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1 SUMMARY 

This report describes different methods for modelling of pressurized water supply networks with 
consideration of pressure dependent demands (PDM: Pressure Driven Modelling). The capability of a 
hydraulic network simulation software to correctly deal with pressure dependent demands is essential 
for the development in ResiWater. In case of system failures that might be caused by pipe bursts, natural 
disasters or malevolent attacks by humans, the pressure is reduced due to decreased capacity of the 
system. In such case, the common DDM solvers (DDM: Demand Driven Modelling) deliver unrealistic 
results with negative pressures while maintaining the defined outflows at the side of the customers. 
PDM modelling fixes this problem by automatically reducing the demand when the pressure drops 
under the minimum service pressure.  
The deliverable starts with an overview of existing approaches to PDM. Problems with convergence 
are well documented in literature. Two different methods for solution are proposed in the main part. The 
first includes a step size control based on Goldstein criterion. It has been published already in a journal 
that’s why it is not presented in detail in the deliverable. The second approach contains the so-called 
Content Model formulation of the PDM problem that delivers also statements about existence and 
uniqueness of the solution. For numerical calculation, an active set method is proposed.  
The methods have been implemented in Matlab and successfully tested for several test networks with 
up to 20.000 nodes under strong PDM conditions (almost all nodes are in PDM mode). Small examples 
exist also in Excel. The approach will be also implemented in Porteau and SIR 3S as part of the reliable 
hydraulic system solver (task 4.4). Tests were made in SIR 3S for the BWB pilot networks. The 
deliverable ends with Conclusion.  
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2 INTRODUCTION 

The stable and robust calculation of WDS hydraulics and water quality under anomalous operational 
conditions as they appear under extreme events like natural disasters, (terrorist) attacks or electrical 
power black outs is a basic requirement for all model-based decisions. Existing simulation techniques 
are not prepared for these situations and often fail at calculating a solution or to converge. There is a 
strong need for improved mathematical methods that successfully deal with ill-posed systems and other 
situations where existing modelling techniques reach the limits of their theoretical basis. 
One important step towards robust and realistic modelling of extreme situations is the development of 
a robust hydraulic system solver that can deal, amongst others, with insufficient pressure conditions. 
Considering a scenario with numerous failures of system devices like pumps, control valves or pipe 
breaks the network is decomposed into different parts that might be connected to the sources only by 
pipes with insufficient diameter or not connected at all. In this case, the state of the art demand driven 
models fail to converge or to calculate reliable results. First published attempts of implementation of 
pressure dependent modelling still have problems to calculate the correct results for highly interrupted 
systems.  
In addition, extreme operational conditions have a strong impact on the hydraulic performance of 
control devices and pumping stations. It is of course state of the art at all the water utilities to be prepared  
for energy blackouts and failure of single pumps. However, for example area-wide interruption of power 
supply for a longer period or massive damage due to flooding or attacks put such a tremendous stress 
on the system that is not included in existing emergency plans. Reasons are the strong interdependencies 
and the lack of existing modelling tools that can simulate those situations. 
Work package 4 (WP 4) aims at improving existing modelling techniques to correctly reproduce real 
behaviour of those devices and study their interdependencies. The most appropriate modelling 
technique will be selected, from steady state over extended period and rigid water column model to fast 
transient (water hammer) and an adequate level of detail (time discretization, topological representation 
(Deuerlein 2008)). 
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3 LITERATURE REVIEW 

Calculating the flow in hydraulic networks has a long history starting with the work presented by Cross 
(1936). Today more than ever it is an important component in managing the distribution of potable 
water. Originally being developed for planning and sizing of water distribution networks (WDNs), the 
applications have since been extended to areas like sensor placement, leakage reduction, water security 
and online system management (SMaRT-OnlineWDN, 2017).  
 
In the application for systems with inadequate capacity or pipe failure, the classical demand-driven 
modelling (DDM) approach is stretched to its limits. For instance, for cases of lost connectivity in parts 
of the network, the zero-flow conditions are especially demanding, since the non-linear flow/tension 
problem is ill conditioned. In the demand-driven approach the outflows at demand nodes are given as 
fixed boundary conditions and a nonlinear system of equilibrium equations is solved (e.g. Cohen et al., 
1987). The major developments in variational methods and optimization by authors like Birkhoff 
(1963), Collins (1978) and Carpentier et al. (1985) have led to the definition of primal dual problems, 
an equivalent formulation of the nonlinear equations (Piller et al., 1995). Then, based on the fact, first 
voiced by Wagner et al. (1988), that an outflow at demand nodes is not a fixed, but rather a pressure 
dependent boundary condition, several approaches have been developed. Several authors introduced 
functions called Pressure-Outflow Relationship (POR) to determine the actual flow based on the 
available pressure. Early approaches as presented by Bhave (1981) use a POR in an iterative approach 
to solve a series of DDM problems while adjusting the demands to be compatible with the pressure. 
Piller et al. (2003) have extended the primal-dual framework to the PDM cases. Piller and Van Zyl 
(2007) presented a mathematical formulation of the pressure-driven model that does not rely on the 
definition of any Pressure-Outflow relationship. Instead, the authors use modified mass-balance 
constraints at consumption nodes to allow reduced demands in case the pressure is insufficient (Piller 
and Van Zyl; 2009).  
 
The ResiWater project deals with challenges that result from situations where the connectivity of the 
network is lost due to massive system failures caused by extreme events that often lead to insufficient 
pressure conditions even in the remaining system. 
 
Some limitations of DDM and PDM Modelling for large deficient networks was presented at the CCWI 
2016 conference (Braun et al. 2016). From literature, the notion of deficient networks can take several 
different definitions. These definitions may be divided into model, mathematical and physical 
deficiencies. Model deficiencies are errors in the creation, conversion or transfer of the network graph. 
A mathematical deficiency can be defined as a maximal connected network where, due to some 
boundary condition the set of feasible solutions is reduced to the empty set or the solution is not unique. 
In contrast to mathematical deficiencies, in the case of a hydraulic deficiency a unique solution exists, 
but it is physically incorrect. In the following several deficiency phenomena of special interest for the 
ResiWater project are presented and evaluated with respect to demand and pressure driven modelling: 

• Conflicting constraints: The first scenario consist of boundary conditions in conflict for certain 
parts of the network. This may occur if flow regulating devices are incorporated into the model 
and introduce additional constraints to the mathematical model. In unfortunate cases, these 
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constraints may conflict with the demand request of the consumption nodes. Simply put, the 
flow entering a region of the network is not satisfying the required demand. In demand driven 
modelling this reduces the set of feasible solutions for the Content optimization problem to 
empty set as demonstrated by Deuerlein et al. (2012). Deuerlein also suggests an algorithm to 
determine if a feasible solution exists for this scenario. Looking at the pressure dependent 
calculation of the same system, it can be shown that by loosening the demand boundary 
conditions the system becomes solvable again, but the consumers will be supplied with a 
reduced flow. 

• Ambiguous constraints: Another example for a mathematical deficiency is given if the 
boundary conditions allow for an infinite number of solutions. In their article, Gorev et al. (2016) 
describe a scenario where two flow control valves (FCV) are installed in series. In this case, the 
two FCVs create a combined head-loss, but due to the ambiguous nature of this problem an 
infinite number of solutions exist and it is impossible to determine which of the two FCVs 
contributes how much. This phenomenon is neither addressed by DDM nor by PDM 
approaches. 

