as strong with observed
Hmax-Hdeb than with Hmax but the model does not detect this difference.
This may be due to identification of Hdeb which is more difficult in
observations than in the model (see above), which could lower the
observed correlation. For station @11, which corresponds to the most
urbanized sub-catchment, the model does not at all reproduce the

Fig. 8. Comparison between observed and calculated reaction and response times and response amplitude Hmax-Hdeb. Points are coloured according to their land use.

Table 9
Coefficients of the regression Ymod= b+ a*Xobs and square coefficient R2 between modelled and observed reaction times, response times and response amplitude
Hmax-Hdeb. Results are given for various partitioning of the soil sample according to land use (F= forest, FA= forest-agriculture, RA= residential-agriculture;
upstream/downstream stations (see their identification in Table 1); event duration D, rainfall event amount R, maximum intensity Imax; antecedent rainfall over the
last 10 days (Ant10). N is the sample size. Only correlation significant at the 0.1 level are provided.

Reaction time Response time Hmax-Hdeb

b a R2 N b a R2 N b a R2 N

All points 0.13 0.05 0.1 196 1.38 0.59 0.39 196 4.28 0.3 0.16 203
F – – – 111 1.26 0.65 0.44 111 4.42 0.32 0.2 114
FA 1 0.2 0.07 62 1.33 0.56 0.43 58 2.66 0.66 0.32 62
RA – – – 27 – – – 27 – – – 27
Upstream 0.89 0.12 0.03 122 0.83 0.68 0.52 122 5.72 0.33 0.19 125
Downstream – – – 74 2.15 0.45 0.23 74 2.86 0.14 0.08 78
D < 4h – – – 114 3.41 0.38 0.2 114 4.46 0.34 0.2 120
D > 4h 0.27 0.45 0.33 82 0.83 0.29 0.29 82 3.78 0.26 0.13 83
R < 20mm 0.99 0.16 0.06 105 1.88 0.58 0.39 105 5.96 0.31 0.18 109
R > 20mm – – – 91 1.28 0.46 0.24 91 2.68 0.24 0.13 94
Imax < 10mm/h 0.56 0.31 0.15 153 1.08 0.46 0.31 153 4 0.29 0.16 157
Imax > 10mm/h – – – 43 6.78 0.21 0.13 43 5.24 0.3 0.18 46
Ant10 < 20mm 0.93 0.27 0.07 137 1.56 0.5 0.33 137 3.51 0.27 0.14 139
Ant10 > 20mm – – – 59 0.92 0.8 0.56 59 6.33 0.32 0.19 64
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Table 10
Spearman correlations between rainfall/soil moisture characteristics and Hmax for a series of rainfall events. Stations are coloured according to land use (blue: forest;
black: forest-agriculture, red: residential-agriculture). Upstream stations appear in bold.

Table 11
Spearman correlations between rainfall/soil moisture characteristics and Hmax-Hdeb for a series of rainfall events. Stations are coloured according to land use (blue:
forest; black: forest-agriculture, red: residential-agriculture). Upstream stations appear in bold.
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significantly high anti-correlation with rainfall duration and mean in-
tensity. However, it shows high correlation with rainfall amount and
antecedent rainfall. This could point out to a misrepresentation of
surface runoff by the URBS runoff, the response of which seems to be
governed by soil saturation level in the model.

5. Discussion

To introduce the discussion, we would like to underline that
PUMMA, as every hydrological model, was built on specific assump-
tions (functioning hypothesis). As mentioned in the Introduction
Section, the third specific objective of the present paper is to assess
whether these assumptions can be dismissed or strenghtened according
to the simulation results. Structural assumptions are as follows:

- PUMMA considers only one surface-free aquifer created by filling up
the soil profile from impervious bedrock (with no-flow boundary
condition at the bottom). The aquifer is consequently quite shallow,
and there is no possibility to simulate temporary water saturation
above groundwater level (perched water tables). This also prevents
the simulation of water storage in deep weathered bedrock if it is
not considered as part of the soil.

