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1 SUMMARY 

This report describes different methods for modelling of pressurized water supply networks with 
consideration of pressure dependent demands (PDM: Pressure Driven Modelling) in combination with 
flow constraints. For that purpose, the PDM model described in D 4.1 is extended by additional bounds 
for the link flows that refer to closed or failed links (equality conditions) and the operation of more 
sophisticated and automated flow control devices such as check valves and flow control valves 
(inequality constraints). In contrast to the pure PDM model where the proof of the Linear Constraint 
Qualification (LICQ) to hold was simple (only assumption is connectivity of the network) the same is 
not true for general flow bounded problems. A simple example is given by the case where two valves 
are closed in a path disconnecting at least one node from the rest of the system. If the disconnected node 
is a demand node then in DDM the problem would have no solution. In contrast, PDM allows to reduce 
the outflow to zero such that a solution exists. Adding the two flow constraints with q = 0 for the closed 
valves to the continuity equation results in linear dependency of the constraints, which in turn leads to 
a singular Jacobian. Because of the singularity, there is non-uniqueness of equation, with infinity of 
solutions for nodal heads and minor losses of active flow control devices (the Lagrangian multipliers 
associated with the problem constraints). In this report, it will be shown that almost all problems of non-
convergence are related to the problem of linear dependent constraints and the resulting singularity of 
the system. Consequently, the central problem of the robust solver is the prevention of linear dependent 
constraints or the derivation of methods that deal explicitly with non-unique multipliers.  
 
The content of the deliverable is as follows. After a brief introduction that summarizes the problem of 
modelling disconnected systems a relevant Literature about flow and pressure control modelling in 
hydraulic system analysis is reviewed. In the main part the extended PDM model for flow controlled 
problems is derived and the appearance of non-unique pressure heads is discussed, Then, different 
approaches for avoiding singularities in the network equations are summarized and compared as to their 
robustness, efficiency and practical applicability.  
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2 INTRODUCTION 

The stable and robust calculation of WDS hydraulics and water quality under anomalous operational 
conditions as they appear under extreme events like natural disasters, (terrorist) attacks or electrical 
power black outs is a basic requirement for all model-based decisions. Existing simulation techniques 
are not prepared for these situations and often fail at calculating a solution or to converge. There is a 
strong need for improved mathematical methods that successfully deal with ill-posed systems and other 
situations where existing modelling techniques reach the limits of their theoretical basis. 
One important step towards robust and realistic modelling of extreme situations is the development of 
a robust hydraulic system solver that can deal, amongst others, with insufficient pressure conditions. 
Considering a scenario with numerous failures of system devices like pumps, control valves or pipe 
breaks the network is decomposed into different parts that might be connected to the sources only by 
pipes with insufficient diameter or not connected at all. In this case, the state of the art demand driven 
models fail to converge or to calculate reliable results. First published attempts of implementation of 
pressure dependent modelling still have problems to calculate the correct results for highly interrupted 
systems.  
In addition, extreme operational conditions have a strong impact on the hydraulic performance of 
control devices and pumping stations. It is of course state of the art at all the water utilities to be prepared  
for energy blackouts and failure of single pumps. However, for example area-wide interruption of power 
supply for a longer period or massive damage due to flooding or attacks put such a tremendous stress 
on the system that is not included in existing emergency plans. Reasons are the strong interdependencies 
and the lack of existing modelling tools that can simulate those situations that are all characterized by 
disconnecting parts of the system. From a modelling point of view this is a challenge since the system 
is changed by disruptions and the hydraulic steady-state of the disconnected part may not be well 
defined. It must be noted here that such events are not steady-state in nature but cause transient flows 
and pressures within the system that can also result in situations where the basic assumptions of 
modelling pressurized pipe systems do not hold anymore (e. g. emptying of pipes). The time of transient 
behaviour is not addressed in this research. It is assumed that after a certain time of adaption that includes 
for example closing of valves to isolate damaged pipes and to stop large leakage losses the system 
reaches a stable state whose mathematical representation by steady-state modelling is justifiable.   
 
The objective of this deliverable is to develop a mathematical framework that is able to calculate the 
steady-state for (stabilized) disrupted, possibly disconnected systems. The problem will be studied from 
a theoretical (existence and uniqueness of solutions) as well as from a practical (numerical solution) 
point of view. As a key question will appear how to deal with singularities in the system matrix in a 
Newton type solution procedure. It will be shown that singular and ill-posed systems are always the 
consequence of the appearance of disconnected components.  For motivation, in the following part of 
this chapter the situation is visualized for a simple example system.  
 
In real water supply systems, both, routine network operations as well as operations that are necessary 
as a response to extreme events (pipe burst, contamination) may require disconnection of parts of the 
system by valve closure. Consider the following simple system that consist of a supply are (nodes b, c) 
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that gets water from two reservoirs R1 and R2. If for some reasons the supply from one reservoirs shall 
be stopped the valves 2 and 4 can be shut off. In the very rare case that both valves are closed at the 
same time the supply are is disconnected from any water source and consumption demands cannot be 
satisfied.  

 
Figure 1: Example system with two control devices in series. 

A similar situation can occur if the valves are automated flow control valves that restrict the flow to be 
in-between given bounds. Consider the case were R1 supplies again nodes b and c and should fill tank 
R2. The flow from R2 into c and b is prohibited by a non-return valve. Then, if valve 2 is closed, nodes 
b and c are again disconnected since also the non-return valves closes automatically. In the last case, the 
valves are flow control valves that restrict the flow to a upper bound. If the demand of b and c is greater 
than the possible inflow to the supply area the consumption is reduced accordingly.  
 
Mathematically, all three cases have in common that the decomposition of the network graph results in 
singularity of the system of equations that are necessary for solution. Hence, the numerical solution by 
Newton-type method fails. In the following we refer to cases: 
 

1.) Fully disconnected system (valve closure after pipe burst, for inspection, isolation of 
contaminant modelled by equality conditions)  

2.) System disconnected by automatic operation of flow control devices (inequality conditions) 
3.) System connected with restricted flow (active flow control) 

 
Case 1 is distinguished from case 2 by the fact that valve closures are known a priori whereas in the 
second case the state of the valve is dependent on the hydraulic state of the entire system. In 
mathematical language, the first case is expressed by equality conditions and the second by inequality 
conditions. In the third case the system is physically connected however, mathematically it is also 
disconnected as in the two cases before by active upper bound for the flow.  
 
Existence (and uniqueness) of a solution depends on the model type to be used. In general, of the 
disconnected subnet has at least one demand node with desired consumption (d > 0) then there exists 
no solution for DDM models in case 1 and 2. If the total demand of the disconnected network part is 
bigger than the sum of flow bounds into the subnet there is also no solution in DDM models. For PDM 
the situation is different. For all three cases, there exists a solution because the consumption of 
disconnected demand nodes is reduced to zero by the model. The only reason for non-existence is the 
choice of contradicting flow constraints imposed by control devices. This is possible only of zero flow 
is not inside the feasible range of flows for the device. This case is possible only for combination of 
pump control (maintain minimum flow) with flow control (do not exceed maximum flow) and not of 
practical relevance. In this deliverable, the three cases will be investigated from a mathematical point of 
view. As it was indicated by the simple example, PDM modelling greatly enhances the possibilities for 
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modelling flow control. However, it will be also seen that singularity due to system decomposition is 
still a challenge for all type of numerical solution methods. 
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3 LITERATURE REVIEW 

Computer hydraulic solvers such as Porteau, SIR 3S or EPANET allow complex water distribution 
system networks to be simulated by design engineers. Modelling of systems containing combinations 
of pressure reducing valves (PRVs), pressure sustaining valves (PSVs) and flow control valves (FCVs) 
can sometimes be problematical. The status of PRVs, PSVs and FCVs is usually solved for based on a 
heuristic approach. Starting from an assumed state of the control device, a check is performed during 
the next step of the iteration procedure, as to whether the original assumption of each assumed valve 
status still holds. If the assumption proves to be no longer true, a correction of the state of the control 
device is made. It has been observed in the past that this approach may sometimes fail to converge at 
all, or even worse may converge to incorrect solutions when simulating networks that include pressure 
regulating devices. In most cases for which no correct solution was obtained, the solver converged 
quickly to an incorrect solution. Hence, no warning message was generated to indicate there was a 
problem with the solution. Some simple networks incorporating PRVs and FCVs have been considered 
in this research. The networks have multiple pressure regulating and flow regulating devices that are 
placed in series and separated by substantial lengths of pipe. Even for simple networks comprising two 
pressure regulating devices (one pressure regulating device and one flow regulating device) in series, 
current hydraulic modelling software fails to converge to the correct solution for particular 
configurations and settings. This paper aims to consider the circumstances in which such difficulties 
occur and the reasons for the failure to solve. The problem of non-uniqueness of nodal pressures is 
discussed also in (Gorev, Kodzhespirova, & Sivakum, 2016). 
 
The ResiWater project deals with challenges that result from situations where the connectivity of the 
network is lost due to massive system failures caused by extreme events that often lead to insufficient 
pressure conditions even in the remaining system.  
 
Some limitations of DDM and PDM Modelling for large deficient networks was presented at the CCWI 
2016 conference (Braun et al. 2016). From literature, the notion of deficient networks can take several 
different definitions. These definitions may be divided into model, mathematical and physical 
deficiencies. Model deficiencies are errors in the creation, conversion or transfer of the network graph. 
A mathematical deficiency can be defined as a maximal connected network where, due to some 
boundary condition the set of feasible solutions is reduced to the empty set or the solution is not unique. 
In contrast to mathematical deficiencies, in the case of a hydraulic deficiency a unique solution exists, 
but it is physically incorrect. In the following several deficiency phenomena of special interest for the 
ResiWater project are presented and evaluated with respect to demand and pressure driven modelling: 

• Conflicting constraints: The first scenario consist of boundary conditions in conflict for certain 
parts of the network. This may occur if flow regulating devices are incorporated into the model 
and introduce additional constraints to the mathematical model. In unfortunate cases, these 
constraints may conflict with the demand request of the consumption nodes. Simply put, the 
flow entering a region of the network is not satisfying the required demand. In demand driven 
modelling this reduces the set of feasible solutions for the Content optimization problem to 



RESIWATER DELIVERABLE 4.2 PAGE 10 

 
 

Robust hydraulic simulation tools 

empty set as demonstrated by Deuerlein et al. (2012). Deuerlein also suggests an algorithm to 
determine if a feasible solution exists for this scenario. Looking at the pressure dependent 
calculation of the same system, it can be shown that by loosening the demand boundary 
conditions the system becomes solvable again, but the consumers will be supplied with a 
reduced flow. 

• Ambiguous constraints: Another example for a mathematical deficiency is given if the 
boundary conditions allow for an infinite number of solutions. In their article, Gorev et al. (2016) 
describe a scenario where two flow control valves (FCV) are installed in series. In this case, the 
two FCVs create a combined head-loss, but due to the ambiguous nature of this problem an 
infinite number of solutions exist and it is impossible to determine which of the two FCVs 
contributes how much. This phenomenon is neither addressed by DDM nor by PDM 
approaches. 

• Pipe rupture: In respect to resilience, phenomena like pipe ruptures (or bursts) are of special 
interest. In this case, the massive water loss dominates the flow in the network. Recent research 
has shown that the Fixed and Varied Area Discharge (FAVAD) model for leakage outflow 
provides a good description for leakage behaviour of elastic materials Van Zyl & Cassa (2014). 
Due to the pressure-dependent nature of the phenomenon, in demand-driven modelling it is not 
possible to adequately handle the problem. In contrast, like the pressure driven demand, it is 
possible to solve these problems in the PDM framework. 

• Presence of high-lying nodes supplying a demand zone: The fourth scenario is correlated 
with the occurrence of low pressure zones in the network. This may for instance be triggered by 
a pipe burst and the subsequent pressure loss. Looking at current demand and pressure driven 
models this behaviour is not considered. In the case of zero or negative pressure, software 
packages like Porteau, SIR 3S and Epanet will give a warning notifying the user that pressure 
dropped below zero, but the hydraulic connection is still intact and disconnected network parts 
will still be supplied. A conceptually simple way to solve this problem in the PDM framework 
may be implemented by an iterative approach that analyses the pressure on every node and 
deletes all links connected to the deficient ones. A different approach has been proposed by 
Piller and Van Zyl (2009). They introduce artificial pressure valves that reduces the flow passing 
high-lying nodes to zero. 