• Pipe rupture: In respect to resilience, phenomena like pipe ruptures (or bursts) are of special 
interest. In this case, the massive water loss dominates the flow in the network. Recent research 
has shown that the Fixed and Varied Area Discharge (FAVAD) model for leakage outflow 
provides a good description for leakage behaviour of elastic materials Van Zyl & Cassa (2014). 
Due to the pressure-dependent nature of the phenomenon, in demand-driven modelling it is not 
possible to adequately handle the problem. In contrast, like the pressure driven demand, it is 
possible to solve these problems in the PDM framework. 

• Presence of high-lying nodes supplying a demand zone: The fourth scenario is correlated 
with the occurrence of low pressure zones in the network. This may for instance be triggered by 
a pipe burst and the subsequent pressure loss. Looking at current demand and pressure driven 
models this behaviour is not considered. In the case of zero or negative pressure, software 
packages like Porteau, SIR 3S and Epanet will give a warning notifying the user that pressure 
dropped below zero, but the hydraulic connection is still intact and disconnected network parts 
will still be supplied. A conceptually simple way to solve this problem in the PDM framework 
may be implemented by an iterative approach that analyses the pressure on every node and 
deletes all links connected to the deficient ones. A different approach has been proposed by 
Piller and Van Zyl (2009). They introduce artificial pressure valves that reduces the flow passing 
high-lying nodes to zero. 
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4 MATERIALS AND METHODS 
4.1 Problem Formulation 

The WDN network is represented by a graph with np links, nj junction nodes and nr resource nodes. 
Let 𝐀& denote the  𝑛𝑝	 × 	𝑛𝑗, full rank, incidence matrix reduced to the junction nodes; let 𝐀, denote 
the 𝑛𝑝	 × 	𝑛𝑟, full rank, incidence matrix reduced to the resource nodes. Then, by convention we chose: 
 

𝐀,,&(𝑖, 𝑗) = 1
−1, if	node	j	ends	link	i
+1, if	node	j	starts	link	i
	0, if	link	i	is	not	adjacent	to	i

			 

 
The steady-state of pressurized pipe networks is described by the following system of equations 
 

Δ𝐡(𝐪) − 𝐀&𝐡 − 𝐀,𝐡𝟎 = 𝟎GH 
−𝐀&I𝐪 − 𝐜(𝐡) = 𝟎GK 

(1) 

 
Where q is the unknown link flow rate (np,1)-vector; Δ𝐡(𝐪) = 𝐆(𝐪)𝐪 is the (np,1)-vector of the link 
head losses (G is dependent of q for non-laminar flows);  𝐡𝟎	is the known head at the resource nodes 
(nr,1)-vector; and c(.) is the POR function (e.g. Wagner). First equation is the law of conservation of 
energy, while the second equation is the law of conservation of mass. 

4.2 Minimization of system Content 

4.2.1 Mathematical model 
4.2.1.1 Context 
The PDM formulation Eq. (1) considers as unknowns the link flows and junction nodal heads. The 
pressure dependency is modelled by a function 𝐝 = 𝐜(𝐡) instead of the fixed demands 𝐝 = 𝐶𝑠𝑡 in 
DDM modelling. 
 
It is classical to interpret the junction nodal heads as Lagrange multipliers to the continuity equation for 
a fluid in incompressible regime with the Navier Stokes Equations (e.g. Piller, 1995). This property is 
lost for the PDM formulation, but as we will demonstrate later q and h are still dual variables, together 
with additional Lagrange multipliers. 
 
In this section, an equivalent form of Eq. 1, the minimization of the system Content, is formulated solely 
in the primal flow variables. 
 
4.2.1.2 Content Model for demand driven analysis. 

It was shown by different authors that in DDM analysis the calculation of the steady-state of pressurized 
pipe networks is equivalent with the minimization of the so-called system content.  
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min
𝐪∈STU

𝐶(𝐪) =V𝑊X +V𝑉Z

[\

Z]&

[^

X]&

	 

𝑠. 𝑡.		−𝐀&I𝐪 − 𝐝 = 𝟎𝒏𝒋 

(2) 

The content of pipe j is given by: 

𝑊X = ∫ 𝐺XX
de
, 𝑥X𝑑𝑥X = ∫ h𝑟Xi𝑥Xi

jk& + 𝐾Xi𝑥Xim
de
, 𝑥X𝑑𝑥X.  (3) 

Here, 𝑞X is the flow for pipe j; 𝑟X = 𝑟X(𝑥X) is the pipe resistance which depends on flow for the Darcy-
Weisbach head loss; and a the exponent of the hydraulic equation (usually for the Darcy-Weisbach or 
Hazen-Williams formulations where 𝛼 ≥ 1 ). The second term refers to the local minor loss of valves 
and fittings. The second sum is over all fixed head nodes (number r). The content in this case is defined 
by:  

𝑉Z = ∫ ℎ,,Z
rs
, 𝑑𝑥Z = −ℎ,,Z(𝐀,I𝐪)Z.  (4) 

With 𝑄Z the external in- or outflow at the fixed head node and ℎ,,Z is the known head at node i.  
 
The system content is strictly convex (which is guaranteed by the strict monotonicity of the head loss 
equation) and a norm-coercive function of q (i𝑊X(𝑞X)i ⟶ ∞	if w𝑞Xw 	→ ∞). This guarantees there is 
existence and uniqueness of the solution if the mass constraint set is non-empty. The constrained 
Content minimization problem can be reformulated as an unconstrained minimization problem by use 
of the Lagrange function: 

𝑚𝑖𝑛
𝐪∈STU

𝑚𝑎𝑥
𝛌∈STe

𝐿(𝐪, 𝛌) =V𝑊X +V𝑉Z

[\

Z]&

[^

X]&

	 +V𝜆~(−𝐀&I𝐪 − 𝐝)~

[X

~]&

 (5) 

Defining Δ𝐡 = 𝐆𝐪 as the vector of link head losses we get in matrix notation when r is constant: 

𝑚𝑖𝑛
𝐪∈STU

𝑚𝑎𝑥
𝛌∈STe

𝐿(𝐪, 𝛌) =
1

𝛼 + 1𝐪
I𝚫𝐡	 −	𝐪I𝐀,𝐡, − 𝛌I(𝐀&I𝐪 + 𝐝)	 (6a) 

Or in general case: 

𝑚𝑖𝑛
𝐪∈STU

𝑚𝑎𝑥
𝛌∈STe

𝐿(𝐪, 𝛌) = 𝐪I𝚫𝐡����	 −	𝐪I𝐀,𝐡, 	− 𝛌I(𝐀&I𝐪 + 𝐝) (6b) 

Necessary and sufficient condition for a minimum of the Content function is that the gradient its zero:  

∇𝒒𝐿 = 𝟎[^;		∇𝝀𝐿 = 𝟎[X, (7) 

which leads to the well-known Kirchhoff equations: 
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�
𝐆(𝐪) −𝐀𝟏
−𝐀&I 𝟎 � �𝐪𝛌� = �𝐀,𝐡,

𝐝
� (8) 

The system (8) is the same as Eq. (1) for DDM case, and uniqueness of the solution permits to identify 
𝛌	as being h. 

