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S1 Questions 1. A possible explanation of the leaning of the Pisa tower is that the subsoil contains a compressible Clay layer of variable tkickness. On what side of the tower would that clay layer Stéphane Bonelli S2 27! Specific surface Pore surface (m 2 )

Negligible in granular soils but not in fine soils! Pore specific surface (m -1 ) (pore surface per unit REV volume) a V pore ! a V solids

Questions

1. A possible explanation of the leaning of the Pisa tower is that the subsoil contains a compressible Clay layer of variable tkickness. On what side of the tower would that clay layer be thickest ? 2. Another possible explanation for the leaning of the Pisa tower is that in earlier ages (before the start of the bluiding of the tower, in 1400), a heavy structure stood near that location. On what side of the tower would that building have been ?

Equations de bilan (HM linéaire) 2 phases! (solide=matrice minérale, fluide=eau) donc 2 équations de bilan de masse et 2 équations d'équilibre Specific surface 

Masses Equilibres ! n = (1 ! n)tr ! ! ! variation de porosité div " + # " g = " 0 ! contraintes du milieu diphasique n ! # f + # f tr ! ! + div(# f " q ) = 0
V solids = N ! D Grain 3 6 V solids = (1! n)V total a V solids = 6(1! n) D Grain ! A solids = N! D Grain

Total time derivatives

d s dt (•) = ! !t (•) + v s "#(•)
Derivative with respect to the solid:

d w dt (•) = ! !t (•) + v w "#(•)
Derivative with respect to the fluid:

Derivative of quantities (scalars, vectors, tensors):

Reynolds transport theorem (scalars, vectors, tensors):

d dt (•)d! ! " = # #t (•)dx ! " + (•)v $ nda #! " : control volume velocity (to be defined) v 6!

Solid total time derivatives of volume integrals

Derivative with respect to the solid:

d s dt (•)dx ! " = def d dt v=v s (•)dx ! " = # #t (•)dx ! " + (•)v s $ nda #! " = # #t (•)dx ! " + % $ (•)v s & ' ( ) dx ! " = # #t (•) + v s $%(•) + (•)% $ v s dx ! " d s dt (•)dx ! " = d s dt (•) + (•)% $ v s & ' * ( ) + dx ! "
: the derivative is taken by following the solid in its movement

v = v s 7!

Fluid total time derivatives of volume integrals

Derivative with respect to the fluid:

d w dt (•)dx ! " = def d dt v=v w (•)dx ! " = d w dt (•) + (•)# $ v w % & ' ( ) * dx ! "
: the derivative is taken by following the fluid in its movement v = v w And also

= ! !t (•) + v w "#(•) + (•)# " v w $ % & ' ( ) dx * + = ! !t (•) + v s "#(•) + (v w , v s ) "#(•) + (•)# " v s + (•)# "(v w , v s ) $ % & ' ( ) dx * + = d s dt (•) + (•)# " v s + # (•)(v w , v s ) $ % ' ( $ % & ' ( ) dx * + d w dt (•)dx * + = d s dt (•)dx * + + (•)(v w , v s ) " nda !* + Stéphane Bonelli S3 8!

Solid mass balance

Solid mass of any domain

M s (! t ,t) = (1" n)# s dx ! $ Mass balance !" , d s dt M s (" ,t) = 0 ! localization theorem ! " v s variation of total volume ! = 1 1# n d s n dt variation of porosity " # $ % $ # 1 $ s d$ s dt variation of solid volume "#% Assumption:
-Homogeneous and rigid solids (relevant for many -but not all -porous media, irrelevant for rocks, for example) !" , 

d s dt M s (" ,t) = 0 Assumption: -No mass exchange between phases ! " v s variation of total volume ! = 1 1# n d s n dt variation of porosity " # $ % $ ! tr ! = ln 1" n 0 1" n # $ % & ' (

Fluid mass balance

Fluid mass of any domain: 

M w (! t ,t) = n" w dx ! # Mass balance !" , d w dt M w (" t ,t) = 0 Assumption: -No mass exchange between phases d dt n! w dx " # variation of fluid mass in " ! " # $ # + ! w q $ nda %" # mass flux of fluid crossing %" ! " # $ # = 0 q = n(v w ! v s )
! " # $ # + " # v s total volume strain rate !" # $ # + " #q fluid diffusion !"$ = 0
Bulk equation to be used in the following (VPP, energy balance, …)

!" ,

d w dt M w (" t ,t) = 0 ! localization theorem ! 11!
Total time derivatives of mass integrals the derivative of mass integrals with respect to the solid reads

d s dt (1! n)" s (•)dx # $ = (1! n)" s d s dt (•)dx # $
Accounting for the solid mass balance equations, the derivative of mass integrals with respect to the fluid reads

d w dt n! w (•)dx " # = n! w d w dt (•)dx " #
Accounting for the fluid mass balance equations,

The total time derivative of mass integrals of mixture quantities are therefore

D dt n! w (•)dx " # = (1$ n)! s d s dt (•)dx " # + n! w d w dt (•)dx " # !(•) = (1" n)! s (•) + n! w (•) where Stéphane Bonelli S3 12! Kinetic energy K (! , v s , v w ) = 1 2 (1" n)# s v s ( ) 2 solid kinetic energy ! " ## $ ## + 1 2 n# w v w ( ) 2 fluid kinetic energy ! " # # $ ## dx ! $

Mixture kinetic energy

Total time derivative of the mixture kinetic energy

D dt K (! , v s , v w ) = (1" n)# s v s $ % s dx ! & + n# w v w $ % w dx ! & ! s = d s dt v s : solid acceleration ! w = d w dt v w : fluid acceleration 13!