The focus of this deliverable is on the impact of system deficiencies control valve behaviour. For that 
purpose, a mathematical modelling framework is derived that is suited for modelling deficient systems 
with consideration of pressure dependent demands and general flow and pressure control. Two Lemmas 
are formulated that guarantee the existence and uniqueness of a solution. The numerical calculation of 
the solution is discussed and challenges arising from the risk of running into singular systems during 
the iterative process are highlighted.  
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4 MATERIALS AND METHODS 
4.1 Motivation and problem formulation 

4.1.1 Background and objective 
Real water supply networks often include several flow control devices. There are different types of flow 
control. The simplest type of flow control valves are the throttle control valves. Completely closed they 
are used for isolation of pipes during rehabilitation work. They can be also partly closed to reduce the 
flow through the valve but no not stop it completely. The state of the valves is fixed and can changed 
normally only manually. More sophisticated hydraulic behavior can be found in the group of check 
valves (unilateral flow control) for backflow prevention. They allow flow in one direction only and 
close automatically if flow direction would change due to hydraulic conditions in the system. This kind 
of valves is required for protection of pumps in case of an emergency (power blackout or similar). More 
complicated are flow control valves to restrict the flow through the valve to a certain maximum flow. 
For operation of such valves, a closed control loop is implemented consisting of flow measurement in 
combination with a motor valve. From a modelling point of view, flow control devices can be 
subdivided into valves with fixed status (open, closed, fixed partly opened state) and those whose 
hydraulic behavior or status is described by inequality conditions for the flow.  
The modeling of flow control devices has been widely studied. However, there is still a lack of robust 
simulation algorithms that can deal with extreme situations where several pipes are in failure mode and, 
as a result, the system might be decomposed into several disconnected parts. One possible approach to 
analyze such situations (with use of existing tools) is to remove the closed (or broken) pipes from the 
system, check connectivity and analyze the different resulting components separately with a remaining 
risk that flow control devices with inequality conditions result in further decomposition. However, this 
approach is not practicable especially for online calculations since the Jacobian matrix of the system 
must be changed (multiple incidence matrix manipulations, …). The objective of the robust system 
solver development (deliverable 4.4) is to overcome existing limitations. The desired outcome is a 
comprehensive mathematical model that includes all the above-mentioned constraints and a 
corresponding stable algorithm that finds a solution in any case. The task of the mathematical model is 
to proof existence and uniqueness of a solution, the algorithm must be able to converge also in 
degenerate cases.  
In this chapter, first, the mathematical model of the steady-state solution for pressurized pipe systems 
with consideration of pressure dependent demands in combination with flow control devices is derived 
from the PDM Model of deliverable 4.1. It will be shown that if a solution exists the flows are always 
unique due to the strict convexity of the System Content function. The range of models for which such 
solution exists is strongly increased by relaxation of demand constraints in PDM modeling. There is no 
risk of isolated demands anymore since the PDM model can reduce the outflow to zero. The only 
situation for nonexistence can result from improper choice of flow constraints of flow control devices 
causing that the polyhedral set that is composed of the continuity equation and the flow constraints of 
the control devices and outflow conditions is empty. It will be shown that under a certain constraint 
qualification the KKT conditions are necessary for a unique solution of the problem. 
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Then, the degenerate case of a solution with non-unique Lagrangian multipliers is discussed. This case 
appears if at the solution point the LICQ (linear constraint qualification) does not hold. It will be shown 
that linear dependency of flow constraints is equivalent with the decomposition of the distribution 
network into several components. Remembering that the Lagrangian multipliers of the equality 
constraint for network continuity refer to nodal heads this means that also the nodal heads are not 
uniquely defined in this situation. 
Moving from the theoretical discussions to the development of a robust numerical algorithm that can 
implemented for practical solution of the steady-state equations some regularization techniques will be 
proposed for avoiding singularity of the system equations.   
 

4.2 Mathematical model 

4.2.1 Content of flow control devices 
The content of a flow control device is described by a similar model that was used for the PDM nodes. 
There is a range of flows between the lower and upper bound where the headloss along the link is 
described by a nonlinear function of the flow (chosen pipe headloss function for pipes and minor 
headloss for devices). For example, the task of a Flow Control Valve (FCV) is to restrict the flow to a 
maximum set flow q"#$ independent from the current head difference between initial node and last node 
(see Figure 2). If the flow is below the maximum set flow q"#$, the valve is fully opened and behaves 
as a minor loss element. If the flow would exceed the set flow the head loss coefficient is increased (by 
reducing the opening of the valve until the set flow is reached again. In steady-state modelling this 
control behavior can be represented by the multivalued mapping shown in Figure 2. If the valve is in 
active control mode, it operates on the vertical line in Figure 2 left. In this case, the head-difference 
between upstream and downstream node of the valve is composed by the headloss h"#$ of the open 
valve for the set flow q"#$ and an additional minor headloss that is required for restricting the flow to 
q"#$. In the mathematical model the additional minor headloss is represented by the Lagrangian 
multiplier of the active flow constraint.  

 
Figure 2: Multivalued subdifferential mapping and Content for Flow Control Valve (FCV). 
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The content of the multivalued subdifferential mapping 𝑞 ↦ ℎ of the FCV is defined by the lower semi-
continuous function W on the right-hand site of Figure 2. 
 
A similar relationship can be formulated for a non-return valve (check valve). Here, the flow is possible 
only in one direction leading to the inequality condition q ≥ 0. If the constraint is binding (active, 
fulfilled with equality) the head difference between upstream and downstream node operates on the 
vertical line for negative h. In contrast to the FCV where the Lagrangian multiplier that is linked with 
the active flow constraint represents a minor headloss, the Lagrangian multiplier of the active CHV 
constraint refers to the head difference of the to nodes that are not connected any more due to valve 
closure. The multivalued (subdifferential) hydraulic relation of the CV and its corresponding Content 
function is visualized in Figure 3. 
 
There may be other controls on network links or combinations of them with similar multivalued 
hydraulic mappings. Or for planning purposes one might be interested in defining a maximum capacity 
of a pipe. In the following the problem of flow control is generalized. Therefore, it is assumed that for 
each link of the network graph there could be a lower and upper flow bound. Based on this assumption 
the Content minimization problem for restricted flow networks is formulated. As it will be seen later 
the PDM Model (as described I deliverable 4.1) has much better performance as the DDM model due 
to the increased feasible flow set by allowing the reduction of the consumption for insufficient pressures.   

 
Figure 3: Multivalued (subdifferential) mapping and Content for Check Valve (CV). 

Certainly, in real systems, a certain equipment is required to control the flow. Here, for simplicity of 
notation but without losing the generality it is assumed that every link of the model has an upper and a 
lower bound for the flow. Then, like Eq. (11) in Deliverable 4.1 the unconstrained (meaning no 
inequality constraints) minimization problem of the convex and lower semi-continuous Content 
function is:  
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min
[𝐪,𝐜]∈456758
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𝐪E𝐀G𝐡G	

𝑠. 𝑡.		−𝐀AE𝐪 − 𝐜 = 𝟎><

 

  

(1) 

If the Wagner function is used for the POR1 function, the corresponding constrained minimization of 
the continuous Content function follows as (see Eq. (13) in D 4.1): 

min
[𝐪,𝐜]∈456758

𝐶 𝐪, 𝐜 = 𝐪E𝚫𝐡 	− 𝐪𝑻𝐀G𝐡G +
𝟏
𝟑𝐜

E	𝐍𝐜 + 𝐜𝑻𝐡STU

𝑠. 𝑡.		−𝐀AE𝐪 − 𝐜 = 𝟎><
 

−𝐜 ≤ 𝟎>< 
𝐜 ≤ 𝐝 

 𝐪 − 𝐪SXY ≤ 𝟎 
−𝐪 + 𝐪𝐦𝐢𝐧 ≤ 𝟎  

 

(2) 

The only difference to the PDM model consists in the additional flow constraints. Please note that also 
equality constraints can be considered in Eq. (2) by adding the same lower and upper bound for the 
respective link flow. The Lagrangian of the minimization problem of Eq. (2) is defined as: 

𝐿 𝐪, 𝐜, 𝐡, 𝛌, 𝛍, 𝛋, 𝛖 = 𝐪E𝚫𝐡	 − 	𝐪E𝐀G𝐡G +
A
b
𝐜𝑻	𝐍𝐜 + 𝐜𝑻𝐡STU−𝐡E 𝐀AE𝐪 + 𝐜 + 𝛍E 𝐜 − 𝐝 − 𝛌E𝐜	 +

𝛋E −	𝐪 + 𝐪STU + 𝛎E 	𝐪 − 𝐪SXY    
𝛌 ≥ 𝟎><, 𝛍 ≥ 𝟎><, 𝛋 ≥ 𝟎>?, 𝛎 ≥ 𝟎>? 

 

(3) 

In addition to the Lagrangian multipliers 𝛌 and 𝛍 that refer to active constraints of the nodal consumptions 
there are also the additional multipliers 𝛋  and 𝛎 for the active lower and upper bounds of link flows. In this case, 
the necessary KKT-conditions are:  
 
                                         𝐆 𝐪 𝐪 − 𝐀𝟏𝐡 − 𝐀G𝐡G − 𝐕f𝛋∗ + 𝐕h𝛎∗= 𝟎Ui 
                                                   𝐍(𝐜)𝐜 + 𝐡STU − 𝐔f𝑻𝛌∗ + 𝐔h𝑻𝛍∗	= h 

                  				−𝑨AE𝐪 − 𝐜 = 𝟎Un 
                                                                                                 		−𝐔f𝐜 = 𝟎𝒎 

                          𝐔h(𝐜 − 𝐝) = 𝟎𝒔 
                                                                                 −𝐕f(𝐪 − 𝐪STU) = 𝟎 

                 		𝐕h(𝐪 − 𝐪SXY) = 𝟎 
 

(4) 

The new vectors 𝛋∗ and 𝛎∗are the Lagrangian Multipliers of active flow bounds at the solution point. 
They can be interpreted as additional minor head loss penalties to maintain the flow at the setting. The 
last two equations represent the complementary slackness condition with the index sets 𝐕f and 𝐕h. The 
value is 1 for active bounds and 0 else. For solution, a Newton-Raphson type active set projection 

                                                
 
1 POR : Pressure Outflow Relationship ; the Wagner function is described in D4.1/ 



RESIWATER DELIVERABLE 4.2 PAGE 15 

 
 

Robust hydraulic simulation tools 

method in the primal space is proposed. The algorithms start with a feasible flow vector 𝐪		𝐜 E and 
continues with iteratively solving the linearized system: 

𝐅 r 𝟎𝒏𝒑,𝒏𝒋 −𝐀A 𝟎𝒏𝒑,𝒏𝒍 𝟎𝒏𝒑,𝒏𝒖 −𝐕xE
r 𝐕yE

r

𝟎𝒏𝒋,𝒏𝒑 𝐌 r −𝐈𝒏𝒋 −𝐔xE
r 𝐔yE

r 𝟎𝒏𝒋,𝒏𝒑𝒍 𝟎𝒏𝒋,𝒏𝒑𝒖
−𝐀AE −𝐈𝒏𝒋 𝟎𝒏𝒋,𝒏𝒋 𝟎𝒏𝒋,𝒏𝒍 𝟎𝒏𝒋,𝒏𝒖 𝟎𝒏𝒋,𝒏𝒑𝒍 𝟎𝒏𝒋,𝒏𝒑𝒖
𝟎𝒏𝒍,𝒏𝒑 −𝐔x r 𝟎𝒏𝒍,𝒏𝒋 𝟎𝒏𝒍,𝒏𝒍 𝟎𝒏𝒍,𝒏𝒖 𝟎𝒏𝒍,𝒏𝒑𝒍 𝟎𝒏𝒍,𝒏𝒑𝒖
𝟎𝒏𝒖,𝒏𝒑 𝐔y r 𝟎𝒏𝒖,𝒏𝒋 𝟎𝒏𝒖,𝒏𝒍 𝟎𝒏𝒖,𝒏𝒖 𝟎𝒏𝒍,𝒏𝒑𝒍 𝟎𝒏𝒍,𝒏𝒑𝒖
−𝐕x r 𝟎𝒏𝒑𝒍,𝒏𝒋 𝟎𝒏𝒑𝒍,𝒏𝒋 𝟎𝒏𝒑𝒍,𝒏𝒍 𝟎𝒏𝒑𝒍,𝒏𝒖 𝟎𝒏𝒑𝒍,𝒏𝒑𝒍 𝟎𝒏𝒑𝒍,𝒏𝒑𝒖
𝐕y r 𝟎𝒏𝒑𝒖,𝒏𝒋 𝟎𝒏𝒑𝒖,𝒏𝒋 𝟎𝒏𝒑𝒖,𝒏𝒍 𝟎𝒏𝒑𝒖,𝒏𝒖 𝟎𝒏𝒑𝒖,𝒏𝒑𝒍 𝟎𝒏𝒑𝒖,𝒏𝒑𝒖

𝐪 r|A − 𝐪 r

𝐜 r|A − 𝐜 r

𝐡 r|A − 𝐡 r

𝛌∗ r|A − 𝛌∗r
𝛍∗ r|A − 𝛍∗r

𝛋∗ r|A − 𝛋∗r
𝛎∗ r|A − 𝛎∗r

 