In what follows the content of pressure dependent demand nodes is introduced (as in Piller et al., 2003). 
The fixed demand 𝐝	from above is replaced by the pressure dependent outflows that are in the interval 
between 𝟎 and	𝐝. 

4.2.1.3 Content of PDM nodes 
In the history of pressure dependent models, the well-known Wagner function describes the possible 
outflow at a demand node as a POR function of the actual pressure. Above a certain pressure threshold 
the full demand 𝐝 can be taken at the respective location, whereas below that pressure the available 
demand is described by a square root function of the pressure. Below the minimum pressure no outflow 
is possible anymore. The pressure dependent behavior of the outflow is visualized by the red curve in 
Figure 2 (turned by 90°). There are two points where the function h(c) is not differentiable.  
For the PDM approach the head is expressed as a function of outflow 𝑐. In this case, in contrast to the 
non-differentiable function h(c) the following multivalued (sub-differential) mapping describing the 
pressure dependent behavior of the real physical situation is considered: 

hZ(cZ): =

⎩
⎪
⎨

⎪
⎧

∅ , cZ < 0
(−∞, hZ,�Z[] , cZ = 0

	hZ,�Z[ + kZcZ|cZ| 								,0 < cZ < dZ
[hZ,�, +∞) , cZ = dZ

∅ , cZ > dZ

 (9) 

With kZ =
�s,�k�s,�sT

�s
� , 𝑖𝑓	dZ ≠ 0; hZ,�Z[ the elevation plus the minimum pressure at node i; and hZ,� is 

the service head at node i (i.e.: the elevation plus the service pressure above which the full demand is 
satisfied). For a zero-demand node, hZ(cZ): = 0 replaces Eq. (9). 

For outflows cZ = 0 and cZ = dZ the mapping has two poles and for cZ < 0 and cZ > 0,	the value of the 
mapping is the empty set. Eq. (9) can be interpreted as the inverse of the Wagner POR function. For 
this sub-differential mapping, a convex and lower semi-continuous content function exists: 

𝑊�Z(cZ) = 1
∞ , cZ < 0

hZ,�Z[cZ +
&
 kZ|cZ|

  								,0 ≤ cZ ≤ dZ
∞ , cZ > dZ

 (10) 

Figure 1 shows the graph of the multivalued mapping for h(c) and the corresponding strictly convex 
Content function for the interval ]0, 𝑑Z[.  
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Figure 1. Multivalued mapping for the inverse POR function 𝐡(𝐜) and the corresponding convex, lower semi-
continuous Content-Function. 

 
4.2.1.4 Content Minimization problem for PDM models 
The total system content for the PDM case and non-zero demand nodes reads: 

min
[𝐪,𝐜]∈STU¢Te

𝐶(𝐪, 𝐜) =V𝑊X£𝑞X¤ +
[^

X]&

VW�Z(𝑐Z) −
[X

Z]&

𝐪I𝐀,𝐡,	

𝑠. 𝑡.		−𝐀&I𝐪 − 𝐜 = 𝟎[X

 

  

(11) 

The C function is strictly convex and norm-coercive in q and c. As for the DDM case there is existence 
and uniqueness of the solution as far as the mass balance constraint is non-empty. 

As explained above, the content of the PDM demand nodes W�  as shown in Eq. (10) is an unconstrained, 
convex and sub-differentiable function. For numerical treatment, it is convenient to replace it by a 
constrained differentiable function W¦  that is defined only for 0 ≤ 𝑐Z ≤ 𝑑Z and equals to W� . This adds 
additional inequality constraints to the content minimization problem: 

min
[𝐪,𝐜]∈STU¢Te

𝐶(𝐪, 𝐜) =V𝑊X +VW¦Z(𝑐Z) −
[X

Z]&

𝐪I𝐀,𝐡,

[^

X]&

	

𝑠. 𝑡.		−𝐀&I𝐪 − 𝐜 = 𝟎[X

 

−𝐜 ≤ 𝟎[X 
𝐜 ≤ 𝐝 

(12) 

An equivalent formulation Eq. (12) was proposed by Piller et al. (2003). 

The minimization problem can be written in matrix notation: 

ci

hi,S

dihi,min
ci 

𝑊�Z  

di 

∞ ∞ 
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min
[𝐪,𝐜]∈STU¢Te

𝐶(𝐪, 𝐜) = 𝐪I𝚫𝐡���� 	− 𝐪𝑻𝐀,𝐡, +
𝟏
𝟑𝐜

I	𝐍𝐜 + 𝐜𝑻𝐡ª«G

𝑠. 𝑡.		−𝐀&I𝐪 − 𝐜 = 𝟎[X
 

−𝐜 ≤ 𝟎[X 
𝐜 ≤ 𝐝 

(13) 

Where N is the diagonal matrix with diagonal elements 𝑁ZZ = 𝑘Z|𝑐Z|. For simplicity and without loss of 
generality, the flow constraints of control devices are neglected at this stage (they are treated separately 
in the deliverable D 4.2.). The Lagrangian of the minimization problem Eq. (13) is defined as: 

𝐿(𝐪, 𝐜, 𝐡, 𝛌, 𝛍) = 𝐪I𝚫𝐡����	 −	𝐪I𝐀,𝐡, +
&
 
𝐜𝑻	𝐍𝐜 + 𝐜𝑻𝐡ª«G−𝐡I(𝐀&I𝐪 + 𝐜) + 𝛍I(𝐜 − 𝐝) − 𝛌I𝐜   

𝛌 ≥ 𝟎[X, 𝛍 ≥ 𝟎[X 
(14) 

Where 𝐡 denote the Lagrangian multipliers of the equality constraint and 𝛌 and 𝛍 are the non-negative 
multipliers that refer to the inequality constraints. 

This Lagrangian function admits one and only one saddle point, which minimizes L along (q,c) and 
maximizes along (𝐡, 𝛌, 𝛍). 

Let 𝛌∗ and 𝛍∗ be the Lagrangian multipliers of the binding constraints (fulfilled with equality), the 
differentiation of L with respect to 𝐪, 𝐜, 𝐡, 𝛌∗, 𝛍∗ delivers necessary and, in our case, sufficient 
conditions for a minimum. In combination with the complementary slackness condition for inequality 
constraints the equations are called Karush-Kuhn Tucker conditions (short: KKT conditions). The KKT 
conditions state that the minimum of the constrained content function, and therefore a solution of the 
hydraulic steady-state of the PDM model is a root of the following system of equations: 

    𝐆(𝐪)𝐪 − 𝐀𝟏𝐡 − 𝐀,𝐡,= 𝟎GH 
  𝐍(𝐜)𝐜 + 𝐡ª«G − 𝐔±𝑻𝛌∗ + 𝐔²𝑻𝛍∗	= h 

                    							−𝑨&I𝐪 − 𝐜 = 𝟎GK 
																																−𝐔±𝐜 = 𝟎𝒎 
																						𝐔²(𝐜 − 𝐝) = 𝟎𝒔 

(15) 

𝐆(𝐪)𝐪 are the link headloss and 𝐍(𝐜)𝐜	is the inverse POR vector of components: 

(𝐍(𝐜)𝐜	)𝒊𝒊 = (h� − h�Z[) ·
𝑐Z
𝑑Z
¸
¹
, 0 ≤ 𝑐Z ≤ 𝑑Z 

The first equation is conservation energy. The second equation defines h like in equation (9). The 
physical meaning of the Lagrangian multipliers for full supply (cZ = dZ) is the surplus pressure (𝜇Z =
»ℎZ − ℎZ,¼½

¾	; and in case of no supply (cZ = 0) the lacking deficit pressure (𝜆Z = »ℎZ − ℎZ,�Z[½
k).  
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Figure 2. Modelling of PDM nodes and Lagrangian multipliers for three Hydraulic Grade Lines a) – c). 