Virtual inertia

In terms of

A(! , vs , vw ) = (1" n)# s vs $ % s Solids ! " # # $ ## dx ! & + n# w vw $ % w Fluid ! " # $ # dx ! & ( vs , vw ) In terms of A(! , vs , q) = (1" n)# s $ % s + n# w % w & ' ( ) Barycentric acceleration ! " ### # $ #### $ vs dx ! * Mixture ! " ##### $ ##### + # w % w $ qdx ! * Pore fluid ! " # $ #
( vs , q)

However, the current modelling often use a simplified description (more for numerical reasons that for physical evidences)

! w " ! s Therefore A(! , vs , q) = "# s $ vs dx ! % Mixture ! " # $ # + " w # s $ qdx ! % Pore fluid ! " # $ # 14!
Internal virtual power

P int (! , vs , vw ) = " r s # vs + r w # vw order zero ! " # # $ ## + T s : $v s + T w : $v w order one ! " ## # $ ### dx ! % Assumption:
-First gradient theory Assumption:

-Material indifference P int (! t ,t) = 0 for any rigid translation ! r s + r w = 0 P int (! t ,t) = 0 for any rigid rotation

! T s + T w ( ) skew = 0 P int (! , vs , vw ) = " r w #( vw " vs ) order zero ! " # $ # + $ : D( vs ) + T w : %( vw " vs ) order one ! " #### $ #### dx ! &
Given: the set of virtual velocities

H (! ) = ( vs , vw ) k.a { } !" , !( vs , vw ) # H (" ) D( vs ) = !v s ( ) sym ! = T s + T w

Virtual strain rate

Total stress

Stéphane Bonelli S3 15!

Internal virtual power

Assumption:

-Inviscid fluid (at the macro-scale)

T w = !npI P int (! , vs , q) = " f w #q + $ : D( vs ) " p% # qdx ! & !" , !( vs , q) # H (" ) f w
Vector of solid/fluid interaction New choice for the set of virtual velocities H (! ) = ( vs , q) k.a

{ }

Significance can best be assessed by inserting the fluid mass balance equation

P int (! , vs , q) = " f w #q solid/fluid interaction term ! + ($ + pI) effective stress " # $ % $ : D( vs ) solid matrix term " # $$ % $$ + np % w d w % w dt pore-fluid term " # $ % $ dx ! 16!
External loading virtual power

P ext (! , vs , vw ) = (1" n)# s g $ vs solids ! " # # $ ## + n# w g $ vw fluid ! " # $ # dx ! % bulk loading ! " #### # $ ##### + t s $ vs solids % + t w $ vw fluid ! " $ da &! % boundary loading ! " ## # $ ###

With the new choice of virtual velocities

Noticing that, for an inviscid fluid in a porous medium ( vs , q) ( vs , vw )

In term of P ext (! , vs , q) = "g # vs mixture !"# + " w g # q pore-fluid !" , !( vs , q) # H (" ) P int (! , vs , q) + P ext (! , vs , q) " A(! , vs , q) = 0 

!"# dx ! $ bulk loading ! " $$ $ # $$$ + t # vs mixture % % p ext q # n pore-fluid !"# da &! $ boundary loading ! " $$ $ # $$$ ! = (1" n)! s + n! w

Movement equations

Dynamics VPP ! ! " # + $(g % & s ) = 0 in ' (movement eq.) # skew = 0 in ' # " n = t on (' (boundary condition) ) * + , + !"p + # w (g ! $ s ) = f w in % (movement

Kinetic energy theorem

!" , (v s ,q)

D dt K (! , v s ,q) = P int (! , v s ,q) + P ext (! , v s ,q) : actual velocities Stéphane Bonelli S3 19!
VPP (Virtual Power Principle) : quasi-statics !" , !( vs , q) # H (" ) P int (! , vs , q) + P ext (! , vs , q) = 0

Equilibrium equations

Quasi-static VPP ! ! " # + $g = 0 in % (equilibrium eq.)

# skew = 0 in % # " n = t on &% (boundary condition) ' ( ) * ) !"p + # w g = f w in $ (equilibrium eq.) p = p ext on %$ (boundary condition) & ' ( ) ( Mixture Pore-fluid Stéphane Bonelli S3 20!