 

= −

𝐆 𝐪 r 𝐪 r − 𝐀A𝐡 r − 𝐀G𝐡𝟎−𝐕xE
r 𝛋∗r + 𝐕yE

r 𝛎∗r

𝐍(r)𝐜(r) − 𝐡(r) + 𝐡}B> − 𝐔f𝑻𝛌∗𝒌 + 𝐔h𝑻𝛍∗𝒌

−𝐀AE𝐪 r − 𝐜(𝒌)

−𝐔x(r)𝐜(r)

𝐔y(r)(𝐜(r) − 𝐝)
−𝐕x r (𝐪(𝒌) − 𝐪STU)
𝐕y r (𝐪(𝒌) − 𝐪SXY)

 

(5) 

  
The binding constraints can be used for reducing the number of variables. For that purpose, first, after 
reordering of the nodes, the rows and columns of the matrices 𝐌, 𝐈, 𝐀1 are subdivided into three 
partitions: the index A in (𝐌�,𝐈�) and second index in 𝐀∗,�  refers to nodes, for which the current outflow 
is dependent on the current pressure. The index L refers to nodes where no outflow is possible because 
the pressure is below the minimum pressure and index U refers to nodes with full supply (pressure above 
minimum service pressure). Similarly, and in contrast to the pure PDM formulation without flow 
constraints, the rows of 𝐀A are reordered and subdivided into three parts. First index A refers to links 
with no active flow constraints, first index L denotes links for which the lower bound is active and first 
index U means that the links have active upper bounds. The modified system is shown in the following 
Eq. (6). The dimension on the zero matrices are omitted for sake of simplicity and improved readability. 
Since we are dealing with simple bound constraints only the matrices U and V are identity matrices and 
have been removed from the right-hand side.   
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𝐅𝑨 𝟎 𝟎 𝟎 𝟎 𝟎 −𝐀�,� −𝐀�,x −𝐀�,y 𝟎 𝟎 𝟎 𝟎
𝟎 𝐅𝑳 𝟎 𝟎 𝟎 𝟎 −𝐀x,� −𝐀x,x −𝐀x,y 𝟎 𝟎 −𝐈�� 𝟎
𝟎 𝟎 𝐅𝑼 𝟎 𝟎 𝟎 −𝐀y,� −𝐀y,x −𝐀y,y 𝟎 𝟎 𝟎 𝐈��
𝟎 𝟎 𝟎 𝐌� 𝟎 𝟎 −𝐈�X 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝐌x 𝟎 𝟎 −𝐈�� 𝟎 −𝐈�� 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝐌y 𝟎 𝟎 −𝐈�� 𝟎 𝐈�� 𝟎 𝟎

−𝐀�,�
E

−𝐀x,�
E

−𝐀y,�
E

−𝐈�X 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

−𝐀�,f
E

−𝐀x,x
E

−𝐀y,�
E

𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

−𝐀�,y
E

−𝐀f,y
E

−𝐀h,y
E

𝟎 𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

 

 

𝐪�(r|A) − 𝐪�(r)

𝐪x(r|A) − 𝐪x(r)

𝐪y(r|A) − 𝐪y(r)

𝐜�(r|A) − 𝐜�(r)

𝐜x(r|A) − 𝐜x(r)

𝐜y(r|A) − 𝐜y(r)

𝐡�
(r|A) − 𝐡�

(r)

𝐡x
(r|A) − 𝐡x

(r)

𝐡y
(r|A) − 𝐡y

(r)

𝛌∗(r|A) − 𝛌∗(r)
𝛍∗(𝒌|𝟏) − 𝛍∗(r)

𝛋∗(r|A) − 𝛋∗(r)
𝛎∗(r|A) − 𝛎∗(r)

= −

𝐆𝑨 𝐪�
(r) 𝐪�

(r) − 𝐀�,�𝐡�
(r) − 𝐀�,x𝐡x

(r) − 𝐀�,y𝐡𝑼
(r) − 𝐀�,G𝐡𝟎

𝐆𝑳 𝐪x
(r) 𝐪x

(r) − 𝐀x,�𝐡�
r − 𝐀x,x𝐡x

r − 𝐀x,y𝐡𝑼
r − 𝐀f,G𝐡𝟎 − 𝛋∗r

𝐆𝑼 𝐪y
(r) 𝐪y

(r) − 𝐀y,�𝐡�
(r) − 𝐀y,x𝐡x

(r) − 𝐀y,y𝐡𝑼
(r) − 𝐀h,G𝐡𝟎 + 𝛎∗r

𝐍�(r)𝐜�(r) − 𝐡�
(r) + 𝐡�,}B>

−𝐡x
(r) + 𝐡x,}B> − 𝛌∗(𝒌)

𝐡y,� − 𝐡y
r + 𝛍∗(𝒌)

−𝐀�,�
E
𝐪�
(r) − 𝐀x,�

E
𝐪x
(r) − 𝐀y,�

E
𝐪y
(r) − 𝐜�(r)

−𝐀�,f
E
𝐪�
(r) − 𝐀x,x

E
𝐪x
(r)−𝐀y,x

E
𝐪y
(r) − 𝐜x(r)

−𝐀�,y
E
𝐪�
(r) − 𝐀f,y

E
𝐪x
(r) − 𝐀h,y

E
𝐪y
(r) − 𝐜y(r)

−𝐜x(r)

𝐜y(r) − 𝒅y
−(𝐪x

(r) − 𝐪f,STU)

(𝐪y
(r) − 𝐪h,SXY)

 

(6) 

The system in Eq. (6) can be simplified by elimination of variables with active bounds. First, elimination 
of 𝐪x  and 𝐪y 	by solving the last two rows delivers: 

𝐅𝑨 𝟎 𝟎 𝟎 −𝐀�,� −𝐀�,x −𝐀�,y 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝐀x,� −𝐀x,x −𝐀x,y 𝟎 𝟎 −𝐈�� 𝟎
𝟎 𝟎 𝟎 𝟎 −𝐀y,� −𝐀y,x −𝐀y,y 𝟎 𝟎 𝟎 𝐈��
𝟎 𝐌� 𝟎 𝟎 −𝐈�X 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝐌x 𝟎 𝟎 −𝐈�� 𝟎 −𝐈�� 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝐌y 𝟎 𝟎 −𝐈�� 𝟎 𝐈�� 𝟎 𝟎

−𝐀�,�
E

−𝐈�X 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

−𝐀�,f
E

𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

−𝐀�,y
E

𝟎 𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 −𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝐈�� 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

.

𝐪�(r|A) − 𝐪�(r)

𝐜�(r|A) − 𝐜�(r)

𝐜x(r|A) − 𝐜x(r)

𝐜y(r|A) − 𝐜y(r)

𝐡�
(r|A) − 𝐡�

(r)

𝐡x
(r|A) − 𝐡x

(r)

𝐡y
(r|A) − 𝐡y

(r)

𝛌∗(r|A) − 𝛌∗(r)
𝛍∗(𝒌|𝟏) − 𝛍∗(r)

𝛋∗(r|A) − 𝛋∗(r)
𝛎∗(r|A) − 𝛎∗(r)

 

 

(7) 
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= −

𝐆𝑨 𝐪�
(r) 𝐪�

(r) − 𝐀�,�𝐡�
(r) − 𝐀�,x𝐡x

(r) − 𝐀�,y𝐡𝑼
(r) − 𝐀�,G𝐡𝟎

𝐅𝑳 𝐪x
(r) 𝐪x,}B>−𝐪x

(r) + 𝐆𝑳 𝐪x
(r) 𝐪x

(r) − 𝐀x,�𝐡�
r − 𝐀x,x𝐡x

r − 𝐀x,y𝐡𝑼
r − 𝐀f,G𝐡𝟎 − 𝛋∗r

𝐅𝑼 𝐪y
(r) 𝐪y,}��−𝐪y

(r) + 𝐆𝑼 𝐪y
(r) 𝐪y

(r) − 𝐀y,�𝐡�
(r) − 𝐀y,x𝐡x

(r) − 𝐀y,y𝐡𝑼
(r) − 𝐀h,G𝐡𝟎 + 𝛎∗r

𝐍�(r)𝐜�(r) − 𝐡�
(r) + 𝐡�,}B>

−𝐡x
(r) + 𝐡x,}B> − 𝛌∗(𝒌)

𝐡y,� − 𝐡y
r + 𝛍∗(𝒌)

−𝐀�,�
E
𝐪�
(r) − 𝐀x,�

E
𝐪x,}B> − 𝐀y,�

E
𝐪y,}�� − 𝐜�(r)

−𝐀�,f
E
𝐪�
(r) − 𝐀x,x

E
𝐪x,}B>−𝐀y,x

E
𝐪y,}�� − 𝐜x(r)

−𝐀�,y
E
𝐪�
(r) − 𝐀f,y

E
𝐪x,}B> − 𝐀h,y

E
𝐪y,}�� − 𝐜y(r)

−𝐜x(r)

𝐜y(r) − 𝐝y

 

Then, the known outflows that belong to the active POR constraints (last two rows in the matrix Eq. 
(7)) are removed and the known consumptions 𝐜x and 𝐜y (columns with index “L” and index “U”) are 
put on the right-hand side of the system of equations.  

𝐅𝑨 𝟎 −𝐀�,� −𝐀�,x −𝐀�,y 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 −𝐀x,� −𝐀x,x −𝐀x,y 𝟎 𝟎 −𝐈�� 𝟎
𝟎 𝟎 −𝐀y,� −𝐀y,x −𝐀y,y 𝟎 𝟎 𝟎 𝐈��
𝟎 𝐌� −𝐈�X 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 −𝐈�� 𝟎 −𝐈�� 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝐈�� 𝟎 𝐈�� 𝟎 𝟎

−𝐀�,�
E

−𝐈�X 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

−𝐀�,f
E

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

−𝐀�,y
E

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

.

𝐪�(r|A) − 𝐪�(r)

𝐜�(r|A) − 𝐜�(r)

𝐡�
(r|A) − 𝐡�

(r)

𝐡x
(r|A) − 𝐡x

(r)

𝐡y
(r|A) − 𝐡y

(r)

𝛌∗(r|A) − 𝛌∗(r)
𝛍∗(𝒌|𝟏) − 𝛍∗(r)

𝛋∗(r|A) − 𝛋∗(r)

𝛎∗(r|A) − 𝛎∗(r)

 

 

= −

𝐆𝑨 𝐪�
(r) 𝐪�

(r) − 𝐀�,�𝐡�
(r) − 𝐀�,x𝐡x

(r) − 𝐀�,y𝐡𝑼
(r) − 𝐀�,G𝐡𝟎

𝐅𝑳 𝐪x
(r) 𝐪x,}B>−𝐪x

(r) + 𝐆𝑳 𝐪x
(r) 𝐪x

(r) − 𝐀x,�𝐡�
r − 𝐀x,x𝐡x

r − 𝐀x,y𝐡𝑼
r − 𝐀f,G𝐡𝟎 − 𝛋∗r

𝐅𝑼 𝐪y
(r) 𝐪y,}��−𝐪y

(r) + 𝐆𝑼 𝐪y
(r) 𝐪y

(r) − 𝐀y,�𝐡�
(r) − 𝐀y,x𝐡x

(r) − 𝐀y,y𝐡𝑼
(r) − 𝐀h,G𝐡𝟎 + 𝛎∗r

𝐍�(r)𝐜�(r) − 𝐡�
(r) + 𝐡�,}B>

−𝐌x 𝐜x(r) − 𝐡x
(r) + 𝐡x,}B> − 𝛌∗(𝒌)

−𝐌y 𝐜y(r) − 𝒅y +𝐡y,� − 𝐡y
r + 𝛍∗(𝒌)

−𝐀�,�
E
𝐪�
(r) − 𝐀x,�

E
𝐪x,}B> − 𝐀y,�

E
𝐪y,}�� − 𝐜�(r)

−𝐀�,f
E
𝐪�
(r) − 𝐀x,x

E
𝐪x,}B>−𝐀y,x

E
𝐪y,}��

−𝐀�,y
E
𝐪�
(r) − 𝐀f,y

E
𝐪x,}B> − 𝐀h,y

E
𝐪y,}�� − 𝒅y

 

(8) 

In the previous equation, the last four columns that belong to the Lagrangian multipliers are decoupled 
from the rest of the system. After elimination of the corresponding rows and columns the remaining 
system is:  
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𝐅𝑨 𝟎 −𝐀�,� −𝐀�,x −𝐀�,y
𝟎 𝐌� −𝐈�X 𝟎 𝟎

−𝐀�,�
E

−𝐈�X 𝟎 𝟎 𝟎

−𝐀�,f
E

𝟎 𝟎 𝟎 𝟎

−𝐀�,y
E

𝟎 𝟎 𝟎 𝟎

 

 

𝐪�(r|A) − 𝐪�(r)

𝐜�(r|A) − 𝐜�(r)

𝐡�
(r|A) − 𝐡�

(r)