The different variables and their physical meaning are visualized in Figure 2. The curves a, b and c 
refer to hydraulic grade lines (HGL) of three different cases:  
 

a) full supply with cZ = dZ and hZ ≥ hZ,�;  
b) reduced supply with 0 < cZ < dZ and hZ = h¿(c);  
c) no supply with cZ = 0 and hZ ≤ hZ,�Z[.  
 

Since 𝐆 is a function of 𝐪 as well as 𝐍 is a function of 𝐜, the system of equations in Eq. (15) is 
nonlinear.  

4.2.1.5 Derivation of a solution method 
 

Elhay et al. (2016) have chosen not a primal algorithm to solve minimization problem Eq. (13), but 
rather apply the Newton method on the reduced version of the Lagrangian Eq. (14): 

𝐿S(𝐪, 𝐡) = 𝐪I𝚫𝐡����	 −	𝐪I𝐀,𝐡, − 𝐪I𝐀&𝐡 −VÀ 𝑐Z(𝑥)𝑑𝑥
Ás

Ás,�sT

[X

Z]&

 (16) 

 

This leads to the linear system to solve at each iteration 

pipe

demand node

virtual
reservoir

virtual
PDM	 link

di

hi

ci=0

'i
hi=hi,min

HGL

hi,S

ci	(hi)

ci	=	di

/i

a

b

c
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Â𝐅(𝐪
(Ä)) −𝐀&

−𝐀&Å −𝐄(𝐡(Ä))
Ç ·𝐪

(Ä¾&) 	− 	𝐪(Ä)

𝐡(Ä¾&) 	− 	𝐡(Ä)
¸ = −Â

𝛒É
(Ä)

𝛒Ê
(Ä)Ç (17a) 

 
With E is the diagonal Jacobian matrix of the c(.) POR function1 and the residuals: 

𝛒É
(Ä) = 𝐆£𝐪(~)¤𝐪(~) − 𝐀&𝐡(~) − 𝐀,𝐡𝟎 

𝛒Ê
(Ä) = −𝐀&I𝐪(~) − 𝐜(𝐡(~)) 

The system (17a) can be further reduced to (see Elhay et al., 2016): 

£𝐀&I𝐅k&𝐀& + 𝐄(𝐡(Ä))¤𝐡(~¾&) = 𝐀&I𝐅k&£𝐆£𝐪(~)¤𝐪(~)−𝐀,𝐡,¤ + 𝛒Ê
(Ä) 

𝐪(~¾&) = 𝐪(~) − 𝐅k&(𝐆£𝐪(~)¤𝐪(~) − 𝐀&𝐡(~¾&) − 𝐀,𝐡,) 
(17b) 

 
In some situation, the algorithm may not converge and an inexact line search of Goldstein type is applied 
together with evaluation of the unconstrained residual weighted Least-Squares criterion to correct the 
Newton descent direction (an alternative algorithm is the Newton method applied on the dual function 
of the problem). From one side, for the Elhay et al. method, the number of variables is reduced (only q 
and h variables) and there is no constraint to deal with, but due to the sub-linear POR equation, c(.), a 
damped Newton method with step size correction may be needed if the initial solution is not sufficiently 
close to the unique solution. 
For solving in the primal space, a Newton-Raphson based active set method is proposed in the 
following. The algorithm starts with a feasible flow vector [𝐪, 𝐜]I and continues with iterative solving 
of the linearized system that is described below and continuous update of the active sets of constraints 
after the new iterates have been calculated. 

                                                
 
1 E is a diagonal matrix of diagonal elements  𝐸ZZ

(~) = 0.5𝑐Z(ℎZ)£ℎZ − ℎZ,�Z[¤
k& for ℎZ,�Z[ < ℎZ < ℎZ,� else 

𝐸ZZ
(~) = 0. In fact, 𝐸ZZ

(~) = 	 𝑑𝑖
2

2(h𝑖,𝑆−h𝑖,𝑚𝑖𝑛)Ïs(Ás)
 for a non-zero demand node i and ℎZ,�Z[ < ℎZ < ℎZ,�. 
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⎝

⎜
⎜
⎜
⎛
𝐅(~) 𝟎𝒏𝒑,𝒏𝒋 −𝐀& 𝟎𝒏𝒑,𝒏𝒍 𝟎𝒏𝒑,𝒏𝒖
𝟎𝒏𝒋,𝒏𝒑 𝐌(~) −𝐈𝒏𝒋 −𝐔ØI 𝐔ÙI

−𝐀&I −𝐈𝒏𝒋 𝟎𝒏𝒋,𝒏𝒋 𝟎𝒏𝒋,𝒏𝒍 𝟎𝒏𝒋,𝒏𝒖
𝟎𝒏𝒍,𝒏𝒑 −𝐔Ø(~) 𝟎𝒏𝒍,𝒏𝒋 𝟎𝒏𝒍,𝒏𝒍 𝟎𝒏𝒍,𝒏𝒖
𝟎𝒏𝒖,𝒏𝒑 𝐔Ù(~) 𝟎𝒏𝒖,𝒏𝒋 𝟎𝒏𝒖,𝒏𝒍 𝟎𝒏𝒖,𝒏𝒖⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎛
𝐪(~¾&) − 𝐪(~)

𝐜(~¾&) − 𝐜(~)
𝐡(~¾&) − 𝐡(~)
𝛌∗(~¾&) − 𝛌∗~
𝛍∗(~¾&) − 𝛍∗~⎠

⎟
⎞

= −

⎝

⎜⎜
⎜
⎛

𝛒É
(Ä)

𝐍(~)𝐜(~) − 𝐡(~) + 𝐡�Z[ − 𝐔±𝑻𝛌∗ + 𝐔²𝑻𝛍∗

𝛒Ê
(Ä)

−𝐔Ø(~)𝐜(~)

𝐔Ù(~)(𝐜(~) − 𝐝) ⎠

⎟⎟
⎟
⎞

 

(18) 

The diagonal matrix	𝐅 includes the derivatives of the headlosses 𝐡 = 𝐆(𝐪)𝐪 with respect to 𝐪 and the 
diagonal matrix 𝐌 includes the derivatives of the inverse POR function 𝐍(𝐜)𝐜 with respect to 𝐜	2.  