- The only way to generate surface runoff is by soil saturation.
Hortonian surface runoff is not implemented.

In terms of model parameters, other assumptions were also made for
the application to the Mercier catchment:

- Spatial discretization (model mesh) was based on land use only,
which leads to significantly larger modelling units in the upstream
zones of the catchment. PUMMA is able to perform calculations in
such a heterogeneous mesh, but one can wonder whether this does
not generate distortions in simulated water pathways.

- For simplicity we used a uniform soil depth for the whole catch-
ment.

In addition, PUMMA is uncalibrated, and increasing model perfor-
mance is not this paper’s objective. The model is run using parameter
values of either the literature or in situ measurements. Model evalua-
tion is performed on this reference simulation in order to focus on
functioning hypotheses testing. Model evaluation also helps to relate
discrepancies between model and observation in order to improve
process representation and/or parameter specification. This discussion
focuses on (1) the lessons that can be learned in terms of simulated
hydrological processes from comparison of PUMMA with distributed
data sets of soil moisture and water level; (2) on the relevance and
limits of the computed hydrological signatures.

5.1. On the use of discharge data

In this study, discharge at the catchment outlet was used for model
evaluation in a traditional manner, using statistical criteria to compare
simulation and observation. Because our interest is in evaluating the
model over the whole hydrological regime, computing several criteria
to highlight model performance (for varied ranges) seemed compulsory.
The present example shows that using the NSE criterion on discharge
alone may be misleading. In our case, NSE values are very poor mainly
due to systematic discharge overestimation by the model. Dynamics,
however, at all temporal scales are captured quite well, as shown by the
relatively good values of R2 or ωR2. In addition, NSE is very sensitive to
the occurrence of high events, as shown by a much better performance
for the year 2008 (see Fig. 5e), during which the highest flood event of
the whole study period occurred. In terms of model diagnostic, it is
difficult to conclude at this stage.

Even if the model has clearly major weaknesses, these cannot be
directly related to any specific components. Nevertheless, the overall

volume estimation is not so bad. However, values of the dynamics in-
dicators show that the parameters controlling water transfer (lateral
hydraulic conductivity and reach routing parameters) seem reasonable.
Future improvements in the use of statistical performance criteria
should probably focus on uncertainty assessment, as these criteria are
very sensitive to data accuracy. In the case of the Mercier catchment,
the stream channel at gauging station is wide and water level is less
than 3 cm at low flow, leading to low discharge accuracy. This point
was improved recently by adding a V Notch weir to increase sensitivity
at low flow.

Uncertainty on the stage-discharge relationship was also assessed
using the BaRatin Bayesian method (Le Coz et al., 2014), and work is in
progress to propagate this uncertainty and the stage measurement un-
certainty to the hydrological records (Horner et al., 2018). This will
allow a more robust appraisal of model performance.

5.2. On the accuracy and information brought by soil water content data

Available soil moisture sensors were only monitoring the surface
soil-water content at nine locations, all located in agricultural land use.
The data are point measurements, whereas model outputs are provided
at the scale of a whole modelling unit. There was indeed a scale mis-
match between observed and simulated values. In addition, in the
model, we were mainly interested in assessing soil-water storage si-
mulation over the whole soil column depth, rather than only the soil
moisture behaviour in top soil. It is interesting to see that, once nor-
malised, surface soil moisture provides interesting information about
seasonal soil water storage, and in particular about the time when soil
water storage is sufficiently replenished to get permanent wet condi-
tions. In terms of model diagnostic, the results give us good confidence
in the formulations of input and output flows of the soil water storage in
the model. However, the drawback of normalization is that it does not
provide any information on the absolute value of soil water storage and
this is not very helpful to assess the relevance of the homogeneous 1m
soil depth hypothesis. In order to better constrain soil depth specifica-
tion, studies should be completed with approaches such as the one
proposed by Vannier et al. (2014) in assessing catchment water storage.