Archimède's theorem vs. Terzaghi's principle

Solid matrix equilibrium equation

! " # $ + # % g = 0 in & (equilibrium eq.) # $ skew = 0 in & # $ " n = t + p ext n on '& (boundary condition) ( ) * + * Effective stress (Terzaghi, 1925)
Assume hydrostatic conditions:

f w = 0
Inserting the fluid equilibrium eq. into the mixture equilibrium eq. yields: 

! " = " # " w = (1# n)(" s # " w ) Buyoant mixture
n p ! w v s q f w D !"p + # w g = f w D = !v s ( ) sym n d s ! w dt + ! w " # v s + " # ! w q ( ) = 0 d s n dt = (1! n)" # v s ? ? ? Equations Dimension Unknowns Stéphane Bonelli S3 22! Balance of energy E int (! ) = "edx ! # Global internal energy: : Heat flux vector q ! !e = (1" n)! s e s solids ! " # $ # + n! w e w fluid % + !e mix coupling term % : Mixture internal energy P heat (! ) = " q # $ nda %! & Global heat power: Balance of energy D dt E int (! ) + D dt K (! ) = P heat (! ) + P ext (! ) ! kinetic energy theorem D dt E int (! ) = P heat (! ) " P int (! ) Stéphane Bonelli S3 23! Energy equation D dt E int (! ) = P heat (! ) " P int (! ) ! localization theorem (1! n)" s d s dt e s + n" w d w dt e w + # $q % = f w $q + & : D ! p# $q
Mixture energy equation Imbalance of entropy

(1! n)" s d s dt e s ! # $ : D % & ' ( ) * solids ! " ### # $ #### + n " w d w dt e w ! p " w d w " w dt % & ' ' ( ) * * pore fluid ! " ### $ ### + + ,q - heat % = f w ,q solid/
S(! ) = "sdx ! # Global entropy: !s = (1" n)! s s s solids ! " # $ # + n! w s w fluid % + !s mix coupling term % : Mixture entropy Imbalance of entropy D dt S(! ) " # 1 T q $ nda %!
& Assumption: thermal equilibrium of each phase, having therefore the same absolute temperature

T Absolute temperature Stéphane Bonelli S3 25! Dissipations ! m = def T (1" n)# s d s dt s s + n# w d w dt s w $ % & ' ( ) + * +q ,

Volume intrinsic dissipation

Volume heat dissipation

! " = def # 1 T q " $%T Assumption:
(no internal entropy coupling term) 

s mix = 0 D dt S(! ) " # 1 T q $ nda %! & ! localization theorem ! m + ! " # 0 26! Dissipations ! m = f w "q solid/fluid interaction ! + # $ : D % (1% n)& s s s d s dt T % (1% n)& s d s dt ' s ( ) * + , - solid matrix " # $$$$$$$ % $$$$$$$ +n p & w d w & w dt % & w s w d w dt T % & w d w dt ' w ( ) * * + , - - pore fluid " # $$$$$$ % $$$$$$

State variables

! m = f w "q solid/fluid interaction ! + # $ % (1% n)& s '( s ') * + , - . / : D + (1% n)& s %s s % '( s 'T 0 1 2 d s dt T 0 1 2 2 3 4 5 5 solid matrix " # $$$$$$$$$ $ % $$$$$$$$$$ +n p & w % & w '( w '& w * + , - . / d w & w dt + & w %s w % '( w 'T * + , - . / d w dt T 0 1 2 2 3 4 5 5 pore fluid " # $$$$$$$$ $ % $$$$$$$$$ Assumptions ! w " ! w (T , # w ) ! s " ! s (T ,#)
D(v s ) = !v s ( ) sym = ! d s dt u s " # $ % & ' ( ) * + , - sym = d s dt !u s ( ) sym = d s dt .
(Small strains)

Stéphane Bonelli
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State laws

! m = f w "q
By usual reasoning, the state laws are as follows

! " = (1# n)$ s %& s %' p = ! w ( ) 2 "# w "! w

Solid matrix elasticity

Fluid compressibility 

s s = ! "# s "T s w = ! "# w "T

Energy equation and dissipations

Finally, the energy equation -which is not yet the heat equation -reads

T (1! n)" s d s dt s s + n" w d w dt s w # $ % & ' ( + ) *q + = f w *q
The dissipations are

! " = def # 1 T q " $%T ! m = f w "q A sufficient -but not necessary condition to fulfill the imbalance entropy is ! m " 0 ! " # 0 30!

Balance of equations and unknowns: poro-mechanics

Solid mass balance eq.

Fluid mass balance eq.

Fluid behaviour

Mixture equilibrium eq. 

Pore

n p ! w u s q f w ! !"p + # w g = f w n d s ! w dt + ! w " # v s + " # ! w q ( ) = 0 d s n dt = (1! n)" # v s

Equations Dimension Unknowns

p = ! w ( ) 2 "# w "! w ! " = (1# n)$ s %& s %' f w !q " 0 ! = "u s ( ) sym 31!
Balance of equations and unknowns: thermics 

Equations Dimension Unknowns

T (1! n)" s d s dt s s + n" w d w dt s w # $ % & ' ( + ) *q + = f w *q s s = ! "# s "T s w = ! "# w "T q ! ! 1 T q " #$T % 0 1! ( 
n u s ! d s n dt = (1! n)" # v s ! " = (1# n)$ s %& s %' ! = "u s ( ) sym Stéphane Bonelli S4 3!