The mass balance equation is satisfied at each iteration, because it is a linear equation and the third 
equation of (18) is reduced to: 

𝛒Ê
(Ä¾&) = −𝐀&I𝐪(~¾&) − 𝐜(~¾&) = 𝟎𝒏𝒋 

Solving for the last two rows of the linear active outflow constraints of Eq. (18) delivers: 

𝐔Ø𝐜(~¾&) = 𝟎𝒏𝒍 
      𝐔Ù𝐜(~¾&) = 𝐔𝐔𝐝     (since 𝐔Ù𝐜(�) = 𝐔Ù𝐝) 

Index 𝐿 refers to nodes where the outflow is zero (lower bound) and index 𝑈 refers to the nodes where 
the outflow is equal to the full demand 𝑑Z (upper bound), respectively. 

After each iteration, it is checked whether one Lagrangian multiplier 𝜆Z or 𝜇Z is negative (if yes, it is 
freed for the next iteration and the corresponding row of UL or UU is removed); and if the ci flow 
constraints is violated (adequately a row is added to UL or UU).  𝐔Ø and 𝐔Ù include the rows of the 
(𝑛𝑗	 × 𝑛𝑗)-identity matrix (unit vectors) that belong to the active outflow constraints. A constraint is 
said to be active if it is fulfilled by equality. In our case that means that the outflow reaches either the 
desired demand (upper bound 𝑑Z) or zero (lower bound). In the case of the box constraints only one of 
the two constraints for each outflow of the demand node can be active. 

                                                
 

2 M is a diagonal matrix of diagonal element 𝑀ZZ
(~) = 2𝑘Zß𝑐Z

(~)ß for a non-zero demand 

node i; and for a zero-demand node 𝑀ZZ
(~) = 0. 
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The binding constraints can be used for reducing the number of variables. For that purpose, first, after 
reordering of the nodes the columns of the matrices, 𝐌 and 𝐈 are subdivided into three partitions: the 
first part (𝐌à,𝐈à) refers to nodes, for which the current outflow is dependent on the current pressure; 
The second part refers to nodes where no outflow is possible because the pressure is below the minimum 
pressure; and the third part refers to nodes with full supply (pressure above minimum service pressure). 
This partition induces the decompositions: 

𝐔Ø
(~) = (𝟎[á,[â 𝐈[á 𝟎[á,[ã), 𝐔Ù

(~) = (𝟎[ã,[â 𝟎[ã,[á 𝐈[ã) 

𝐌 = ä
𝐌à 𝟎[â,[á 𝟎[â,[ã
𝟎[á,[â 𝟎[á,[á 𝟎[á,[ã
𝟎[ã,[â 𝟎[ã,[á 𝟎[ã,[ã

å 

The modified system is shown in the following where we omit the dimension on the zeros matrix for 
sake of simplicity: 
 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐅 𝟎 𝟎 𝟎 −𝐀&,à −𝐀&,Ø −𝐀&,Ù 𝟎 𝟎
𝟎 𝐌à 𝟎 𝟎 −𝐈Gæ 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 −𝐈Gç 𝟎 −𝐈Gç 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 −𝐈Gè 𝟎 𝐈Gè

−𝐀&,àI −𝐈Gæ 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝐀&,ØI 𝟎 −𝐈Gç 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝐀&,ÙI 𝟎 𝟎 −𝐈Gè 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 −𝐈Gç 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝐈Gè 𝟎 𝟎 𝟎 𝟎 𝟎 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝐪(~¾&) − 𝐪(~)

𝐜à(~¾&) − 𝐜à(~)

𝐜Ø(~¾&) − 𝐜Ø(~)

𝐜Ù(~¾&) − 𝐜Ù(~)

𝐡à(~¾&) − 𝐡à(~)

𝐡Ø
(~¾&) − 𝐡Ø

(~)

𝐡Ù
(~¾&) − 𝐡Ù

(~)

𝛌∗(~¾&) − 𝛌∗(~)
𝛍∗(𝒌¾𝟏) − 𝛍∗(~) ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

= −

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛒É
(Ä)

𝐍à(~)𝐜à(~) − 𝐡à(~) + 𝐡à,�Z[
−𝐡Ø(~) + 𝐡Ø,�Z[ − 𝛌∗(𝒌)

𝐡Ù,� − 𝐡Ù
(~) + 𝛍∗(𝒌)

−𝐀&,àI 𝐪(~) − 𝐜à(~)

−𝐀&,ØI 𝐪(~)

−𝐀&,ÙI 𝐪(~) − 𝐔Ù(~)𝒅
−𝐜Ø(~)

𝐜Ù(~) − 𝐔Ù
(~)𝒅 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

(19) 

The known outflows that belong to the active constraints (last two rows in the matrix) are removed and 
the known flows 𝐜Ø and 𝐜Ù (columns with index “L” and index “U”) are put on the right-hand side of 
the system of equations: 
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⎝

⎜
⎜
⎜
⎜
⎛

𝐅 𝟎 −𝐀&,à −𝐀&,Ø −𝐀&,Ù 𝟎 𝟎
𝟎 𝐌à −𝐈Gæ 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 −𝐈Gç 𝟎 −𝐈Gç 𝟎
𝟎 𝟎 𝟎 𝟎 𝐈Gè 𝟎 𝐈Gè

−𝐀&,àI −𝐈Gæ 𝟎 𝟎 𝟎 𝟎 𝟎
−𝐀&,ØI 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝐀&,ÙI 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 ⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐪(~¾&) − 𝐪(~)

𝐜à(~¾&) − 𝐜à(~)

𝐡à
(~¾&) − 𝐡à

(~)

𝐡Ø
(~¾&) − 𝐡Ø

(~)

𝐡Ù
(~¾&) − 𝐡Ù

(~)

𝛌∗(~¾&) − 𝛌∗(~)
𝛍∗(𝒌¾𝟏) − 𝛍∗(~) ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

= −

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛒É
(Ä)

𝐍à(~)𝐜à(~) − 𝐡à
(~) + 𝐡à,�Z[

−𝐡Ø
(~) + 𝐡Ø,�Z[ − 𝛌∗(𝒌)

𝐡Ù,� − 𝐡Ù
(~) + 𝛍∗(𝒌)

−𝐀&,àI 𝐪(~) − 𝐜à(~)

−𝐀&,ØI 𝐪(~)

−𝐀&,ÙI 𝐪(~) − 𝐔Ù(~)𝒅 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

(20) 

 
Eq. (20) shows that the equations for the Lagrangian multipliers are decoupled from the rest of the 
system: 

𝛌∗(𝒌¾𝟏) = 	𝐡Ø,�Z[ − 𝐡Ø
(~¾&) 

𝛍∗(𝒌¾𝟏) = 𝐡Ù
(~¾&) − 𝐡Ù,� 

Consequently, the system can be further reduced, which results in the following system to be solved: 

⎝

⎜⎜
⎛

𝐅 𝟎 −𝐀&,à −𝐀&,Ø −𝐀&,Ù
𝟎 𝐌à −𝐈Gæ 𝟎 𝟎

−𝐀&,àI −𝐈Gæ 𝟎 𝟎 𝟎
−𝐀&,ØI 𝟎 𝟎 𝟎 𝟎
−𝐀&,ÙI 𝟎 𝟎 𝟎 𝟎 ⎠

⎟⎟
⎞

⎝

⎜
⎜
⎛

𝐪(~¾&) − 𝐪(~)