𝐡x
(r|A) − 𝐡x

(r)

𝐡y
(r|A) − 𝐡y

(r)

= −

𝐆𝑨 𝐪�
(r) 𝐪�

(r) − 𝐀�,�𝐡�
(r) − 𝐀�,x𝐡x

(r) − 𝐀�,y𝐡𝑼
(r) − 𝐀�,G𝐡𝟎

𝐍�(r)𝐜�(r) − 𝐡�
(r) + 𝐡�,}B>

−𝐀�,�
E
𝐪�
(r) − 𝐀x,�

E
𝐪x,}B> − 𝐀y,�

E
𝐪y,}�� − 𝐜�(r)

−𝐀�,f
E
𝐪�
(r) − 𝐀x,x

E
𝐪x,}B>−𝐀y,x

E
𝐪y,}��

−𝐀�,y
E
𝐪�
(r) − 𝐀f,y

E
𝐪x,}B> − 𝐀h,y

E
𝐪y,}�� − 𝒅y

 

(9) 

Once the above system is solved the multipliers can be calculated as follows: 

𝛌(r|A) = 𝐡x,}B> − 𝐡x
(r|A)−𝐌x 𝐜x(r)  

𝛍(r|A) = 𝐌y 𝐜y(r) − 𝒅y + 𝐡y
(r|A)

− 𝐡y,� 
𝛋 r|A = 𝐅𝑳 𝐪x

(r) 𝐪x,}B>−𝐪x
(r) + 𝐆𝑳 𝐪x

r 𝐪x
r − 𝐀x,�𝐡�

r|A − 𝐀x,x𝐡x
r|A − 𝐀x,y𝐡𝑼

r|A − 𝐀f,G𝐡𝟎  

𝛎(r|A) = − 𝐅𝑼 𝐪y
(r) 𝐪y,}��−𝐪y

(r) + 𝐆𝑼 𝐪y
(r) 𝐪y

(r) − 𝐀y,�𝐡�
(r|A) − 𝐀y,x𝐡x

(r|A) − 𝐀y,y𝐡𝑼
(r|A) − 𝐀h,G𝐡𝟎  

 

(10) 

The red terms can be removed if the constraint is already saturated/active at iteration k. 

If we replace (−𝐈�X 𝟎 𝟎) by −𝐈�� and (𝟎 𝟎 −𝐈,�) by −𝐈��	 Eq (9) can be written in the more compact 
form: 

𝐅𝑨 𝟎 −𝐀�,A
𝟎 𝐌� −𝐈��

−𝐀�,AE −𝐈��
𝑻 𝟎

𝐪�(r|A) − 𝐪�(r)

𝐜�(r|A) − 𝐜�(r)

𝐡(r|A) − 𝐡(r)

= −

𝐆𝑨 𝐪�
(r) 𝐪�

(r) − 𝐀�,A𝐡(r) − 𝐀�,G𝐡𝟎
𝐍�(r)𝐜�(r) − 𝐡�

(r) + 𝐡�,}B>
−𝐀�,AE 𝐪�

r − 𝐀x,AE 𝐪x,}B> − 𝐀y,AE 𝐪y,}�� − 𝐈��
𝑻𝐜�(r) − 𝐈��

𝑻𝐝y

 

 
For comparison, the system for PDM without flow constraints was: 

(11) 

  
𝐅 𝟎 −𝐀A
𝟎 𝐌� −𝐈
−𝐀AE −𝐈� 𝟎

𝐪(r|A) − 𝐪(r)

𝐜�(r|A) − 𝐜�(r)

𝐡(r|A) − 𝐡(r)
= −

𝐆 𝐪 r 𝐪 r − 𝐀A𝐡 r − 𝐀G𝐡𝟎
𝐍�(r)𝐜�(r) − 𝐡�

(r) + 𝐡�,}B>
−𝐀AE𝐪 r − 𝐜(𝐡(r))

 
(12) 

As it can be seen the second rows referring to the active POR functions are identical. The energy balance 
includes only the links that have no active flow constraints and the mass balance includes additional 
terms for the links with active flow constraints. In essence, the system is equivalent with the system that 



RESIWATER DELIVERABLE 4.2 PAGE 19 

 
 

Robust hydraulic simulation tools 

follows from the original network where all links with active flow constraints are replaced by positive 
and negative fixed demands at the initial and end node that are equal to the known flow of the link.  

If the diagonal matrices 𝐅�  and 𝐌� have full rank, the flow vector and consumption vector can be expressed 
by the unknown heads: 

 
𝐪�
(r|A) − 𝐪�

(r)

𝐜�
(r|A) − 𝐜�

(r) = −
𝐅��A 𝟎
𝟎 𝐌�

�A
𝐆𝑨 𝐪�

(r) 𝐪�
(r) − 𝐀�,G𝐡𝟎 − 𝐀�,A𝐡(r|A)

𝐍� r 𝐜� r − 𝐡�
(r|A) + 𝐡�,}B>

 (13) 

Inserting Eq. (13) in the last row of Eq. (12) delivers the Schur complement of the flow controlled 
hydraulic steady-state equations: 

𝐀�,AE 𝐅��A𝐀�,A + 𝐈��E 𝐌�
�A𝐈�� 𝐡(r|A)

= 𝐀�,AE 𝐅��A 𝐆𝑨 𝐪�
(r) 𝐪�

(r)−𝐀�,G𝐡G + 𝐈��E 𝐌�
�A 𝐍�(r)𝐜�(r) + 𝐡�,}B> − 𝐀𝐴,1𝑇 𝐪𝐴

𝑘

− 𝐀𝐿,1𝑇 𝐪𝑚𝑖𝑛 − 𝐀𝑈,1𝑇 𝐪𝑚𝑎𝑥 − 𝐈𝑐𝑎
𝑻𝐜𝐴(𝑘) − 𝐈𝑐𝑢

𝑻𝐝𝑈 
(14) 

The global gradient solution consists of sequential solving of: 

𝐀�,AE 𝐅��A𝐀�,A + 𝐈��E 𝐌�
�A𝐈�� 𝐡(r|A)

= 𝐀�,AE 𝐅��A 𝐆𝑨 𝐪�
(r) 𝐪�

(r)−𝐀�,G𝐡G + 𝐈��E 𝐌�
�A 𝐍�(r)𝐜�(r) + 𝐡�,}B> − 𝐀�,AE 𝐪�

r

− 𝐀x,AE 𝐪}B> − 𝐀y,AE 𝐪}�� − 𝐈𝑐𝑎
𝑻𝐜𝐴(𝑘) − 𝐈𝑐𝑢

𝑻𝐝𝑈 
𝐪�
(r|A) = 𝐪�

(r)−𝐅��A 𝐆𝑨 𝐪�
(r) 𝐪�

(r) − 𝐀�,G𝐡𝟎 − 𝐀�,A𝐡�
(r|A) - 

𝐜�
r|A = 𝐜�

r − 𝐌�
�A −𝐈�� 𝐡 r|A − 𝐡 r + 𝐍� r 𝐜� r − 𝐡�

r + 𝐡�,}B>  
𝛌(r|A) = 𝐡x,}B> − 𝐡x

(r|A) 
𝛍(r|A) = 𝐡y

(r|A) − 𝐡y,� 
𝛋 r|A = 𝐆𝑳 𝐪x

(r) 𝐪x
(r) − 𝐀x,�𝐡�

r|A − 𝐀x,x𝐡x
r|A − 𝐀x,y𝐡𝑼

r|A − 𝐀f,G𝐡𝟎  

𝛎(r|A) = − 𝐆𝑼 𝐪y
(r) 𝐪y

(r) − 𝐀y,�𝐡�
(r|A) − 𝐀y,x𝐡x

(r|A) − 𝐀y,y𝐡𝑼
(r|A) − 𝐀h,G𝐡𝟎  

 

(15) 

The difference to Eq. (26) of D 4.1 is that the incidence matrix 𝐀� includes only the rows that belong to 
links with non-active flow constraints. The additional multipliers 𝛋 and 𝛎 are required for checking the 
validity of the KKT-conditions. Once a multiplier becomes negative the decomposition of matrix A 
must be changed accordingly. For practical implementation, it is only necessary that matrix 𝐀� is 
updated by adding or removing rows. The calculation of the multiplier is straight forward by calculation 
of the difference between nodal heads and the headloss along the link.  

4.2.2 Existence and uniqueness of a solution 
To prove the existence and uniqueness of a hydraulic steady-state, the content formulation is 
advantageous. If all the content functions are strictly convex and norm-coercive ( 𝐶<(𝑥<) 	⟶ +∞	 
if 𝑥< → +∞ ), then the total system content is a strictly convex and norm-coercive function of 
	(𝐪, 𝐜). The strict convexity of the content can be proven by using the monotonicity of the 
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mappings 𝑞B ↦ ℎB of network elements. From the norm-coercivity it follows that the not restricted 
system content has a minimum. So far, there is no difference between the PDM model in D 4.1 
and the flow constrained extension. To prove the existence of a solution it is sufficient to show that 
the polyhedron that is described by the constraints is nonempty.  

𝑷 = 𝐱 ∈ 𝐑>6|>8	|	 𝐀AE		𝐈 𝐱 = 𝟎; 		𝐱 ≤ 𝐱}B>	; 𝐱 ≥ 𝐱}�� 	≠ ∅ (16) 
with 𝐱𝑻 = 𝒒𝑻	𝒄𝑻 , 𝐱𝒎𝒊𝒏𝑻 = 𝐪𝒎𝒊𝒏𝑻 	𝟎 , 𝐱𝒎	𝒂𝒙𝑻 = 𝐪𝒎	𝒂𝒙𝑻 	𝐝 . If 	𝐪𝒎𝒊𝒏 ≤ 𝟎, the pipe flow rates and nodal outflows 
𝐪 = 𝟎𝒏𝒑 and 𝐜 = 𝟎𝒏𝒋 are trivially feasible solutions for the set of constraints (Eq. (16)). It is proven that 
there always exists a solution to the problem. The more theoretical case where 	𝒒𝒊	,𝒎𝒊𝒏 > 	𝟎 for some 	𝒊 
refers to flow constraints that would require pumping is not considered here. Together with the strict 
convexity of the system content, the existence of a unique flow distribution is proved.  
However, this does not guarantee that also the pressure heads are unique. Please remember that the KKT 
conditions are necessary and sufficient for (strictly) convex problems. Whereas in the pure PDM case 
without flow constraints, the linear independency condition was automatically fulfilled for connected 
networks this is not true in the general case with flow bounds.  
 
Proposition 1:  
Let 𝐀� =

𝐀�,A
𝐈�

  be the reduced incidence matrix of the augmented graph where all links and virtual links 
(referring to consumption nodes) with active flow/consumption bounds have been removed. If the 
reduced network graph is connected then 𝐀� has full column rank. 
 
AA,1 has as many columns as junction nodes and the rows correspond to links with non-active flow 
control, including simple links. The following Lemma proves Existence and Uniqueness based on 
proposition 1.  
 
Lemma 1: 
The norm-coercivity was already proven above. Together with the strict convexity of the Content 
function it follows that there is almost one minimum that corresponds with a unique flow distribution 
and consumption vector. With Proposition 1 it is also shown that the LICQ holds. As a consequence, 
the Lagrangian multipliers are unique (the set of Lagrange multiplier vector is a singleton).  
 
In practice, problems with singular system matrices and resulting non-uniqueness are often reported. 
How is this consistent with the statement of uniqueness? The answer is that in practice it is often difficult 
to guarantee that the Linear Independency Constraint Qualification (LICQ) is always fulfilled during 
the iterative solution process. If the set of active flow constraints is changed it must be checked that the 
linear system that includes the continuity equation and all active flow and outflow constraints has no 
linearly dependent rows (has full row rank). Moreover, in practical applications it is sometimes difficult 
to decide which of the redundant constraints should be activated. Non-uniqueness of heads (the 
Lagrange multipliers) is always a consequence of linearly dependent equations of active flow constraints 
combined with the continuity equations. Such situations can only be avoided by careful pre-analysis 
that detects infeasible configurations (as described in Appendix 7.1) or a check when constraints are 
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activated. In general, however, this approach is not suitable due to the requirement of frequently 
changing the system. Especially if the model is used for automatized online simulations the maintenance 
of the same system (same number of rows in and columns in the system matrix) is highly desirable.  
As it will be seen in the following unlike as for the PDM model in D 4.1 where the proof of linear 
interdependency of active flow constraints by maintaining the original system size was shown to be 
trivial if the system is connected, the LICQ may not be fulfilled in the case of general flow control. In 
principle, any link may have an active flow bound, which can result in disconnected network graph. 
Therefore, in this case the most challenging problem is to avoid such linear dependency and connected 
to that to avoid singular or ill-posed systems of equations. Such system deficiencies may occur at the 
final solution that indicated instability of the real physical system but also during the iterative process 
when the true solution is far from instable states.  
In the following possible solution techniques are presented and discussed in terms of robustness and 
efficiency.  
 