Effective stress

The total stress is defined by the static equilibrium equation

! " # = 0

The effective stress is defined as follows (Terzaghi, 1925)

! " = " + pI tr ! < 0 " compression ( )
The effective stress differs than the total stress only on the isotropic part

1 3 tr ! " = 1 3 tr " + p ! " d = " d
The behaviour law of the solid matrix involves the effective stress, for example, isotropic linear elasticity in small strains

! " = 2G# + tr # $ % 2G 3 & ' ( ) * + I G = E 2(1+ !) ! = E 3(1" 2# ) (shear modulus) (bulk modulus) 4!
Balance of equations and unknowns: thermics 

Equations Dimension Unknowns

T (1! n)" s d s dt s s + n" w d w dt s w # $ % & ' ( + ) *q + = f w *q s s = ! "# s "T s w = ! "# w "T q ! ! 1 T q " #$T % 0 5!

Specific heat od solids and fluid

s s = ! "# s "T ! s " ! s (T ,#) ! T d s dt s s = c s d s dt T ! T "# s "T "$ % & ' ( ) * d s dt $ c s = !T " 2 # s
"T 2 Specific heat of the solid matrix Solid matrix

s w = ! "# w "T ! s " ! s (T , # w ) ! T d w dt s w = c w d w dt T ! T "# s "T "$ w % & ' ( ) * d w dt $ w
Specific heat of the pore fluid

c w = !T " 2 # w "T 2 Pore fluid Stéphane Bonelli S4 6!
Specific heat of the porous medium

s s = ! "# s "T ! s " ! s (T ,#) ! Solid matrix s w = ! "# w "T ! s " ! s (T , # w ) Specific heat of the mixture !c = (1" n)! s c s solids ! " # $ # + n! w c w fluid % Pore fluid T (1! n)" s d s dt s s + n" w d w dt s w # $ % & ' ( = "c d s dt T + " w c w )T *q ! Tr + r ! = (1" n)# s $! s $T $% & ' ( ) * + solid dilatation ! " # $ # d s dt % + n# w $! s $T $# w & ' ( ) * + fluid dilatation ! " # $ # d w dt # w Volume power due to dilatation 7!
Heat equation in the porous medium

!c d s dt T + " #q $
Heat diffusion in the porous medium

! " ## $ ## = f w #q Intrinsic dissipation (elastic solid matrix) ! " # $ # + Tr % Power due to dilatation !" # $ # Often neglected ! " ### $ ### & ! w c w "T #q
Heat transport by seepage (advection)

! " # $ #

! " # 0 state variables = (T , ! w ,") 

Fourier's law q ! = " # #$T % ! ($T ,state variables) ! " = 1 2 #T ( ) $% $ #T ( ) ! Symmetric
f w !"p + # w g = f w n d s ! w dt + ! w " # v s + " # ! w q ( ) = 0

Equations Dimension Unknowns

p = ! w ( ) 2 "# w "! w f w !q " 0 Stéphane Bonelli S4 9!
Water state law ! w " 2 GPa Bulk water modulus

! w = ! w ref exp p " w # $ % & ' (
The water state law can be found in many books For current applications with FEM codes, the following satet law is often used

Stéphane Bonelli S4 10!
Seepage diffusion law

f w !q " 0 q = ! !f w
" fs (f w ,state variables) Actually, the hydraulic conductivity may be written as 

! fs = 1 2 f w "# fs " f w ! fs Symmetric
! fs = 1 " w # w (T ) $ s (T ,%) ! s (m 2 ) Geometric
q = 1 ! w " w # s $ %&p + ! w g ' ( ) * 12!
Darcy's law (engineering-like form)

The hydraulic conductivity may also be written as 

! fs = 1 " w K K (m/
! ! " ! v w = 0 ! w "! v w "t + ! #! v w $ ! v w % & ' ( ) * = ! # ! + ! ! = " ! pI + # w $ w ! %! v w ( ) sym

Homogeneisation (changement d'échelle

Micro!macro)

Matrice solide rigide + Ecoulement de Darcy The porous medium viewed as a bundle of tubes Hagen-Poiseuille's law

! "q = 0 q = ! 1 " w # w $ s %&p ! l pore scale " # L REV scale " q = def ! pore ! v w avec ! = ! l L " 1 
! v w tubes = R 2 8! w " w #p L eff ! v w pore = L L eff ! v w tubes q = n ! v w pore = n L L eff ! v w tubes = nR 2 8! w " w # $p L % & ' ( ) * Assumption Darcy's law q = ! " w # w $p L ! = nR 2 8"

Hydraulic radius

Tube

Porous medium

R h = R 2 R h = n a V R = 2n a V ! = n 3 2" (a V ) 2

22!