5.3. On the accuracy and information brought by the water level network at
continuous scale (intermittency)

In its present version, PUMMA is not successful at reproducing
stream intermittency as defined in our test. Seasonal variation is ap-
proximately reproduced if the flow/no flow threshold is reduced to
0.7 cm, which is consistent with other results (seasonality of discharge
at the outlet and soil moisture). It is difficult to interpret where dis-
crepancies originate, as water level in the stream depends on hydrology
of the upstream catchment, but also on local hydraulic conditions.
Therefore potentially all components of PUMMA could be involved.

We must also underline that this particular test deals with high
uncertainty, regarding both observations and model. The choice of a
single threshold applied for all stations is a strong assumption, and the
chosen value of 1 cm for observations is debatable given sensor accu-
racy. The existence of flow/no flow depends also on local conditions at
the location of each sensor, which were not investigated in detail for
simplicity of the application. Moreover the flow routing component of
PUMMA is a routing model with simplified geometries: although cal-
culated, the variable “water level” is not necessarily representative,
particularly for very low values, where numerical considerations can
also interfere with the results. Yet we still can derive a few elements of
diagnostic. It seems that the model does not simulate enough baseflow
in the upstream part of the catchment, and too much in the downstream
part. For the upstream stations, it indicates that either soil water storage
is not sufficient, or topology (water pathways) for groundwater flow is
not correct. For downstream stations, it is more difficult to conclude.
Model’s baseflow overestimation is not observed at the outlet, where
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statistical criteria indicate that the model is able to successfully re-
produce seasonal flow variations. These contradictory results could be
explained by compensation effects (overestimation being compensated
by underestimation of baseflow further downstream), or by erroneous
interpretation of sensor measurements due to flow conditions (there is
no overestimation of baseflow at these locations). Additional work is
thus required to draw more precise conclusions, in particular by having
a closer look at the water level series and defining more specific sig-
natures.

5.4. On the accuracy and information brought by the water level network at
the event scale

5.4.1. Characteristic times and amplitude of hydrological response
Although there is quite a high level of uncertainty in the observed

data for the determination of reaction and response times, we found
that the model seems to react rather too quickly. Since quick surface
runoff can only be produced in the model by soil saturation, this also
clearly indicates that soil water storage is too small. This is consistent
with results of the comparison of outlet hydrographs. This is also con-
sistent with results when comparing observed amplitude of the hydro-
logical response, Hmax-Hdeb, with the simulated values much larger than
observations. A uniform value of soil depth, as used in this simulation,
is probably not realistic given the geological context (gneiss). We could
have expected overestimation of soil depth in the upstream catchment
and underestimation downstream, as tested by Jankowfsky et al.
(2014), but here it seems that soil depth is underestimated everywhere,
although deeper soil can be probably found downstream. A geophysical
survey (Goutaland, 2009) showed that the bedrock depth was very ir-
regular with a large thickness (about 10m) of a weathered layer in the
talwegs. The fact that response is better simulated upstream than
downstream in the catchment (as compared to reaction time, which is
badly simulated everywhere) also indicates that misspecification of
water pathways (i.e. model topology) might not be a first-order factor,
at least for surface runoff.

Proper use of the water level sensors network also requires good
knowledge of the rainfall spatial variability as it may induce much lo-
calized responses. To overcome this problem, the 32 events selected for
the present analysis agree with some criteria about rainfall homo-
geneity on the available rain gauges. The use of Thiessen polygons
using only two rain gauges may also be responsible for discrepancies
between model and observation.

5.4.2. Correlations with rainfall characteristics and antecedent soil moisture
The main outcome of this analysis is that representation or para-

meter specification in the URBS module should be revisited in order to
better reproduce the dynamics of the hydrological response in these
areas.