4.3 Numerical solution of flow constrained PDM problems 

4.3.1 Challenges 
Problems in the numerical solution process that can arise not all exclusively for the flow constrained 
case are: 

• Singular F matrix caused by zero flows 
• Singular M matrix caused by zero consumption 
• Singular Jacobian due to decomposed system as a consequence of (multiple) link removals 

(closed valves, active flow constraint) 
• Empty feasible set due to conflicting flow constraints 

 
The first two issues with singularity of the two diagonal matrices F and M can be resolved by simple 
regularization meaning that under a certain threshold for the flow or the consumption the derivative is 
calculated for the flow threshold and not for the actual flow. Alternatively, other techniques for dealing 
with zero flows can be found in literature.  
The more challenging problem is the one of dealing with conflicting constraints and decomposed 
systems. By using PDM instead of DDM the feasible set is strongly increased. Even for disconnected 
parts that have a demand the feasible set is nonempty due to the ability of the PDM demand nodes to 
reduce the consumption to zero. In DDM disconnected demand nodes lead to empty feasible set. In 
PDM analysis empty feasible sets are rare but can results from poorly defined flow control device 
settings. In the following different methods for solution of the problem are emphasized and compared 
with respect to their benefits and shortcomings. 

4.3.2 Methods for numerical solution of the Content Minimization Problem 
The Content Minimization Problem Eq. (2) for flow constrained PDM analysis has the general form: 
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min
𝐱∈45

𝐶 𝐱
𝑠. 𝑡.		𝐀𝐱 = 𝟎, 𝐃𝐱 ≤ 𝐛	

 

 
(17) 

Where 𝐶 is the strictly convex Content function, 𝐀 is a n𝒋×n matrix2, 𝐃 is a r×n indicator matrix 
(entries are either 1, -1 or 0) that selects variables having lower and/or upper bounds, and 𝑛 = 𝑛< + 𝑛?. 
The linear equality and inequality constraints define a polyhedron. Eq. (17) is the primal formulation, x 
the primal variable and other formulations exist (see for example, Elhay et al., 2016). 

𝑃 = 𝐱|𝐀𝐱 = 𝟎, 𝐃𝐱 ≤ 𝐛  
 (18) 

In the following possible solution techniques are briefly described. 
4.3.2.1 Active	set	method	(ASM)	
A possible approach to solve the minimization problem of Eq. (17) is the active set method (ASM). The 
ASM method is subdivided into two phases. The first phase consists of the calculation of a primal 
feasible point. A point 𝐱	is called primal feasible if 𝐱 ∈ 𝑃. A general algorithm for the analysis of the 
polyhedral set and the calculation of a primal feasible point is given in Appendix 7.1. The second phase 
of the ASM method includes the minimizing procedure. During the iterative process feasibility of the 
iterates is maintained. At a certain iteration, the inequality constraints that are fulfilled by equality are 
called active or binding. The set of active constraints at iteration k is called the active set 𝒜r. For the 
solution procedure, the working set 𝒲r is of special importance. It consists of a subset of linearly 
independent constraints of 𝒜r: 

𝒲r ⊆ 𝒜r 
The working set matrix 𝐀² is composed by the matrix 𝐀 and the rows of matrix 𝐃 of the working set 
(𝐃²): 

  𝐀² = 𝐀
𝐃²

 

 
(18) 

As mentioned before, the rows of 𝐃² must not be linearly dependent with 𝐀. At each iteration, a new 
feasible point is calculated by  

𝐱r|A = 𝐱r + α𝐝r|A (19) 
Where 𝐝r is the direction vector and α is the step size. If the C function is twice continuously differentiable the 
direction can be calculated by a Newton Step, otherwise first order methods (gradient) can be used. For the first 
case  

  𝐝r𝑴𝒌
= − 𝐇 𝑨²E

𝐀² 𝟎

�A ∇𝑓(𝐱r)
𝐀²𝐱𝐤 − 𝐛𝑾

=− 𝐇 𝑨²E
𝐀² 𝟎

�A ∇𝑓(𝐱r)
𝟎

. (20) 

                                                
 
2 𝐀 = 𝐀AE 𝐈  is the incidence matrix of the augmented graph of the network. 
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or with distinction of active bounds and equality constraints: 

  
𝐝r|A
𝒉r|A
𝒏r|A

=
𝐇 𝐀𝑻 𝐃²E
𝐀 𝟎 𝟎
𝐃² 𝟎 𝟎

�A
−∇𝑓(𝐱r)

𝟎
𝟎

. 

 

(21) 

The matrix 𝐇 = ∇𝐱»𝐶(𝐱𝑘) denotes the reduced Hessian matrix of the twice differentiable function f. 
Since 𝐱r is primal feasible the search direction must lay in the null space of 𝐀², which is expressed by the 
second and third row. 

4.3.3 Topological connectivity analysis based on active flow constraints 
As mentioned above decomposed systems can result from different reasons. Indeed, due to disruptive 
events parts of the network may be destroyed. This case can be considered by an equality constraint (q 
= 0) for the pipes affected and/or for the valves that should be closed to isolate the damaged part from 
the rest of the system. Therefore, parts of the system (explicitly the parts to be isolated) and potentially 
other parts are disconnected from any source and can’t be supplied anymore.  
 
Decomposed system parts that are a consequence of closed links (equality constraint) can be treated in 
advance of the iterative solution process. A simple connectivity analysis by breath first search or depth 
first search delivers the different connectivity components in linear time (𝑂( 𝐸 + 𝑉) where 𝐸  is the 
number of edges (links) and 𝑉  is the cardinality of the vertex (node) set. After identification, basically, 
two approaches are possible:  

• Removal of all disconnected components from the model and modelling of the reduced systems 
• Regularization of original system  

 
The first approach is intuitively preferable since the disconnected parts are not treatable by standard 
steady-state analysis. If the consumers are still demanding water from the system they will open the taps 
resulting in emptying of the pipe system. This kind of physical process, however, is not tractable by the 
mathematical model for steady-state analysis of pressurized pipe systems since, first, it is a dynamic 
process and, second, the assumption of pressurized pipe flows does not hold any longer since the pipes 
may be only partly filled. It would require transient modelling of multiphase flow or free surface flow 
(open channel). Due to the unclear situation in such situation and the uncertainty about consumer 
behaviour and influence of system failures, it is reasonable to focus on the remaining working part of 
the system.  
Sometimes, for example in hydraulic online simulation the size of the system cannot be modified. 
Therefore, it is required to regularize the system such that calculation give at least for the working part 
of the system reasonable results. So, the problem of possible singularity of the system matrix due to 
disconnected parts must be resolved. First, all disconnected components are identified and distributed 
into two sets. One set for components that include at least one resource node/pressure defining node 
(reservoir or tank) and components without resource node. As explained above for the latter, the 
pressure in the entire component is undefined and the system of equations is singular (there is infinity 
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of pressure solutions). For regularization, an arbitrary node of the disconnected part is connected to a 
virtual reservoir with head chosen at the smallest elevation, which guarantees with the PDM system that 
there is no consumption in the disconnected component.  This slight modification allows to maintain 
the original systems size. The calculation result for the working part is identical with the result of the 
first method. Whereas this approach is practical for equality constraints, it is pretty expensive for 
consideration of inequality constraints since the topological search has to be carried out after each 
iteration. Though very efficient, connectivity analysis adds an extra computational cost, especially in 
the case when the disconnection is caused by inequality constrains or combination of inequality 
constrains with equality constraints. Then, the connectivity check should be carried out at each iteration 
of the numerical solution process.  
 
In the simulation software SIR 3S the described topological search method is implemented for avoiding 
irregular systems. In the Porteau software, the flow rate inequalities are solved by introducing external 
head loss penalties (and one equality is two inequalities). This is described in Piller and van Zyl (2014) 
and works well if some ad hoc initialisation of the constraint flow rate is made at the first iteration to 
avoid dramatic head loss penalties and numerical problem. 
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4.3.4 Projected active set Newton-type method  
4.3.4.1 Outline	of	projected	ASM	method	for	PDM	problems	with	flow	bounds	
From the above it is desirable to have an algorithm that can deal with all kind of disconnections by 
maintaining the same structure of the system (constant number of nodes) and without the requirement 
of numerous connectivity calculations. The solution of the KKT conditions by a projected active set 
Newton-type method aims at providing such a technique. As shown above the LICQ guarantees that 
the set of Lagrangian multipliers is a singleton. The task of finding a KKT-point described by Euler-
Lagrange system Eq. (4) can be tackled by using the same strategy of a projected active set Newton-
type method as it was described in D 4.1 for PDM solutions. With additional consideration of flow 
bounds for links the indicator set must be extended for the links in question (links that represent flow 
control devices, or if a maximum capacity shall be defined). In the pure PDM without flow constraints 
the main challenge was how to deal with zero flows (for Hazen-Williams). In the extended model as 
described here there is  an additional difficulty that arises from possible disconnections of parts of the 
network by pipe failure or closed valves. This is particularly the case for situations where no or non-
unique KKT point exists. One simple example is the separation of network parts by isolation valves as 
described in the Introduction. The numerical investigation of the constraints in Appendix 7.2 shows that 
the LICQ does not hold in this case.  
To make the ASM method not only efficient but also robust, an additional regularization is required. 
The example in Appendix 7.2 brings about that maintaining at least one node in the set A of 
consumption nodes (nodes with reduced but nonzero consumption) could prevent the problem of 
deficiency. In principle this approach is possible, however, in reality, there might be disconnected parts 
with no consumption nodes. This is often the case with bypasses of pumps or control devices.  
 
4.3.4.2 Tikhonov	regularization		
The situation of ill-conditioned or singular systems is widely treated in different fields of mathematical 
modelling, particularly in the field of inverse problems. Consequently, vast literature on regularization 
techniques exists. Probably the most famous is the so-called Tikhonov regularization. In brief, the 
solution of a possible singular linear system  
 

𝐋𝐱 = 𝐬 
 
can be calculated by the following expression 
 

𝐱𝟏 = 𝐱𝟎 − 𝐋E𝐋 + α𝐈 �A	𝐋E 𝐋𝐱𝟎 − 𝐬  
 
Application to our linear to solve system in Eq. (15) gives: 
 

𝐡r|A = 𝐡r − 𝑳E𝐋 + α𝐈 �A	𝐋E 𝐋𝐡r − 𝐬 , 
 

with 𝐋 = 𝐀�E𝐅��A𝐀� + 𝐈��E 𝐌�
�A𝐈�� and 𝐬 = 𝐀�E𝐅��A 𝐆𝑨 𝐪�

(r) 𝐪�
(r)−𝐀�,G𝐡G + 𝐈��E 𝐌�

�A 𝐍�(r)𝐜�(r) + 𝐡�,}B> −
𝐀�E𝐪�

r − 𝐀xE𝐪}B> − 𝐀yE 𝐪}�� − 𝐈𝑐𝑎
𝑻𝐜𝐴(𝑘) − 𝐈𝑐𝑢

𝑻𝐝𝑈 
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The constant α is the Tikhonov regularization parameter. A heuristic that is working well in the general 
purpose for identifying a suitable α, is to start with an initial α, then increase by a factor 10 if the linear 
system is singular (some pivot is non-positive in an appropriate decomposition algorithm) or if  
norm(Lx1 –s) is not decreasing, else multiplying by a factor 0.4. Another shortcoming of this approach 
results from the additional computational burden induced by matrix multiplication, but this is possible 
to change a little bit the previous formulation to add α, or rather its square root, directly on the diagonal 
of 𝐅��A and 𝐌�

�A and solving system Eq. (15). 
 
4.3.4.3 Using	penalty	function	instead	of	ideal	constraints.		
One strategy for preventing deficient system states that are caused by valve closure or active flow 
control device is to replace ideal control with sharp or hard constraints by a head loss penalty function. 
As a consequence, the subdifferential mapping is replaced by a continuous, piecewise defined headloss 
function that is not restricted and valid for the whole range of flows.  
 

 
Figure 4: Regularized mapping and Content for Flow Control Valve (FCV). 