The Kozeny-Karman relationship for granular materials

! = n 3 2" (a V ) 2
n: porosity a V : volume specific pore surface

!: tortuosity ! " 25 12 a V = (1! n) 6 D grain ! = n 3 D grain 2 150(1" n) 2

General relationship

The Kozeny-Karman relationship for granular materials

! = ! ref n n ref " # $ % & ' 3 1( n ref 1( n " # $ % & ' 23!
Geometric permeabilities for fine materials

! = n 3 d eq 2 2" (1# n) 2
General relationship (assuming pore surface!solid surface)

n: porosity a W solids : mass specific solid surface !: tortuosity

d eq = (! s a W solids ) "1 : equivalent grain size ! = ! ref n n ref " # $ % & ' 3 1( n ref 1( n " # $ % & ' 2
More accurate descriptions can be found in petrophysics, relating permeabilities and porosities to others physical quantities (like the cation exchange capacity, or the electrical conductivities)

Stéphane Bonelli S4
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In brief: Deformations ( Total equilibrium eq.)

! " # + $g = 0 In brief: Seepage equation 

(
(Darcy's law) q = 1 ! w " w # s $ %&p + ! w g ' ( ) * n d s ! w dt + ! w " # v s + " # ! w q ( ) =
( ) a = c : b ! a # $ % & { } ! / def "(a,c,b) order two tensors, a ! b # $ % & : c = a 'c 'b = c : a T ! b T # $ % & { } a m I = 1 3 I ! I " # $ % : spheric projector ! " # $ # a = 1 3 tr a ( ) I a = a m I spheric part !"# + a d deviatoric part ! " $ # $ a d = I ! I " 1 3 I # I $ % & ' deviatoric projector ! " # # $ ##
: a = a " 1 3 tr a

( ) I

Decomposition into spheric and deviatoric parts 3!

Invariants of order-two tensors

Eigenvalues of any symmetric order two tensor a

det a ! "I ( ) = 0 ! ! = a m + ! d , det a d " ! d I ( ) = 0 det a d ! " d I ( ) = 0 ! ! d ( ) 3 " 1 2 (a d : a d )! d " det(a d ) = 0 cos3! = 4cos 3 ! " 3cos!
Trigo tools:

sin 3! = 3sin! " 4sin 3 ! ! i d = i=1,2,3 2 3 a d : a d cos " + 2# 3 (1$ i) % & ' ( = i=1,2,3 2 3 a d : a d sin ) + 2# 3 (2 $ i) % & ' ( cos3! = def ! 27 det a d 2 3 2 a d : a d ( ) 3/2 sin 3! = def ! " 27 det a d 2 3 2 a d : a d ( ) 3/2 0 ! " ! # 3 -! 6 " # " ! 6 ! = " 6 # $ Stéphane Bonelli S5 4!
Principal stress invariants Principal stresses as a function of principal stress invariants

! m = 1 3 tr ! ! eq = 3 2 ! d : ! d cos3! " = 27 det " d 2" eq 3/2 sin 3! " = # 27 det " d 2" eq
! I = ! m + 2 3 ! eq cos" ! ! II = ! m + 2 3 ! eq cos(" ! # 2$ 3 ) ! III = ! m + 2 3 ! eq cos(" ! + 2# 3 ) ! I = ! m + 2 3 ! eq sin(" ! + 2# 3 ) ! II = ! m + 2 3 ! eq sin" ! ! III = ! m + 2 3 ! eq sin(" ! # 2$ 3 ) or 0 ! " ! # 3 -! 6 " # " ! 6 ! = " # $ 6 ! I > ! II > ! III 6!
Principal stress invariants as a function of principal stresses

! m = 1 3 (! I + ! II + ! III )
Mean stress:

! eq = 1 2 (! I " ! II ) 2 + (! II " ! III ) 2 + (! III " ! I ) 2 # $ % &
Von-Mises equivalent stress:

cos3! " = 9(2" III # " I # " II )(2" II # " I # " III )(2" I # " II # " III ) 2(" I 2 + " II 2 + " III 2 # " I " II # " II " III # " I " III ) 3/2
Lode's angle: 3 )

Stéphane Bonelli S5 7!

Shear type vs. Lode's angle: extension

cos! " cos(! " # 2$ 3 ) cos(! " + 2# 3 ) ! " = 0 ! d = 2 3 ! eq 1 0 0 0 -1 2 0 0 0 -1 2 " # $ $ $ % & ' ' ' ! II d = ! III d = -1 2 ! I d ! I d > 0 " # $ % $ & ! eq = 3 2 ! I d cos3' ! = 1 " # $ % $ ! = ! m + ! I d 0 0 0 ! m -1 2 ! I d 0 0 0 ! m -1 2 ! I d " # $ $ $ % & ' ' ' ! " = 0 Extension along ! I ! I ! I ! I ! II = ! III = 0 ! II ! II ! III ! III ! I > ! II = ! III Examples Stéphane Bonelli
cos(! " + 2# 3 ) ! I d = -! III d ! I d = 0 " # $ % $ & ! eq = 3 ! I d cos3' ! = 0 " # $ % $ ! = ! m + ! I d 0 0 0 ! m 0 0 0 ! m " ! I d # $ % % % % & ' ( ( ( ( 
! " = # 6 Shear orthogonal to ! 2 ! I > ! II = ! m > ! III ! " = # 6 ! d = 2 3 ! eq 3 2 0 0 0 0 0 0 0 -3 2 " # $ $ $ $ % & ' ' ' ' ! III = "! I ! I ! II = 0 ! I ! I ! III = "! I ! III = "! I ! m ! m ! m ! m ! 13 Examples Stéphane Bonelli S5 9!