𝐜à(~¾&) − 𝐜à(~)

𝐡à(~¾&) − 𝐡à(~)

𝐡Ø(~¾&) − 𝐡Ø(~)

𝐡Ù(~¾&) − 𝐡Ù(~)⎠

⎟
⎟
⎞
= −

⎝

⎜
⎜
⎜
⎛

𝛒É
(Ä)

𝐍à(~)𝐜à(~) − 𝐡à(~) + 𝐡à,�Z[
−𝐀&,àI 𝐪(~) − 𝐜à(~)

−𝐀&,ØI 𝐪(~)

−𝐀&,ÙI 𝐪(~) − 𝐔Ù(~)𝒅 ⎠

⎟
⎟
⎟
⎞

 (21) 

If we replace (−𝐈Gæ 𝟎 𝟎) by −𝐈ë the last three equations can be written in the more compact form: 

ä
𝐅 𝟎 −𝐀&
𝟎 𝐌à −𝐈ë
−𝐀&I −𝐈ëÅ 𝟎

åä
𝐪(𝑘+1) − 𝐪(𝑘)

𝐜𝐴(𝑘+1) − 𝐜𝐴(𝑘)

𝐡(~¾&) − 𝐡(~)
å = −í

𝛒É
(Ä)

𝐍à(~)𝐜à(~) − 𝐡à
(~) + 𝐡à,�Z[

𝛒Ê
(Ä)

î (22) 

The second matrix row includes now only the nodes that are currently in pressure deficient conditions. 
Without loss of generality we can assume that the diagonal block is invertible: 
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Â 𝐪
(~¾&) − 𝐪(~)

𝐜à(~¾&) − 𝐜à(~)
Ç = ·𝐅

k𝟏 𝟎
𝟎 𝐌à

k&¸ Â
−𝛒É

(Ä) + 𝐀&£𝐡(~¾&) − 𝐡(~)¤
𝐈ë£𝐡(~¾&) − 𝐡(~)¤ − 𝐍à

(~)𝐜à(~) + 𝐡à
(~) − 𝐡à,�Z[

Ç (23) 

As mentioned above the matrix 𝐌à refers to the nodes without active flow constraints and non-zero 
demands. Therefore, the size of the system is still variable. Due to the diagonality, the rows can be 
separated in: 

𝐪(~¾&) = 𝐪(~) − 𝐅k&(𝐆£𝐪(~)¤𝐪(~) − 𝐀&𝐡(~¾&) − 𝐀,𝐡,) 
𝐜à(~¾&) = 𝐜à(~) − 𝐌à

k&£𝐍à
(~)𝐜à(~) − 𝐡à

(~¾&) + 𝐡à,�Z[¤ 
(24) 

Pre-multiplying the first Eq. of (22) by +𝐀&I𝐅k& and the second Eq. of (22) by 𝐈ëÅ𝐌à
k&, then summing 

the three equations results in the system to be solved for 𝐡(~¾&): 

(𝐀&I𝐅k&𝐀& + 𝐈ëI𝐌à
k&𝐈ë)𝐡(~¾&)

= 𝐀&I𝐅k&£𝐆£𝐪(~)¤𝐪(~)−𝐀,𝐡,¤ + 𝐈ëI𝐌à
k&£𝐍à(~)𝐜à(~) + 𝐡à,�Z[¤ + 𝛒Ê

(Ä) 
(25) 

Eq. (25) has the same size for any combination of active constraints. Multiplication by 𝐈ë selects the rows 
and columns that belong to PDM nodes. For practical implementation, the reordering is not necessary.  

For comparing with system (17b) used by Elhay et al. (2016), are here below reported in blue the 
additional terms in (25) and (24): 

£𝐀&I𝐅k&𝐀& + 𝐄ï(𝐤)¤£𝐡(~¾&) − 𝐡(~)¤ = 𝐀&I𝐅k&𝛒É
(Ä) + 𝛒Ê

(Ä) + 𝐄ï(~)£𝐍(~)𝐜(~) + 𝐡�Z[ −		𝐡(~)¤ 
𝐪(~¾&) = 𝐪(~) − 𝐅k&(𝐆£𝐪(~)¤𝐪(~) − 𝐀&𝐡(~¾&) − 𝐀,𝐡,) 
𝐜à(~¾&) = 𝐜à(~) − 𝐌à

k&£𝐍à
(~)𝐜à(~) − 𝐡à

(~¾&) + 𝐡à,�Z[¤ 
𝛌∗(𝒌¾𝟏) = 	𝐡Ø,�Z[ − 𝐡Ø

(~¾&) 
𝛍∗(𝒌¾𝟏) = 𝐡Ù

(~¾&) − 𝐡Ù,� 

Where 𝐄ï(𝐤) = 𝐈ëI𝐌à
k&𝐈ë is the same as E(h(Ä)) at rows corresponding to non-saturated c components: 

𝐸ï(~)ZZ = 𝐸(ℎ(~))ZZ if 	0 ≤ 𝑐Z ≤ 𝑑Z and node i is non-saturated3 

  𝐸ï(~)ZZ = 0 if 𝑐Z == 0 or 𝑐Z == 𝑑Z and node i is saturated. 

                                                
 
3 At 𝑐Z == 0 this requires regularizing the POR function to have a positive first derivative and for 𝑐Z =
= 𝑑Z also to have the POR function C1. 
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In the next section an algorithm is described that uses index sets for identification of binding constraints. 
After each iteration, it is sufficient to update the index sets. In addition, for all active constraints the 
Lagrangian multipliers should be checked respectively. 

4.2.1.6 Existence and uniqueness of a solution 

For proving existence and uniqueness of the hydraulic steady state the content formulation is 
advantageous. If all the content functions are strictly convex (which is guaranteed by the strict 
monotonicity of the head loss equation) and norm-coercive (i𝐶X(𝑥X)i ⟶ ∞	if w𝑥Xw 	→ ∞) then the total 
system content is a strictly convex and norm-coercive function of (𝐪, 𝐜). 
To proof the existence of a solution, the polyhedral constraint set must be non-empty. It consists of the 
following PDM mass constraint equation and the inequality for the POR nodal consumption: 
 

−𝐀&I𝐪 − 𝐜 = 𝟎𝑛𝑗 
𝟎[X ≤ 𝐜 ≤ 𝐝 

 
(26) 

The pipe flow rates and nodal outflows 𝐪 = 𝟎[^ and 𝐜 = 𝟎[X  are trivial feasible solutions for the set 
of constraints (26). In summary, the proposed PDM model consists of the minimization of the strictly 
convex content function, formulated in unknown flows (q, c) over a polyhedral set. Necessary and in 
our case also sufficient conditions for a solution provide the Karush-Kuhn-Tucker conditions (KKT) 
for the Content function. 