A similar penalization approach is implemented in the software Porteau (Piller and van Zyl, 2014). 
4.3.4.4 Regularization	heuristics	
The following method was found to be efficient for regularization: The flow constraints are considered 
as ideal control devices meaning that the matrix entries are completely removed if a flow constraint of 
that link is active. However, this can lead to singularity in case of disconnected systems. The idea is that 
if all nodes (including junctions without demand) get a small value on the main diagonal of the Jacobian 
the matrix must be non-singular even in the theoretical case where all links have active flow constraints. 
The resulting flows and consumptions are projected on the feasible box. Since the regularization 
parameter is not considered for updating the nodal consumptions the continuity equation is not affected. 
The method was implemented in Excel and Matlab and showed robust solution behaviour also for 
highly degenerate systems. However, the choice of the regularization parameter may affect the stability 
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of the solution. So far, no rigorous approach for estimation of the regularization parameter was 
implemented and a method of Tikhonov can be implemented. 
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4.4 Pressure Control devices 

4.4.1 Mathematical model: Nash Equilibrium of constraint nonlinear optimization 
problems 

4.4.1.1 Modelling	of	pressure	control	devices	
In the context of this manuscript pressure control refers to two groups of devices. The first group 
includes valves that maintain the upstream pressure (PSV: Pressure sustaining valve) or reduce the 
downstream pressure (PRV: Pressure Reducing Valve) to a given set value. The operational range of 
the valve is from fully open to closed (see Figure 5). Within the operational range the set pressure is 
maintained by adjusting the minor loss coefficient ζ of the valve by means of a feedback loop. There 
exist pressure control devices where the feedback loop is purely mechanical by means of a set value 
spring or electronically where the outlet pressure is measured and transmitted to a controller that adjust 
the valve opening accordingly.  
The second group consists of variable speed pumps with pressure control. The control loop is similar as 
for the electronically controlled valves. In contrast to control valves the pressure is impacted by 
adjustment of the rotations per minute of the pump effectuating a shift of the pump curve. The two 
groups distinguish with respect to their impact on the system. Whereas the influence of control valves 
is by adjustment of the local headloss variable, speed pumps manipulate on the pressure gain of the 
pumping station.  
Another difference exists by the fact that the setting pressure node for pump control is often at a certain 
distance of the pumping station. Mechanically operated valves control only the local pressure. In 
general, remote pressure control could be applied also to valves if the measured pressure is transmitted 
to the valve controller. As it will be seen later the design of the control loops is of great importance for 
the stability of the network.  
 

 
Figure 5: The three PRV operational statuses. 

50 m

100% closed

active 

fully open

T1 PRV settings J2
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In the following the theoretical aspects of modelling pressure control devices will be discussed. Without 
loss of generality but for simplifying the notation the equations are shown only for PRV. 
 
In addition to the hydraulic network equations presented in the previous sections, for each pressure 
control device, an additional optimization problem is formulated in the unknown control parameter 𝛇 of 
the minor headloss function (example for PRV with local control): 

min
ÃÄÅG

1
2

hT − 	ζn

qn
An

»

2𝑔
− hn,ÉÊË

»

 (22) 

Where the j-th PRV consists of a control valve between nodes i and k, hn,ÉÊË is the head setting at node 
k, qn is the flow rate crossing the valve, and An is the cross-sectional area of the valve. 
 
with the Lagrangian: 

Ln ζn, qn, χ< = 	
1
2

hT − 	ζn

qn
An

»

2𝑔
− hn,ÉÊË

»

− χ<ζn, with	ζn ≥ 0	𝑎𝑛𝑑	χ< ≥ 0 

 

(23) 

Necessary for a minimum of the quadratic minimization problem is again the KKT condition with: 

𝜕𝐿<
𝜕ζn

= −	 hT − 	ζn

qn
An

»

2𝑔
− hn,ÉÊË

qn
An

»

2𝑔
− χ< = 0 

 

(24) 

From the complementary slackness condition for a stationary point of the Lagrangian it follows that 
either ζn=0 or χ<=0 at optimum. In the first case, we get: 

−	 hT − 	hn,ÉÊË

qn
An

»

2𝑔
− χ< = 0				𝑜𝑟			χ< = 	 	hn,ÉÊË − hT

qn
An

»

2𝑔
	 

 

(25) 

The second case has a stationary point for qn = 0. This is the undefined case where no flow through the 
device is possible. Without flow no pressure control by creating additional turbulence is possible. Since 
the valve is not able to operate for a zero flow, we are interested only in the left factor in the parenthesis. 
For qn > 0 the equation simplifies to  

	 hT − 	 ζn

qn
An

»

2𝑔
− hn,ÉÊË = 0	𝑜𝑟		ζn = 	 hT − 	hn,ÉÊË

2𝑔
qn
An

» 

 

(26) 

The derivative of the Lagrangian is affine in ζn.  
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4.4.1.2 Numerical	solution	of	general	PDM	systems	with	flow	and	pressure	control	
As it can be seen from the previous section the pressure control problem is correlated with the content 
minimization problem by the flow through the pressure control link and the head at the non-setting 
pressure node. Vice versa, the head loss/head gain parameter must be considered in the Content 
minimization problem. There is a mutual feedback between the two problems expressed by variable -> 
parameter relationship. The two problems can be understood as a game where one player tries to 
minimize the Content for given 𝜁 whereas the other player tries to minimize the deviation from the 
pressure setting for given q, c. In mathematical modeling, the concept of a convex non-cooperative 
differentiable game where the players have equal rights can be used. The concept is not limited to two 
players. Imagine that there are p pressure control devices the game includes p+1 players where the p 
pressure control players are not directly interacting and are connected through the Content player.  
 
A solution of the game is the so-called Cournot-Nash equilibrium. For given values of the other players 
the necessary and sufficient conditions for each player can be formulated again as KKT conditions.  
 
The previous formulation has the disadvantage that if 𝐪�,<

(r) ⇢ 0 the minor loss coefficient ζn ⇢ ∞ with 
the consequence that the headloss generated by pressure control device is not well defined. Therefore, 
based on the assumption that a local minor headloss 𝑧< ∈ 0, ∞  can be reached by the device 
independent from 𝐪�,<

(r)	the following substitution is made:  

𝑧< = ζn

qn
An

»

2𝑔
 

 

(27) 

Another modification concerns the formulation of the control problem. 
 
For the j-th pressure control device, a possibility is to solve the following problem as in Deuerlein et 
al. (2005): 
 

min
×ÄÅG

1
2
𝐡G,n − 𝐏�,<E 𝐆𝑨𝐪𝑨 − 𝐏�,<E 𝐈𝒔∖n𝐳 − 	z< − hn,ÉÊË

»

 

 
(28) 

The matrix 𝐏𝑨 includes an independent path from an upstream resource node with head 𝐡G,n to the setting 
node k with expected setting hn,ÉÊË. If the control valve is active, the sum of the minor and friction head 
losses along that path is zero. 
 
Another possibility, is to consider the simpler case of a PRV with setting node at the downstream end 
of the valve; it reduces to: 
 

min
×ÄÅG

1
2
hT(𝐪) − 	zn − hn,ÉÊË

» 
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These two formulations are equivalent as long as there exists a path between the upstream resource node 
to the first end of the valve at node i. 
 
Please note that the path may be changing because they depend on the actual set of active flow 
constraints. To keep the Lagrangian multipliers of the Content minimization out of the pressure control 
problem formulation, the path must include only links that have no active flow constraint.  
 
Let 𝐀�,>E  be the incidence matrix reduced to junction nodes that are not setting nodes of PRDs and whose 
columns correspond to non-binding flow rates (non-active), and let 𝐀�,$E  be the incidence matrix reduced 
to junction nodes that are the targeted setting nodes. Let 𝐡𝒏 and 𝐡𝒕 the corresponding head components 
such that 𝐡𝑻 = 𝐡𝒏

𝑻 𝐡𝒕
𝑻 .  With this specific decomposition, the energy balance at a non-binding pipe 

is: 
 

𝐆𝑨𝐪𝑨 + 𝐈𝒔𝐳 − 𝐀𝑨,𝒏𝐡𝒏 − 𝐀�,G𝐡G − 𝐀�,$𝐡𝒕 = 𝟎 (29) 
 
If the PRD is active the corresponding ht component is fixed to the setting value hn,ÉÊË (see in Figure 5, 
the blue HGL). 
 
The path matrix can be found by subdividing 𝐀�,>E  into basis and non-basis columns, which is equivalent 
with finding the range space and the null space of the matrix. The null space corresponds to the pressure 
control valves. 
 
The basis consists of a regular square matrix. The columns correspond to a spanning tree of the network 
graph without the links with binding flow constraints. It holds that with the separation  𝐀�,>E = 𝐀�,ÝE 	𝐀�,ÞE  
the following basis and non-basis can be found:  
 

𝐙 = 𝐏�E	𝐍 = −𝐀�,Þ𝐀�,Ý�A 				𝐈𝒓  (30) 
 
By building we have 𝐙𝐀�,> = 𝟎, so that by pre-multiplying Eq. (29) by 𝐞𝒋𝑻𝐌 we get: 
 

𝐞𝒋𝑻𝐙 𝐆𝑨𝐪𝑨 + 𝐈𝒔𝐳 − 𝐀�,G𝐡G − 𝐀�,$𝐡$ = 𝟎 (31) 
 
Which can be written very easily: 
 

𝐡G,n − 𝐏�,<E 𝐆𝑨𝐪𝑨 − 𝐏�,<E 𝐈𝒔∖n𝐳 − 	z< − hË = 0 
 
by choosing 𝐡G,n = 𝐞𝒋𝑻𝐙 𝐀�,G𝐡G  and assuming  𝐞𝒋𝑻𝐙 𝐀�,Ë𝐡Ë = −𝐡Ë, which should be true as far there 
exists one path starting from one resource node and the local setting nodal for the j-th PRV that is 
equivalent assuming that the matrix is invertible. 
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The expression including the path matrix can be simplified based on the proposition that there is a 
regular basis (spanning tree) in 𝐀𝑨,𝒏 that includes a path to the initial nodes of all active pressure control 
devices. Therefore, it holds that: 

𝐡G,n − 𝐏�,<E 𝐆𝑨𝐪𝑨 − 𝐏�,<E 𝐈𝒔∖n𝐳 = 𝐡T. 
So Eq. (31) leads to: 
 

𝐡T − 	z< − hË = 0 
 
In the Content model the active pressure control device is treated as head generator (a link with constant 
headloss). The monotone mapping and corresponding Content are shown in Figure 6.. 

 
Figure 6: Monotone mapping and Content of head generator. 

The combined system to be solved can be written as: 
 
                                         𝐆 𝐪 𝐪 + 𝐈𝒔𝐳 − 𝐀𝟏𝐡 − 𝐀G𝐡G − 𝐕f𝛋∗ + 𝐕h𝛎∗= 𝟎Ui 
                                                   𝐍(𝐜)𝐜 + 𝐡STU − 𝐔f𝑻𝛌∗ + 𝐔h𝑻𝛍∗	= h 

                  				−𝑨AE𝐪 − 𝐜 = 𝟎Un 
                                                                                                 		−𝐔f𝐜 = 𝟎𝒎 

                          𝐔h(𝐜 − 𝐝) = 𝟎𝒔 
                                                                                 −𝐕f(𝐪 − 𝐪STU) = 𝟎 

                 		𝐕h(𝐪 − 𝐪SXY) = 𝟎 
																												𝐞𝒋𝑻𝐙 𝐆𝑨𝐪𝑨 + 𝐈𝒔𝐳 − 𝐀�,G𝐡G − 𝐀�,$𝐡"#$ − 𝜒<∗ = 0,			𝑗 = 1, … , 𝑟 

																																																				𝜒<∗z< = 0,			𝑗 = 1, … , 𝑟 
 

(32) 

Considering the two last equations for PRVs in active mode (𝜒<∗ = 0, 𝑗 = 1, … , 𝑟𝑎) delivers: 
 

𝐙𝒂 𝐆𝑨𝐪𝑨 + 𝐈𝒔,𝒂𝐳𝒂 − 𝐀�,G𝐡G − 𝐀�,$𝐡"#$ = 𝟎𝒓𝒂 
 
Here we are not considering the PRVs in open-mode as their zj is zero. 
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The size of matrix 𝐈",�.is m x rA. The rA columns refer to the pressure control devices that are active.	𝐙𝒂𝐈𝒔,𝒂 
is a square matrix of size rA, which is assumed to be invertible (most often it is reduced to identity when 
there is not another active pressure valve on the same path). 
 