Shear type vs. Lode's angle: compression

cos! " cos(! " # 2$ 3 ) cos(! " + 2# 3 ) ! I d = ! II d = -1 2 ! III d ! III d < 0 " # $ % $ & ! eq = ' 3 2 ! III d cos3( ! = ' 1 " # $ % $ ! = ! m + 1 2 ! III d 0 0 0 ! m + 1 2 ! III d 0 0 0 ! m -! III d " # $ $ $ % & ' ' ' ! " = # 3 Compression along ! III ! III ! III ! III ! I = ! II = 0 ! I ! I ! II ! II ! I > ! II = ! III ! d = 2 3 ! eq 1 2 0 0 0 1 2 0 0 0 "1 # $ % % % & ' ( ( ( 
! " = # 10!

Shear type vs. Lode's angle

! I d ! II d ! III d ! " = # 6 Shear orthogonal to ! I ! " = # 3 Compression along ! I ! " = 0 Extension along ! I ! "
The Lode's angle gives Angle between the axis of the biggest principal stress and the path stress as defined by the vector 

! " ! I ! II ! II ! III " # $ % $ & ' $ ( $ 11! Principal strain-rate invariants ! ! v = tr ! ! Volume strain rate: Equivalent strain rate Dilatancy ! Contractancy ! ! v > 0 ! ! v < 0 Shear strain rate intensity ! ! eq = 2 3 ! ! d : ! ! d ! " : ! # = " eq ! # eq + ! " m ! # v Power equivalence if ! " ! !
f ( ! " , R) # 0 ! ! p = ! "Q( # $ , R) ! R = ! ! "H ( R) ! ! " 0, ! ! f ( # $ , R) = 0 13!

Elastic models for porous and for granular materials

-usually written in incremental form -not always thermodynamics consistent -always non-linear -usually depend on the mean effective stress Elastic models for porous and for granular materials Granular materials

! ! " = " D e ( ! " ) : ! # e ! D e ( ! " ) = 2 G( ! " m ) shear modulus "#$ I # I $ 1 3 I % I & ' ( ) deviatoric projector " # % % $ %% + 3 *( ! " m ) bulk modulus "#$ 1 3 I % I spheric projector " # % $ % ! " m = 1 3 tr ! " !( " # m ) G( ! " m ) = #( ! " m ) 3(1$ 2% ) 2(1+ %)
!( " # m ) = ! e $ " # m p ref % & ' ( ) * n if " # m < 0 (for compression only) not defined if " # m > 0 (traction not allowed) + , -- . - -
where ! e : reference bulk modulus (kPa)

p ref : reference stress (kPa)

n : exponent (0 < n < 1, usual value n=0.6)

15!

Elastic models for porous and for granular materials Clays materials

!( " # m ) = 1+ e $ e (% " # m ) if " # m < 0 (for compression only) not defined if " # m > 0 (traction not allowed) & ' ( ) (
where ! e : elastic index (dimensionless)

e : initial void ratio, usually considered as constant and equal the initial void ratio in small strains e 0 16!

Questions

The void ratio is another engineering quantity widely used in porous mechanics. Void ratio is defined as follows:

The solids material is rigid. 1. Express the void ratio as a function of the porosity. 

Express the volume strain as

f ( ! " ) = " eq + M ! " m f < 0 f > 0 f = 0 ! " # m ! eq 0 f < 0 f > 0 f = 0 ! 1 d ! 2 d ! 3 d

Yield locus

Evolution rule (not associated)

! ! p = ! " M # 3 I + 3 2$ eq $ d % & ' ' ( ) * * Two material constants M = ! eq " # ! m failure M ! = ! " v p ! " eq p failure ! : ! " p = ! # $ ! m ( M % & M ) ! : ! " p > 0 # ! < 0 $ % & ' 0 ( M ) ( M M Stéphane Bonelli S5 18!
Drucker-Prager failure criterion (with cohesion)

f ( ! " ) = " eq + M ! " m # " eq coh f < 0 f = 0 ! " # m ! eq 0 Yield locus
Evolution rule (not associated)

! ! p = ! " M # 3 I + 3 2$ eq $ d % & ' ' ( ) * * Three material constants M = ! eq " # ! m failure M ! = ! " v p ! " eq p failure ! eq coh ! eq coh M ! " 1 ! " 2 ! " 3 Stéphane Bonelli S5 19!