4.2.2 Epanet-based PDM model using series of control devices 
Before the full mathematical development of the approach described above, a first attempt was made 
by implementation of an automatic procedure that connects every demand node to a newly added series 
of 1 FCV (flow control valve), 1 TCV (throttle valve), 1 check valve and 1 reservoir node in an Epanet 
model. The FCV limits the maximum outflow to the required demand, the TCV includes the nonlinear 
flow-head relationship (inverse POR function) and the check valve prevents backflow from the reservoir 
into the system. The elevation of the reservoir is set to the elevation (minimum pressure) ℎ�Z[ of the 
demand node. The setting of the FCV is the demand 𝑑 and the zeta value of the TCV is chosen such 
that the headloss for flow 𝑐 = 	𝑑 equals the minimum service pressure ℎ�. The modification is 
visualized in Figure 3.   

   
Figure 3. Modifications in EPANET needed for PDM modelling. 

h=hi,min
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The approach has been recently proposed also by other researchers. However, one important 
shortcoming is that the size of the model is dramatically increased by the modifications. For every 
demand node, an addition of three nodes and three links is required.   

4.2.3 Algorithm 
 
The algorithm can be summarized as follows: 
1.) Initialization 
Initialize 𝐡(,), 𝐪(,), 𝐜(,): 
𝐡(,) = 𝐡� + 𝟏𝒏𝒋 
𝐜(,) = 𝐝 
and arbitrary 𝐪,, for example 𝐪𝒊(,) = 1, 𝑖 = 1,… , 𝑛𝑝.	 
For nonzero demand nodes, with these starting values, all upper constraints are active and the heads are 
consistent. The start values for the Lagrangian multipliers are consequently λ𝒊

(,) = 0, 𝑖 = 1,… , 𝑛𝑗 and 
µ𝒊(,) = 1, 𝑖 = 1,… , 𝑛𝑗, respectively (i.e., the upper bounds are all active and µ𝒊(,) is the surplus 
pressure). 
 
Initialize the following three index sets: 
ℐà(,) = ö𝑖 ∈ 𝒩|0 < 𝑐Z(,) < 𝑑Zø = ∅ , ℐØ(,) = ö𝑖 ∈ 𝒩|𝑐Z(,) = 0ø = ∅ and ℐÙ(,) = ö𝑖 ∈ 𝒩|𝑐Z(,) =
𝑑Zø = 𝒩  
where 𝒩 is the index set of all non-zero demand junction nodes: 
ℐà(,) = ∅ , ℐØ(,) = ∅ , ℐÙ(,) = 	𝒩 
2.) Iteration 
Set 𝑘 = 0 
Do: 
Calculate the diagonal matrices 𝐄ï, 𝐍: 
𝐸ïZZ =

ùs
�

¹(�s,�k�s,�sT)Ïs
(ú) =

&

¹~sÏs
(ú) , 𝑁ZZ = 𝑘Z𝑐Z

(~)∀𝑖 ∈ ℐà;				𝐸ïZZ = 0		∀𝑖 ∈ ℐØ ∪ ℐÙ and for all zero-

demand nodes. 

Solve the Schur system for 𝐡(�¾&) − 𝐡�: 

£𝐀&I𝐅k&𝐀& + 𝐄ï(~)¤£𝐡(~¾&) − 𝐡(~)¤ = 𝐀&I𝐅k&𝛒É
(Ä) + 𝛒Ê

(Ä) + 𝐄ï(~)£𝐍(~)𝐜(~) + 𝐡�Z[ −		𝐡(~)¤ 

Calculate 𝐪(~¾&), 𝐜à(~¾&): 

𝐪(~¾&) = 𝐪(~) − 𝐅k&(𝐆£𝐪(~)¤𝐪(~) − 𝐀&𝐡(~¾&) − 𝐀,𝐡,) 

𝐜à(~¾&) = 𝐜à(~) − 𝐌à
k&£𝐍à

(~)𝐜à(~) − 𝐡à
(~¾&) + 𝐡à,�Z[¤ 
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Calculate multipliers: 
λZ
(~¾&) = 	hZ,�Z[ − ℎZ

(~¾&) 
µZ(~¾&) = ℎZ

(~¾&) − ℎZ,¼ 
 
Check constraints and update index sets: 

ℐà(~¾&) = ý𝑖 ∈ 𝒩|£𝐜Z(~¾&) > 0	 ∧ 	𝐜Z(~¾&) < 𝑑Z¤ ∨ h𝐜Z(~¾&) == 0 ∧	𝜆Z
(~¾&) < 0m

∨ h𝐜Z(~¾&) == 𝑑Z ∧ 	𝜇Z
(~¾&) < 0m	! 	4 

ℐØ(~¾&) = ý𝑖 ∈ 𝒩|h𝐜Z(~¾&) < 0	 ∨ (𝐜Z(~¾&) == 0 ∧	𝜆Z
(�¾&) ≥ 0)m! 

ℐÙ(~¾&) = ý𝑖 ∈ 𝒩|h𝐜Z(~¾&) > 	𝑑Z 	∨ 	(𝐜Z
(~¾&) == 𝑑Z ∧ 	𝜇Z

(�¾&) ≥ 0)m! 

𝑐Z
(~¾&) = max£𝐜Z(~¾&), 0¤	∀𝑖	 ∈ 	 ℐà(~) 
𝑐Z
(~¾&) = min£𝐜Z(~¾&), 𝑑Z¤	∀𝑖	 ∈ 	 ℐà(~) 

 
while convergence not reached. 

4.2.4 Matlab implementation at 3S Consult 
 
The method previously presented was implemented using Matlab and applied to a small network. For 
this small system, the iterative calculation was also implemented in Excel (Path-GGA-
Iterations_v10.xlsx is additionally provided). It was also the basis of the description of the iterative 
method (see Figure 4). 
 
Basically, all the steps which were described by Excel operations were then translated into Matlab. This 
implementation was supported by an Epanet-Matlab Toolkit, which allows the user to open the INP 
network files in Matlab, and read the network properties (pipe lengths, pipe diameters, roughness, nodes 
demands, node elevations, etc.). 
 
The major challenge was to create the incidence matrix of the network, which was the only element to 
be done from scratch. Following the steps already checked in Excel, the algorithm has converged after 
8-9 iterations for this network. 
 

                                                
 
4 The statement A ∨ B is true if A or B (or both) are true; The statement A ∧ B is true if A and 
B are both true; else it is false. 
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Figure 4. Excel implementation for a simple network. 

For the sake of simplicity, the chosen headloss formula was Hazen-Williams; nonetheless, also the 
Darcy-Weisbach head loss formula was correctly developed. 
 
The iterative method was further tested for a range of networks with increasing complexity in terms of 
number of nodes and pipes. In Table 1, the main characteristics for each network are shown. Since we 
focused on steady-state calculations, there is no difference between reservoirs and tanks (the latter have 
a time-dependent water level).  Moreover, not all nodes are demand ones. All the networks have a 
Darcy-Weisbach headloss equation and LPS as flow unit. 
 
For the stopping criterion, two relative thresholds were chosen, named “epsilonq” and “epsilonh”, which 
refer respectively to pipe flow limit and node head limit (here it was relatively restricting 10-10, but the 
quadratic convergence was observed). Also, a maximum number of iterations of 30 was taken. The 
service minimum pressure is equal to 30 m (3 bar) and the minimum pressure is the elevation: 

ℎZ,�Z[ = 𝑧Z	𝑎𝑛𝑑	ℎZ,� = 𝑧Z + 30. 