If variables with active bounds are eliminated, the following KKT system of the Nash Equilibrium 
between global Content minimization and local pressure control is to be solved. The reduced set of 
flows, consumption and head generator is indicated by index ‘A’ for 𝐪, 𝐜 and z which means that only 
links with non-active flow constraints are included in 𝐀�,A and only head generators that are in 
operational mode are included in 𝐈×,X. The system (35) to be solved reduces to: 
 

𝐆� 𝟎 −𝐀�,A 𝐈𝒔,𝒂
𝟎 𝐍� −𝐈𝑐𝑎 𝟎

−𝐀�,AE −𝐈𝑐𝑎
𝑻 𝟎 𝟎

𝐙𝒂𝐆� 𝟎 𝟎 𝐙𝒂𝐈𝒔,𝒂

𝐪�
𝐜X
𝐡
𝐳X

=

𝐀A,0𝐡𝟎
−𝐡𝐴,𝑚𝑖𝑛

𝐀𝐿,1𝑇 𝐪𝐿,𝑚𝑖𝑛 + 𝐀𝑈,1𝑇 𝐪𝑈,𝑚𝑎𝑥 + 𝐈𝑐𝑢
𝑻𝐝𝑈

𝐙𝒂 𝐀�,G𝐡G + 𝐀�,$𝐡"#$

 

 

(33) 

We can eliminate 𝐳X by: 
 

𝐳X= 𝐙𝒂𝐈𝒔,𝒂
�𝟏

𝐇𝒔 − 𝐙𝒂𝐆�𝐪X  (34) 
 

With 𝐇𝒔 = 𝐙𝒂 𝐀�,G𝐡G + 𝐀�,$𝐡"#$ =(𝐡G,n − hn,ÉÊË)	 

Inserted into the first row we get the non-symmetrical system: 

𝐆� − 𝐈𝒔,𝒂 𝐙𝒂𝐈𝒔,𝒂
�𝟏
𝐙𝒂𝐆� 𝟎 −𝐀�,A

𝟎 𝐍� −𝐈𝑐𝑎
−𝐀�,AE −𝐈𝑐𝑎

𝑻 𝟎

𝐪X
𝐜X
𝐡

=
𝐀A,0𝐡𝟎 − 𝐈𝒔,X 𝐙𝒂𝐈𝒔,𝒂

�𝟏
𝐇𝒔

−𝐡𝐴,𝑚𝑖𝑛
𝐀𝐿,1𝑇 𝐪𝐿,𝑚𝑖𝑛 + 𝐀𝑈,1𝑇 𝐪𝑈,𝑚𝑎𝑥 + 𝐈𝑐𝑢

𝑻𝐝𝑈

 

 

(35) 

The additional terms in the first row, in fact, eliminate the contribution of 𝐪X for the rows that belong to 
head generators and fix the head to the set pressure head. It follows that the first block matrix is not 
invertible. 
 
This becomes more evident if the incidence matrix is split and reordered such that all pressure control 
devices are at the end of 𝐀�,A. 
 

𝐆�,> 𝟎 𝟎 −𝐀�>,> −𝐀�>,$
−𝐏�,$E 𝐆� 𝟎 𝟎 −𝐀�$,> −𝐀�$,$

𝟎 𝟎 𝐍� −𝐈𝑐𝑎𝐈U −𝐈𝑐𝑎𝐈Ë
−𝐀�>,>E −𝐀�$,>E −𝐈U𝑻𝐈𝑐𝑎

𝑻 𝟎 𝟎
−𝐀�>,$E −𝐀�$,$E −𝐈U𝑻𝐈𝑐𝑎

𝑻 𝟎 𝟎

𝐪X,U
𝐪X,Ë
𝐜X
𝐡U
𝐡Ë

=

𝐀A,0𝐡𝟎
−𝐇𝒔
−𝐡𝐴,𝑚𝑖𝑛

𝐀𝐿𝑛,𝑛𝑇 𝐪𝑚𝑖𝑛 + 𝐀𝑈𝑛,𝑛𝑇 𝐪𝑚𝑎𝑥 + 𝐔𝑛,𝑛𝑗𝐝
𝐀𝐿𝑡,𝑡𝑇 𝐪𝑚𝑖𝑛 + 𝐀𝑈𝑡,𝑡𝑇 𝐪𝑚𝑎𝑥 + 𝐔𝑡,𝑛𝑗𝐝

 

 

(36) 

With the second row the head at set pressure nodes is fixed at their set value. Elimination of the fixed 
heads delivers: 
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𝐆�,> 𝟎 𝟎 −𝐀�>,>
𝟎 𝟎 𝐍� −𝐈𝑐𝑎𝐈U

−𝐀�>,>E −𝐀�$,>E −𝐈U𝑻𝐈𝑐𝑎
𝑻 𝟎

−𝐀�>,$E −𝐀�$,$E −𝐈U𝑻𝐈𝑐𝑎
𝑻 𝟎

𝐪X,U
𝐪X,Ë
𝐜X
𝐡U

=

𝐀A,0𝐡𝟎 + 𝐀�>,$𝐡Ë
−𝐡𝐴,𝑚𝑖𝑛 + 𝐈𝑐𝑎𝐈Ë𝐡Ë

𝐀𝐿𝑛,𝑛𝑇 𝐪𝑚𝑖𝑛 + 𝐀𝑈𝑛,𝑛𝑇 𝐪𝑚𝑎𝑥 + 𝐔𝑛,𝑛𝑗𝐝
𝐀𝐿𝑡,𝑡𝑇 𝐪𝑚𝑖𝑛 + 𝐀𝑈𝑡,𝑡𝑇 𝐪𝑚𝑎𝑥 + 𝐔𝑡,𝑛𝑗𝐝

 

 

(37) 

From a practical point of view it can be assumed that a set pressure node has no consumption. Therefore 
−𝐈��," vanishes. On combination with the result that 𝐀�$,$E  is the identity matrix and that a pressure control 
device cannot have active flow constraints at the same time the last row can be solved for the flows 
through the pressure control links.  
 

𝐪X,Ë = 	−𝐀�>,$E 𝐪X,U (38) 
 
It follows the reduced system: 
 

𝐆�,> 𝟎 −𝐀�>,>
𝟎 𝐍� −𝐈𝑐𝑎𝐈U

−𝐀�>,>E + 𝐀�$,>E 𝐀�>,$E −𝐈U𝑻𝐈𝑐𝑎
𝑻 𝟎

𝐪X,U
𝐜X
𝐡U

=
𝐀�,G𝐡𝟎 + 𝐀�>,$𝐡Ë

−𝐡�,}B>
𝐀𝐿𝑛,𝑛𝑇 𝐪𝑚𝑖𝑛 + 𝐀𝑈𝑛,𝑛𝑇 𝐪𝑚𝑎𝑥 + 𝐔𝑛,𝑛𝑗𝐝

 

 

(39) 

The solution can be calculated by application of Newton-Raphson: 
 

𝐅�,> 𝟎 −𝐀�>,>
𝟎 𝐌� −𝐈𝑐𝑎𝐈U

−𝐀�>,>E + 𝐀�$,>E 𝐀�>,$E −𝐈U𝑻𝐈𝑐𝑎
𝑻 𝟎

𝐪X,U
(r|A) − 𝐪X,U

(r)

𝐜X
(r|A) − 𝐜X

(r)

𝐡U
(r|A) − 𝐡U

(r)

= −
−𝐀�,G𝐡𝟎 − 𝐀�>,$𝐡Ë + 𝐆�,>𝐪X,U

(r) − 𝐀�>,>𝐡U
(r)

𝐡�,}B> + 𝐍�𝐜X
(r)−𝐈𝑐𝑎𝐈U𝐡U

(r)

−𝐀𝐿𝑛,𝑛𝑇 𝐪𝑚𝑖𝑛 − 𝐀𝑈𝑛,𝑛𝑇 𝐪𝑚𝑎𝑥 − 𝐔𝑛,𝑛𝑗𝐝 − 𝐀�>,>E 𝐪X,U
(r) + 𝐀�$,>E 𝐀�>,$E 𝐪X,U

(r)

 

 

(40) 

For numerical solution, the previous form is not convenient since the system matrix is not symmetric. 
One common approach to regain symmetry is to neglect the term 𝐀�$,>E 𝐀�>,$E  in the Jacobian. Therefore, 
the continuity is not forced at the initial nodes of the pressure control links. This approach is 
implemented in Epanet and looks having good convergence. Here, the Nash game is between the inflow 
calculated at the fixed setting pressure node and the outflow at the initial node of the pressure control 
device.  
 
Please note that so far, we have assumed that the active flow control devices have been removed and 
that the remaining system has an incidence matrix with full column rank, which is equivalent that a 
spanning tree or basis exists that connects all nodes to a fixed head node. In the next section, conditions 
that guarantee this assumption will be derived. 
 
Remarks: 
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• The closed status is treated by a flow constrained q >= 0. In that case, the associated Lagrange 
multipliers interprets as a minor head loss. 

• For correct working of the pressure control valve, in practice, it is recommended that a path 
exists between a resource node and the control valve. If there is no such path the valve cannot 
be operating (isolated subsystem with non-unique solution as in the example with FCV and 
PRV in series where both are active at the same time).  

 
4.4.1.3 Existence	and	uniqueness	of	the	hydraulic	steady-state	in	PDM	analysis	with	general	control	
In the section about flow control problems, it was shown that a necessary and sufficient condition for 
the existence of a unique steady state of PDM problems with flow control (flow bounds for network 
links) is related to the following two conditions: 

• The feasible set, which is the intersection of the affine continuity equations and the flow and 
consumption bounds (polyhedral cone), must not be empty; 

• The system of active flow and consumption bounds together with the continuity equation is 
linearly independent. This is equivalent with the fact that the augmented incidence matrix that 
is reduced by all rows that belong to (virtual) links with active flow or consumption bounds has 
still full column rank. In other words, there exists a kernel (null space) that includes all links 
with active flow bounds. This in turn means that there is a spanning tree that spans all nodes of 
the system. 

 
A similar criterion can be derived for pressure control devices. The proof that a unique Nash equilibrium 
exists is possible by showing that the self-mapping for the single pressure control devices is a contraction 
mapping. The extension to the whole system with possibly interacting devices is done then by induction 
as in Deuerlein (2002). The contraction property can be visualized as follows. Consider the two players 
Content and PRV. The PRV player selects a z such set the difference between hi-z and hset vanishes. 
Given the fixed chosen z, the Content player calculates the pressures and flows of the system. With the 
new head at the initial node of the PRV the PRV player makes the new choice for z which leads to new 
flows and heads at the side of the Content player. If the function that is used by the PRV player creates 
decreasing adjustments for z the sequence converges to a unique limit that is the z of the Nash 
equilibrium. The corresponding flows and heads are calculated by the Content player for given (fixed) 
z. From this equilibrium point none of the players can improve its objective without worsening the 
objective of the other players.  
 
Of course, the described approach is not suited for implementation since after every new choice by the 
PRV players a full hydraulic calculation must be carried out. A simultaneous solution as indicated above 
is desirable. Before details of possible numerical solutions are given the following Lemma gives a 
descriptive condition for the existence and uniqueness of a Nash Equilibrium.  
 
Proposition 2:  
Let 𝐀�,A𝐈�

 be the reduced incidence matrix of the augmented graph where all links and virtual links 
(referring to consumption nodes) with active flow/consumption bounds have been removed. Let further 
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𝐀�>,> be the submatrix of 𝐀�,A where all pressure control links are replaced by virtual links that connect 
all set pressure nodes with a common virtual ground node (as in the case for the augmented graph for 
consumption nodes). 
 
The following Lemma proves Existence and Uniqueness based on the proposition 2.  
 
Lemma 2: 
There exists a unique Nash-Equilibrium if and only if the matrix 𝐀�>,> defined in proposition 1 has full 
column rank.  
 
Proof:  
The necessary condition (only if) in Lemma 2 can by shown by contradiction. Imagine that such 𝐀�>,> 
does not exist. Then, there are parts of the network that are disconnected from the virtual ground node. 
Distinction of case: 
Case 1: The disconnected part is separated by active flow or pressure control devices: Like in the case 
with linearly dependent flow constraints there is an infinite number of combinations for the headlosses 
generated by the control devices (z for pressure control or Lagrangian multipliers for flow control), 
which in consequence leads to undefined pressures in the separated network part.  
Case 2: The disconnected part is separated by one active pressure control device (the control device is 
in a tree). If the set pressure node is upstream of the control device there is no influence by the headloss 
generated by the control link. Therefore the pressure is undefined downstream. The second case is only 
relevant for DDM analysis since in PDM models there are one or more virtual links that connect the 
downstream nodes with the virtual ground node. If all consumption functions downstream have active 
bounds case 1 applies. In summary, disconnected parts always lead to non-uniqueness of the Nash-
Equilibrium in terms of heads and z values which proves the necessity  
Sufficiency is proved by the contraction property of the self mappings of the z values: 

𝑧B = 𝐡B,B 𝑧B, 𝐪(𝑧B), 𝐜(𝑧B), 𝐳∖B(𝑧B) − hB," = 𝐹 𝑧B , ∀𝑖 = 1, … , 𝑟 
 (42) 

The proof is by induction.  
Induction start:  
The first pressure control element is added. Therefore, the dependency of the other pressure control 
elements is removed:  

𝑧B = 𝐡B,B 𝑧B, 𝐪(𝑧B), 𝐜(𝑧B) − hB," = 𝐹 𝑧B , ∀𝑖 = 1, … , 𝑟 
 (43) 

The contraction property is proved if it can be shown that ∇𝐹 𝑧B < 1, ∀𝑧B ≥ 0. A formal proof can be 
derived from the sensitivity results developed in paper  (Piller, Elhay, Deuerlein, & Simpson, 2017). A 
more descriptive version is outlined here. Imagine that the value of z is changed by 1: ∆𝑧B = 1. Then the 
impact on the head at the initial node of the pressure control device is always ∆𝐡B,B ≤ 1. This follows 
from proposition 1. In the case of DDM and the pressure control link laying in the forest equality holds. 
This case is not of interest here and will be neglected since in DDM the flows in the forest are fixed by 
the continuity equation and the calculation of the headloss z is straight forward using forest core 
decomposition. In the other case by proposition 1 there exists always a path between two fixed head 
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nodes or a closed loop from the virtual ground node. The change in headloss ∆𝑧B= 1 is distributed over 
all the links along this path. As a consequence, all heads upstream of link I are lifted whereas all heads 
downstream are decreased. Therefore, the head change ∆𝐡B,B being the sum of upstream head loss 
changes is < 1 if the set pressure node is not a fixed head node which can be excluded without loss of 
generality. This proves the contraction property for one control device.  
Induction step:  
Now assume that there is a unique equilibrium for r-1 pressure control devices, then there exists also a 
unique Equilibrium for r pressure control devices. Based on Proposition 1 there exists matrix 𝐀�>,>. For 
the location of the r-th pressure control device we should distinguish the two cases:  
Case 1: there is a path that connects the set pressure node with a fixed head node without including no 
other pressure control device. Then the argumentation is as in the induction start. The upstream pressure 
may be defined by a fixed head node or the set pressure of another pressure controlling device.  
Case 2: there is no path connecting the set pressure node with a fixed head node. Then a change in z 
does not affect the flow through the valve and ∆𝐡é,é = 1. However, this is the same case as for the valve 
in a tree and the z value is uniquely defined by 𝒛ë = 𝐡é,é − hé,". 
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NOMENCLATURE 

Table 6. Matrices and vector notations. 