Coulomb friction criterion (1773)

! + µ" n # 0 0 Yield locus ! µ !" n M T M N S M T < µ M N No sliding M T M N S Sliding M T > µ M N ! = M T g S ! n = M N g S µ : friction coefficient Stéphane Bonelli S5 20!
Coulomb friction criterion (1773) accounting for Archimèdes principle (-260)

! + µ " # n $ 0 0 Yield locus ! µ ! " # n M T M N S M T < µ( M N ! " W V ) No sliding M T M N S Sliding M T > µ( M N ! " W V ) ! = M T g S ! " n = ( M N # $ W V )g S Water Water Stéphane Bonelli S5 21! Mohr(1900)-Coulomb (1773) failure criterion !n, " + # $ tan # % n & 0 " = I ' n ( n ) * + , -# $ # $ = n ( n ) * + , -# $ . / 0 0 1 0 0 Yield locus ! µ = tan ! " n ! " : internal friction angle ! " # n 22!
Mohr-Coulomb failure criterion (cohesionless)

f ( ! " ) = 1 2 ( ! " I # ! " II ) + 1 2 ( ! " I + ! " II )sin ! $ f < 0 f > 0 f = 0 0 Yield locus 1 2 ! " I # ! " II ! 1 2 ( " # I ! " # II ) sin ! " f ( ! " ) # 0 ! ! " I ! " III # 1+ sin ! $ 1% sin ! $ = tan 2 & 4 + ! $ 2 ' ( ) * + , 23!

Mohr-Coulomb failure criterion (with cohesion)

Yield locus

f 1 ( ! " ) = 1 2 ! " 2 # ! " 3 + 1 2 ( ! " 2 + ! " 3 )sin ! $ # ! c cos ! $ f 2 ( ! " ) = 1 2 ! " 1 # ! " 3 + 1 2 ( ! " 1 + ! " 3 )sin ! $ # ! c cos ! $ f 3 ( ! " ) = 1 2 ! " 1 # ! " 2 + 1 2 ( ! " 1 + ! " 2 )sin ! $ # ! c cos ! $ ! " 1 ! " 2 ! " 3 ! " 10°2 0°3 0°4 0° 24! Mohr-Coulomb failure criterion Yield locus f ( ! " ) = " eq h(# " ) + M ! " m h(! " ) = 2 3# sin $ % ( 3 cos! " + sin $ % sin! " ) M = 6sin ! " 3# sin ! " ! " = 0 ! " = # 6 ! " = # 3 ! eq " # ! m $ 6sin # % 3+ sin # % ! eq " # ! m $ 3 sin # % ! eq " # ! m $ 6sin # % 3" sin # %

Extension

Pure shear Compression

Stéphane Bonelli S5

25!

Mohr-Coulomb failure criterion

! eq " # ! m $ 6sin # % 3+ sin # % ! eq " # ! m $ 3 sin # % ! eq " # ! m $ 6sin # % 3" sin # % ! " 2 ! " 1 ! " 3 Compression along ! " 1 Pure shear orthogonal to ! " 1 Pure shear orthogonal to ! " 1 Extension along ! " 1 ! eq " # ! m $ 3 sin # % 26!
Regularized mohr-Coulomb like failure criteria Yield locus: 

f ( ! " ) = " eq h(# " ) + M ! " m Matsuoka-Nakaï (1974) h(! " ) = 1+ #$ cos3! " 1% # & ' ( ) * + 1/2 ! = " eq # M $ " m ! = 9 " sin 2 # $ 9(3+ sin 2 # $ ) Lade-Duncan (1975) h(! " ) = 1+ #$ cos3! " 1% # & ' ( ) * + 1/2 ! = " eq # M $ " m ! = 4 9 Van Eekelen (1980) h(! " ) = 1+ # cos3! " 1$ # % & ' ( ) * k ! = 1" r 1+ r r = 3! sin " # 3+ sin " # $ % & ' ( ) 
1/ k k = 0.229
f ( ! " ," c ) = " eq + M ! " m ln " c # ! " m $ % & '
( )

The Cam-Clay model for isotropic media in small strains is usually described as follows

! = ! e + ! p

Strain decomposition

Isotropic non-linear elasticity Plasticity 

Q( ! " ," c ) = #f # ! " ( ! " ," c ) ! ! c = ! c 0 exp("#$ v p ) !( " # m ) = 1+ e $ e (% " # m ) G( ! " m ) = #( ! " m ) 3(1$ 2% ) 2(1+ %) ! v p = tr ! p

Elastic domain

The isotropic hardening variable is the consolidation stress.

The material has some memory of the greatest consolidation stress undergone in the course of its history. Cambridge elastoplastic models: modified Cam-Clay

f ( ! " ," c ) = " eq 2 + M ! " m ( ! " m + " c )
The modified Cam-Clay model for isotropic media in small strains is the same as the Cam-Clay model, with the following yield locus

! " # m f ( ! " ," c ) = " eq + M ! " m " c # ! " m # 1 Equivalent expression: Stéphane Bonelli S5 32!
Modified Cam-Clay accouting for the third stress invariant 

f ( ! " ," c ) = " eq h(# " ) $ % & ' 2 + M ! " m ( ! " m + " c ) Yield locus ! " 2 ! " 1 ! " 3 ! " # m ! " # m 6sin ! " 3 + sin ! " 1 6sin ! " 3 # sin ! " 1 Compression Extension Stéphane Bonelli

( )

The hydraulic head is defined as follows

H = p ! p atm " w + z ! w = " w g water level surface H p(z) = ! w ( H " z) z = 0 z Stéphane Bonelli 3!