5.5. Conclusions on the model diagnostic

Although not calibrated, PUMMA seems to present a few strengths,
among which: specification of precipitation (at least for seasonal ana-
lysis purpose), specification and calculation of evapotranspiration, and
water transfer specification (lateral hydraulic conductivity and river
routing).

Observed model weaknesses appear to come mainly from soil water
storage underestimation, all over the catchment. Specification of water
pathways in the upstream catchment should also be improved. The last
direction towards model improvement could be the inclusion of in-
filtration excess (Horton) runoff. However, this is probably a second
order factor as compared to soil water storage and water pathways
specifications.

Being the dominant module of PUMMA for the Mercier catchment,
as it represents both agricultural and forest land use, these conclusions
apply specifically to the HEDGE module, in particular the relevance of

the evapotranspiration representation and parameterization, and the
underestimation of soil water storage. However, as already pointed out,
the data set used in this study cannot bring more quantitative elements.
In addition, the soil moisture data were only available in cropped fields.
This makes distinctions between parameterization of agricultural land
or forested land use difficult. The relevance of the URBS model to re-
present processes at the cadastral scale was assessed elsewhere (e.g.
Rodriguez et al. 2008). In our study, only one water level gauge was
draining a large portion of urbanized area (@11) and it showed no
significant difference with other sensors. As such, it can be concluded
that no specific malfunctioning of the URBS module could be detected
according to the available data.

The results of the present study can also be compared with previous
work using the same model or modules, in particular the study by
Jankowfsky et al. (2014) on the neighbouring Chaudanne catchment.
These authors obtained similar results in terms of seasonal variations of
discharge at the outlet. They could also identify a problem of over-
estimation of the summer flood peaks that was found to be due to a non-
adequate parameterization of URBS surface components. In our case,
this problem was not detected, either because there are less urbanized
zones in the Mercier catchment than in the Chaudanne, or more likely
because we used parameter values already optimized for the Chau-
danne. To some extent, this study can confirm that periurban catch-
ments like Chaudanne or Mercier have to be parameterized differently
than more urbanized catchments such as those tested by Rodriguez
et al. (2008).

In order to improve the PUMMA model on the Mercier catchment, a
sensitivity analysis to soil depth specification (average value, distribu-
tion in space, either randomly or according to altitude – see also
Jankowfsky et al., 2014) should be performed to see if more realistic
simulations can be obtained in terms of simulated discharge volume. It
could also be interesting to use discharge recession analysis to infer
catchment water storage, as proposed for instance by Vannier et al.
(2014). This could provide an independent estimate that can be used to
constrain this variable in the model. And it would be interesting to
perform the same study using the improved mesh proposed by Sanzana
et al. (2017) to check the influence of specification of water pathways.

5.6. Interest of such additional data for model evaluation

The water level network used in this study was initially set up in
order to study how the active hydrographic network was changing both
seasonally and at event scales in an intermittent catchment (Sarrazin,
2012). The sensors were low cost sensors, conceived at Institute of Fluid
Mechanics in Toulouse. They had low accuracy and sometimes deliv-
ered quite noisy signals. However, we could derive from these data
indicators insights into interesting patterns of hydrological behaviour:
intermittency, reaction and response times, response amplitude, cor-
relations with rainfall characteristics and antecedent soil moisture.
These indicators helped us to identify the weaknesses of our model and
gave us directions towards improving it.