𝐀𝟏 Arc-node incidence matrix of junction nodes 
𝐀𝟎 Arc-node incidence matrix of fixed pressure nodes 
𝐡𝟎 Vector of fixed heads 
𝐡 Vector of variable heads at junction nodes 
𝐪 Flow vector 
𝐆 Diagonal matrix for headloss Δ𝐡 = 𝐆(𝐪)𝐪 
𝐅 Diagonal matrix of headloss derivatives 𝐅 = ∇í Δ𝐡  
𝐝 Vector of nodal demands 
𝐜 Vector of calculated external flows at nodes 
𝐍 Diagonal matrix for inverse POR functions 𝐡 𝐜 = 𝐡}B> + 𝐍(𝐜)𝐜 
𝐌 Diagonal matrix of inverse POR derivatives 𝐌 = 𝛁𝒄 𝐡(𝒄)  
E Diagonal matrix of POR derivatives 𝐄 = 𝛁𝒉 𝐜(𝐡)  
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5 SUMMARY AND CONCLUSION 

A comprehensive mathematical framework for the calculation of the hydraulic steady-state of water 
supply networks with pressure dependent demands and general flow and pressure control conditions 
has been developed. The system may also be subdivided into several components.  
The flow constraint problem can be modelled by a constraint convex minimization problem with simple 
bounds. For pressure control, additional minimization problems should be formulated for each pressure 
control device. In the general case the hydraulic steady state is modelled by a Nash-Equilibrium of the 
multiple optimization problems.  
Conditions for the existence and uniqueness of flows and pressures have been proposed. It has been 
shown that even if it can be proved that there exists a unique Equilibrium, the numerical calculation is 
not straightforward. This is mainly because activation of interacting constraints during the iterative 
process may lead to singularity (ideal control) or ill-posedness (penalization) of the system matrix. As 
a consequence, the next iteration may be far away from the true solution that, eventually, results in non-
convergence of the Newton-Raphson method.  
 
Summarizing the recommendations for practical implementation we can state: 

• Flow equality constraints should be treated in advance of the iterative process. Often, they result 
in disconnections that are much more difficult to deal with during the iterations. For 
identification, standard graph search algorithms such as depth first search or breath first search 
can be used. The algorithms run in linear time and are therefore very efficient. Also, for online 
simulations it is not necessary to modify the system matrix. The disconnected parts can be 
connected to a virtual set pressure node, thus, not affecting the rest of the system. 

• For finding a feasible solution to start with in the ASM method, the phase I or pivot operations 
from the Simplex algorithm can be used (from linear programming theory). 

• For stable iterations in flow controlled systems it is crucial to avoid linear dependency of the set 
of active flow and consumption bounds in combination with the continuity equation.  

• Singularity caused by linearly dependent pressure control devices should be prevented by a 
preliminary analysis of the location of pressure control links and the corresponding set pressure 
nodes. A simple connectivity analysis of a modified graph has been proposed for that purpose.  

• The connectivity analysis or similar techniques must be also applied to prevent from situations 
where the combination of flow and pressure control devices causes singularity of the system 
matrix.  

 
More work should be done for developing efficient methods for checking the linear independency of 
modified set of active constraints. There exist straightforward methods such as basis change known 
from linear programming or graph search algorithms. However, running this algorithms at every 
iteration or adding constraints one by one would impact the performance negatively.   
A more stable alternative that does not suffer from the risk of running into singular systems caused by 
linear dependent control devices is to treat the control problems outside the iterative process. There is 
experience with this approach at Irstea (Porteau) and 3S (SIR 3S). However, problems with convergence 
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are also reported and the solution procedure is much slower. Future work could focus on a hybrid 
approach that combines the benefits of both methods. 
 
The results were presented at the CCWI 2017 conference at Sheffield (Deuerlein et al., 2017).  
 
This deliverable has focused on the mathematical background of modelling (deficient) PDM systems 
with general control conditions. The most appropriate method for implementation will be chosen as part 
of deliverable 4.4.  
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6 APPENDIX 
6.1 Method for checking if the feasible set is non-empty 

As it was shown above a unique flow distribution of the flow constraint PDM problem exists if the 
polyhedral set described by the continuity equation and the box constraints for consumption and link 
flows is non-empty. In the following, a method is described that can be used for checking the existence 
in a preprocessing step. The polyhedral set is given by: 
 

              𝑨AE𝐪 − 𝐜 = 𝟎 
         															−𝐜 ≤ 𝟎  
                  𝐜 − 𝐝 ≤ 𝟎 

                                                                     	-	q  +𝐪STU ≤ 𝟎  
             𝐪 − 𝐪SXY ≤ 𝟎 

(A.1) 

 
In matrix notation, we can write: 
 

𝑨AE −𝐈𝒏
𝐪
𝐜 = 𝟎 

                     

𝟎 −𝐈𝒏
𝟎 𝐈𝒏
−𝐈𝒎 𝟎
𝐈𝒎 𝟎

𝐪
𝐜 ≤

𝟎
𝐝

−𝐪STU
𝐪SXY

 

          

(A.2) 

  
with  
 

𝐃 =

𝟎 −𝐈𝒏
𝟎 𝐈𝒏
−𝐈𝒎 𝟎
𝐈𝒎 𝟎

,    𝐀 = 𝑨AE −𝐈𝒏 ,     𝐱 = 𝐪
𝐜 ,     𝐛 =

𝟎
𝐝

−𝐪STU
𝐪SXY

 

We can write shorter: 
 

𝐀𝐱 = 𝟎;𝐃𝐱 ≤ 𝐛 
 (A.3) 

  
From literature it is known that a possible approach to check if the polyhedral set is empty consists in 
the solution of the following LP: 

min
�,ñ ∈ò

𝜉 

𝛷 = 𝐱, 𝜉 ∈ R>×R: 	 𝐃𝐱 − 𝐛 B ≤ 𝜉, 𝑖 = 1, … ,𝑚 ∧ 𝐀𝐱 = 𝟎  
 

(A.4) 

  
The optimal value 𝜉  indicates whether an interior point exists for the polyhedral set 𝛷: 
𝜉∗ < 0 The polyhedral set is non-empty. Thus, x* is an interior point of the feasible set. This 

implies that all the control devices are in an inactive state. 
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𝜉∗ > 0 The polyhedral set is empty. There is no feasible solution to the original problem. 
𝜉∗ = 0 The polyhedral set devices is non-empty but an interior point does not exist. 

 
Simpler, and for practical considerations, a sufficient condition is to assume that zero is in the feasible 
range for both consumptions and link flows. Then, in PDM analysis, the existence of a solution is 
already proven since the zero vector for c and q fulfils the mass residual and the Content constraints. 
Please note that this is not the case for DDM analysis.  
 

6.2 Example for linearly dependent flow constraints and consequences 

The following simple system that was already presented in the Introduction is considered: 

 
 

The incidence matrix A1 is: 

𝐀A =

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

 

 
First, let the consumption assumed to be fixed (DDM). The system that consists of the continuity 
equation and the active flow constraints is: 
 

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 1 0 0 0
0 0 0 1 0

𝑞A
𝑞»
𝑞b
𝑞ø
𝑞ù

=

𝑑�
𝑑ú
𝑑�
𝑑û
0
0

 

 
As it can be easily seen in this case, rows 2,3 5 and 6 are linearly dependent (r2+r3-r5+r6=0). The last 
two rows can be used for elimination of q2 and q4. Then, it results the reduced modified incidence 
matrix 𝐀�,A: 

𝐀�,A =
1 0 0 0
0 −1 1 0
0 0 0 −1

 

 
It can be seen, that column 1, column 4 and columns 2, 3 are decoupled. As consequence, the Lagrangian 
multipliers (headloss in link 2 and link 4 and pressure heads at node b and c) are non-unique, which is 
obvious from the full system of equations: 
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𝑓A 0 0 0 0 1 0 0 0 0 0
0 𝑓» 0 0 0 −1 1 0 0 1 0
0 0 𝑓b 0 0 0 −1 1 0 0 0
0 0 0 𝑓ø 0 0 0 −1 1 0 1
0 0 0 0 𝑓ù 0 0 0 −1 0 0
1 −1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

𝑞A
𝑞»
𝑞b
𝑞ø
𝑞ù
ℎ�
ℎú
ℎ�
ℎû
𝜆»
𝜆ø

=

ℎ4A
0
0
0
0
0
ℎ4»
𝑑�
𝑑ú
𝑑�
𝑑û

 

 
It is easy to see that row 7+ row 8 – row 10 + row 11 = 0, the rows are linearly dependent. From linear 
algebra, it is well known that there are two possibilities for rank deficient systems 𝐀𝐱 = 𝐛 (with (n x n) 
matrix 𝐀 and 𝑟𝑎𝑛𝑘 𝐀 < 𝑛): 

• 𝑟𝑎𝑛𝑘 𝐀 = 𝑟𝑎𝑛𝑘 𝐀 𝐛 < 𝑛: there is an infinite number of solutions3 
• 𝑟𝑎𝑛𝑘 𝐀 ≠ 𝑟𝑎𝑛𝑘 𝐀 𝐛 : there is no solution 

 
Which of the two cases applies to the example depends on the demands at nodes b and c. If 𝑑ú ≠ 𝑑� it 
follows that 𝑟𝑎𝑛𝑘 𝐉 ≠ 𝑟𝑎𝑛𝑘 𝐉 𝐫𝐬 , which proves that there is no solution to the problem. In the 
opposite case 𝑑ú = 𝑑� (practically this makes sense only if 𝑑ú = 𝑑�=0) we get 𝑟𝑎𝑛𝑘 𝐀 =
𝑟𝑎𝑛𝑘 𝐀 𝐛 = 𝑛 − 1 from which we can conclude that there are infinite solutions. 
 

𝑓A 0 0 1 0 0 0 0 0
0 0 0 −1 1 0 0 1 0
0 𝑓b 0 0 −1 1 0 0 0
0 0 0 0 0 −1 1 0 1
0 0 𝑓ù 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

𝑞A
𝑞b
𝑞ù
ℎ�
ℎú
ℎ�
ℎû
𝜆»
𝜆ø

=

ℎ4A
0
0
0
ℎ4»
𝑑�
𝑑ú
𝑑�
𝑑û

 

 

Elimination of decoupled lambda delivers: 
𝑓A 0 0 1 0 0 0
0 𝑓b 0 0 −1 1 0
0 0 𝑓ù 0 0 0 −1
1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0

𝑞A
𝑞b
𝑞ù
ℎ�
ℎú
ℎ�
ℎû

=

ℎ4A
0
ℎ4»
𝑑�
𝑑ú
𝑑�
𝑑û

 

                                                
 
3 𝐀 𝐛 	is the augmented matrix obtained by adding b at the last column. 
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The heads in the second row are completely decoupled from the rest of the system, which means that 
the equation is fulfilled by any combination ℎú-𝑓b𝑞b − ℎ� = 0; 
The Schur Matrix of the GGA in this case is: 
 

𝑓A�A 0 0 0
0 𝑓b�A −𝑓b�A 0
0 −𝑓b�A 𝑓b�A 0
0 0 0 𝑓ù�A

 

 
It is easy to see that row 2 and row3 are again linearly dependent.  
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