Effective stress

The total stress is defined by the static equilibrium equation

! " # = 0

The effective stress is defined as follows (Terzaghi, 1925)

! " = " + pI tr ! < 0 " compression ( )
The effective stress differs than the total stress only on the isotropic part

1 3 tr ! " = 1 3 tr " + p ! " d = " d
The behaviour law of the solid matrix involves the effective stress, for example, isotropic linear elasticity in small strains 2) On suppose que la pression est continue à travers l'interface. Ecrire la relation entre h w et h f .

! " = 2G# + tr # $ % 2G 3 & ' ( ) * + I G = E 2(1+ !) ! = E 3(1" 2# ) (shear modulus) ( bulk 
3) On note h l'élévation de la surface libre au-dessus du niveau de la mer. Exprimer h f en fonction de h. 

  granular materials: 0.25 ! n ! 0.45 Practical situations for fine materials: 0.05 ! n ! 0.70

  n=0.3 for a sand. What is the weight of 1 m 3 of this sand in dry conditions ? 4. Fill the pores of this sand with water. What is the volume of the water than the sand could contain ? Then, what is the density of the saturated sand ? 5. A building is constructed on a clay layer of 5 m thickness, with initial porosity of 50%, on top of a stiff sand. After the construction, the clay porosity is reduced to 40%. What is the settlement of the soil ? 6. The void ratio is another engineering quantity widely used in porous mechanics. Void ratio is defined as follows: Express the void ratio as a function of the porosity. 7. Express the volume strain as a function of the porosity. 8. Express the volume strain rate as a function of the porosity.

  e " s s T : Solid matrix free energy ! w = e w " s w T : Fluid matrix free energy

  Irstea , Aix-en-Provence, France stephane.bonelli@irstea.fr

  definite positive order two tensor ! = ! state variables ( ) Thermal conductivity of the porous medium !

  definite positive order two tensor ! ! fs = ! fs state variables() Hydraulic conductivity of the porous medium This is a diffusion law q = ! fs " f w state variables = (T , ! w ,")

  permeability of the solid matrix ! s (m 2 /s) Kinematic fluid viscosity Inserting the equilibrium eq. of the pore fluid yields Darcy's law

  s) Hydraulic permeability of the porous medium g (m/s 2 ) Where the (hidden) assumptions are: 1) incompressible fluid, 2) p atm = 0 (reference pressure) t) : variable head drop (m) Q(t) : total discharge (m 3 /s) a : area of tube above soil (m 2 ) A : area of soil sample (m 2 ) !L : length of soil sample (m)

0 (T(

 0 Temperature on ! w ," w , # w ,c,b) order two tensors, a ! b # $ % & : c = b : c

  a function of the porosity.3. Express the volume strain as a function of the void ratio.4. Express the volume strain rate as a function of the porosity.5. Express the volume strain rate as a function of the void ratio.6. Express the mean effective stress as a function of the void ratio for a clay matrixand a clay elastic model.

  Hydrostatic water pressure depends upon depth only! w " 10 kN/m 3 h p = 0 p > 0 in the water

  a rigid and impervious retaining wall below a semi-infinite dry soil. Assume that the soil behaves elastically, with an homogeneous isotropic and linear elastic behaviour law relating the effectives stresses to the strain. Assume a perfect wall/soil contact with no interface displacement. Express the mean horizontal force exerted by the soil on the wall. situation, which is the « short-term » situation, just after the construction. of basements, or pavements of the access road of a tunnel.One of the function of the concrete plate is to give additional weight to the soil, in order to prevent the soil to float.Excavation of the pit under water, with dredging equipmentConstruction of the concrete floor under minimum thickness D of the concrete layer ensuring that it will not float itself (and therefore it will be able to provide additional weight to the soil) ? of floatation, the most dangerous situation will be when the structure is empty.What is the minimum thicknessd of the soil above the structure ensuring that the structure it will not float ? square cross section H 2 has a weight (above water) M per meter length. The tunnel is beeing floated to its destination. Calculate the draught d. The tunnel is now sunk into a trench that has been dredged in the sand at the bottom of the river, and then covered with sand of volumic weight g sand . Determine the minimum cover of sand h sand necessary to prevent floatation of the tunnel. Numerical values: H = 8 m, M = 50 t/mL,! sand = 20 kN/m 3 suppose l'équilibre hydrostatique. Ecrire la relation entre p w et h w . Ecrire la relation entre p f et h f .

  Application numérique: ! w : masse volumique de l'eau douce p w : pression dans l'eau douce h w : hauteur de colonne d'eau douce dans le piézo 1 ! f : masse volumique de l'eau salée p f : pression dans l'eau salée h f : hauteur de colonne d'eau salée dans le piézo 2 ! w = 1000 kg/m 3 ! f = 1025 kg/m 3

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Mixture density t Total traction vector on boundary t w = !np ext n 17! VPP (Virtual Power Principle) : dynamics