Table 1. The test networks and their properties. 
Name n° nodes n° pipes n° dem. nodes n° res./tanks 

n1Dim932x848 848 932 474 (55.9%) 2R+6T 
n2Dim1118x1039 1039 1118 661 (63.6%) 2R 
n3Dim1975x1770 1770 1975 1770 (100%) 4R 
n4Dim2465x1890 1890 2465 1609 (85.1%) 3R 
n5Dim2509x2443 2443 2509 1241 (50.8%) 2T 
n6Dim8585x8392 8392 8585 3173 (37.8%) 2T 

n7Dim14830x12523 12523 14830 10552(84.2%) 7R 
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n8Dim19647x17971 17971 19647 15332 (85.3%) 15R 
 
For the four following tests, various indicators were reported: the number of iterations needed by the 
solver to reach convergence; how many (demand) nodes are fully supplied (IU); the number of nodes in 
reduced-supply condition (IA); the number of nodes in failure mode (IL; and finally, the percentage of 
demand satisfaction Dred for the full system. The first set of tests was done with default data, with 
demand multiplier equal to 1 (Table 2): 

Table 2. PDM parameter for each test Network. 
Name n° Iter. IA IL IU Dred [%] 

n1Dim932x848 13 71 0 777 85.5 
n2Dim1118x1039 9 23 0 1016 99.86 
n3Dim1975x1770 16 16 454 1300 72.82 
n4Dim2465x1890 12 1608 0 282 45.48 
n5Dim2509x2443 9 0 0 2443 100 
n6Dim8585x8392 10 62 0 8330 99.9 

n7Dim14830x12523 14 636 249 11638 98.05 
n8Dim19647x17971 16 2983 0 14988 98.82 

At a first glance, one can say that an increase of the number of demand nodes, combined with the 
number of reservoir/tanks, can affect the number of iterations needed to find a solution (the network is 
more complex). In most cases, the nodes are either fully supplied or in PDM mode. 
 
Then the demand multiplier was increased step-wise to 1.5 and 2 for a progressive increase in demand 
and then 5 to explore the effects of heavy PDM conditions (Tables 3 to 5): 

Table 3. Solver results with demand mult. = 1.5. 
Name n° Iter. IA IL IU Dred [%] 

n1Dim932x848 13 74 0 774 85.25 
n2Dim1118x1039 8 40 0 999 99.74 
n3Dim1975x1770 16 8 533 1229 68.35 
n4Dim2465x1890 13 1566 42 282 34.15 
n5Dim2509x2443 10 0 0 2443 100 
n6Dim8585x8392 10 94 0 8298 99.56 

n7Dim14830x12523 15 2637 262 9624 94.32 
n8Dim19647x17971 14 3699 0 14272 98.36 

Table 4. Solver results with demand mult. = 2. 
Name n° Iter. IA IL IU Dred [%] 

n1Dim932x848 13 92 0 756 84.8 
n2Dim1118x1039 8 57 0 982 99.46 
n3Dim1975x1770 16 9 589 1172 64.92 
n4Dim2465x1890 13 1548 60 282 27.1 
n5Dim2509x2443 10 0 0 2443 100 
n6Dim8585x8392 11 126 0 8266 98.09 

n7Dim14830x12523 16 5269 339 6915 88.13 
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n8Dim19647x17971 14 4247 0 13724 97.8 

Table 5. Solver results with demand mult. = 5. 
Name n° Iter. IA IL IU Dred [%] 

n1Dim932x848 13 296 0 552 73.05 
n2Dim1118x1039 9 396 0 643 88.18 
n3Dim1975x1770 16 17 752 1001 54.85 
n4Dim2465x1890 16 1521 87 282 12.16 
n5Dim2509x2443 10 0 0 2443 100 
n6Dim8585x8392 13 3117 2 5273 71.1 

n7Dim14830x12523 17 9171 971 2381 55 
n8Dim19647x17971 14 5247 768 11956 90.43 

 
The results show that for each network, a fast convergence is reached, independently of the value of the 
demand multiplier. From the indicator results as expected, the higher the demand multiplier is, the more 
nodes find themselves in under-supply or even no-supply/failure mode state. 
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5 NOMENCLATURE 

Table 6. Matrices and vector notations. 

𝐀𝟏 Arc-node incidence matrix of junction nodes 
𝐀𝟎 Arc-node incidence matrix of fixed pressure nodes 
𝐡𝟎 Vector of fixed heads 
𝐡 Vector of variable heads at junction nodes 
𝐪 Flow vector 
𝐆 Diagonal matrix for headloss Δ𝐡 = 𝐆(𝐪)𝐪 
𝐅 Diagonal matrix of headloss derivatives 𝐅 = ∇d(Δ𝐡) 
𝐝 Vector of nodal demands 
𝐜 Vector of calculated external flows at nodes 
𝐍 Diagonal matrix for inverse POR functions 𝐡(𝐜) = 𝐡�Z[ + 𝐍(𝐜)𝐜 
𝐌 Diagonal matrix of inverse POR derivatives 𝐌 = 𝛁𝒄(𝐡(𝒄)) 
E Diagonal matrix of POR derivatives 𝐄 = 𝛁𝒉(𝐜(𝐡)) 
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6 CONCLUSION 

A suitable optimisation framework was developed for dealing with large disconnected subnetworks 
undergoing a partially or full system collapse. Two solution methods were derived from the pressure-
driven PDM Content minimisation problem formulation.  
 
The first one is a primal-dual Newton method applied on the reduced Lagrangian of the problem that 
was published in the Journal of Water Resources Planning and Management (Elhay et al, 2016). It 
requiries solving a linear system at each iteration for the nodal heads, then the pipe flow rates are 
updated. Due to the sub-linearity of the pressure outflow relationship (the Wagner POR is a square root 
function) in some situation an under-relaxation of the iterates is necessary. It is done using the damped 
Newton method with an inexact line search of Goldstein type. This means that additional evaluation of 
the criterion to optimize is needed. As a matter of acceleration, an equivalent Least-squares formulation 
involving the mass and energy residuals was derived. It is implemented in Matlab and will be part of 
the Irstea software solution, Porteau. 
 
The second one is a primal projected Newton method applied to the PDM Content problem. It is fully 
described in this report. It is considering the nodal consumption that is bounded between zero and the 
demand and two additional dual variables, the pressure surplus above the service head and the deficit 
pressure below the minimum head (in fact the node elevation). These two last variables are nonnegative 
and interpreted as KKT or Lagrange multipliers. The linear system for solving for the nodal head 
possesses an additional term in the second member but the iteration matrix is the same. The update for 
the flow is the same. There are three additional equations for calculating the nodal consumptions at 
demand nodes and the two Lagrange multipliers. Three index sets help managing the active/inactive 
primal constraints and the KKT conditions. It was validated on a small network and eight large networks 
(the same than for the first method). For all the tests made, it is converging without the need of a stepsize 
correction. One explanation is that both the pipe head losses and the nodal inverse POR functions are 
convex monotonic functions of the pipe flow rates and the nodal consumptions. 
 
In the next six months, it is planned to apply the two robust solutions for case studies from the ResiWater 
project provided by BWB and EMS in Germany and France. It is necessary to consider control valves 
and pumps and the solution will be detailed in the deliverable report D4.2. 
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