Yet, given the accuracy of the sensors, these indicators are either all
related to the dynamics (reaction and response time) or correspond to
qualitative information (intermittency, response amplitude). It appears
to us that the main problem in the model was volume overestimation
during events. The water level sensors network does not provide in-
formation that can be used to constrain parameters controlling runoff
volume such as soil depth. It would be useful to have some measure-
ment sites inside the catchment where discharge estimation would be
feasible with sufficient accuracy as to obtain information on discharge
and consequently on volumes. Such data could be used in a calibration
process. Calibration is not relevant with the current water level data.
Indeed observed water level depends on the very local geometric con-
figuration of the channel, whereas the model assumes a uniform rec-
tangular channel throughout the river reach. As already discussed in
5.3, simulated water level values are not directly comparable to
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observations.
In addition, such rough water level measurements are most useful

when located in headwater subcatchments, thus reducing the number of
hydrological processes potentially involved. On the one hand, down-
stream sensors may be influenced by propagation or compensation ef-
fects, which cannot be easily interpreted. On the other hand, down-
stream sensors can be used to evaluate the model’s flow routing
component, by estimating propagation between two sensors. It was not
done in this study because the flow routing component was not iden-
tified as problematic, but it could be added easily in a generic diag-
nostic protocol.

Soil moisture data also proved to be interesting and showed that the
model could reproduce seasonal dynamics quite well. In the present
case, only surface soil moisture was available. In order to get in-
formation more directly comparable with soil water storage, mon-
itoring soil moisture on the whole soil profile would be recommended.
However, this kind of measurement can only monitor the top soil and
not the altered bedrock that may play an important role in controlling
catchment water storage (Vannier et al., 2014). Therefore, an in-
tegrated estimation of catchment water storage as mentioned above
could also be a useful complement in order to better constrain the
model.

6. Conclusions and recommendations

The paper proposes a general methodology for a diagnostic eva-
luation of a complex distributed hydrological model, based on dis-
charge data at the outlet and additional distributed information such as
water level and surface soil moisture data. Due to sensor quality issues
or representativeness, the proposed hydrological signatures are only
able to characterize the dynamics of the hydrological response. They
are however useful to assess the relevance of the simulated hydrological
response and the underlying model functioning hypotheses with respect
to land use, upstream/downstream, rainfall types, preferably, when
they are located upstream the catchment. The results also show that
information about the dynamics of the response is not sufficient to
correct model discrepancies in simulating observed water volume in the
river and that distributed quantitative information about catchment soil
water storage and discharge are required to improve the simulated

response with this respect.
The proposed methodology is illustrated using the PUMMA model in

the Mercier sub-catchment (6.6 km2). Model parameters are specified
according to field data and a previous study performed in a neigh-
bouring catchment (Jankowfsky et al., 2014), without calibration. The
distributed water level and soil moisture network of sensors were useful
in the model evaluation process. They assessed the ability of the model
to account for the complexity of the hydrological response according to
various factors: land use, upstream or downstream, rainfall type events
or antecedent soil moisture. These data helped identify parameters and
processes that could be improved or for which a sensitivity analysis
would be required. But in their present form, the provided information
is only qualitative and cannot be used directly in a calibration process.
Direct estimates of catchment water storage and distributed discharge
data would be more useful if calibration was to be performed.

Further work to improve the model according to the diagnostic re-
sults will consist first of revising specifications of soil depth in the
model, and second of assessing results improvement brought by the
new model mesh proposed by Sanzana et al. (2017) in order to avoid
polygons that are either non-convex or significantly larger. The eva-
luation process presented in this paper can be repeated and further
sensitivity analyses based on various parameters can be conducted.
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Appendix:. Criteria computed for model evaluation

The following criteria were computed for model evaluation: the Nash-Sutcliffe efficiency (NSE) and the bias (PBIAS) were calculated according to
Eqs. (A1) and (A2), where Q stands for discharge,

−
Q is the mean discharge, calmeans calculated, meas denotes measured, t the time and n the number

of time steps in the evaluated period.
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For the event-based analysis, additional criteria such as difference on peak value (Eq. (A3)), peak time (Eq. (A4)), NSE and volume errors were
computed. For this comparison we also added the Pearson correlation coefficient R2 and weighted correlation coefficient ωR2 defined by Krause et al.
(2006) (see Eqs. (A5) and (A6)).
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2018.12.035. These data include Google maps of the
most important areas described in this article.
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