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1 SUMMARY 

The objective of work package 4.3 is the development of a concept for estimation of the parameter 
uncertainty impacts on the reliability of the simulation results. The major steps of work package 4.3 are: 

 
• Survey and classification of parameter/measurement uncertainties (sources, range, importance); 
• Development of a concept for estimation of the parameter uncertainty impacts on the reliability 

of the simulation results; 
• Estimation of confidence intervals for hydraulic and water quality model results. 

 
This deliverable describes the treatment and modelling of parameter uncertainties based on the available 
information, the propagation of these uncertainties using the mathematical model of water distribution 
networks and the evaluation with respect to the confidence intervals. After that the effectiveness will be 
illustrated in a number of example applications. 
 
The deliverable is structured as follows: First a review on uncertainty quantification applications to 
water distribution networks is given, then the modelling of parameter uncertainties will be described, 
followed by an overview of the different options for propagation. The application is demonstrated using 
two example networks and the results are evaluated. The deliverable closes with the conclusions that 
could be drawn and the next steps in the development. 
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2 LITERATURE 

The process of modelling and calibration is an important task in managing the distribution of potable 
water in urban networks. In general these models still contain uncertain parameters that are not further 
treated in the classical approach. The objective of uncertainty analysis (UA) is to quantify the parametric 
uncertainties and to evaluate their influence on the quantities of interest (QoI). In mathematical models 
of physical systems, parameter uncertainties are usually divided into two groups: aleatory and epistemic 
uncertainties (Smith, 2014): 

• Aleatory uncertainties:  These are stochastic uncertainties, as they are inherent to the problem 
and cannot be reduced by further physical knowledge. Typically, they are unbiased and 
naturally defined in a probabilistic framework. 

• Epistemic uncertainties: Also known as systematic uncertainties are due to incomplete 
knowledge or simplification of the physical process. Epistemic uncertainties are often biased 
and in general less naturally defined in a probabilistic framework. 

Water distribution network models contain a number of sources for uncertainty. This includes epistemic 
errors like insufficient information on the network topology or valve states and aleatory uncertainty 
associated with consumer demands. The nodal demands in water distribution networks are inherently 
uncertain and have underlying variability on the scale of minutes, hours and days or even on monthly 
and annual timescales (Buchberger and Wells, 1996; van Zyl et al., 2008; Herrera et al., 2010). Due to 
a number of unknown parameters in predictive models and the lumping of withdrawals at the network 
nodes, epistemic uncertainty is added to the demand. Pipe diameter and roughness are dependent on 
corrosive processes and will change over time. In order to reduce the epistemic error introduced by 
unknown parameters and processes, calibration methods are applied by several researchers (Savic et al. 
2009; Piller et al., 2010). However, due to the large number of parameters, most approaches rely on 
some sort of grouping algorithm (Bascia et al., 2003; Kumar et al., 2010). Pumps, valves and tanks are 
key components in managing the water distribution. With age, the performance of these components 
may change. For pumps, the pump curve relationship may change as a result of corrosive processes and 
cavitation. Valves are also subject to corrosion which may diminish the ability to fully close a valve. 
Even worse, since most valves are operated manually the true state may even be misrepresented.  
 
From a modeling point of view, parameters may be divided into two groups. There are fast changing 
parameters like the demand, which may be different for every realization of a scenario, fix or slow 
changing parameters like pipe diameter and roughness and other parameters where the exact value is 
unknown like pipe length. Fast changing parameters need frequent estimates for the value to get realistic 
results. Depending on the application different methods may be considered to be advantageous.  Data 
driven models are very popular in real-time scenarios where the model is used to create realistic 
boundary conditions. They use the available historic data in order to estimate the nodal demands. 
Artificial Neural Networks (ANN), Support Vector Regression and other machine learning algorithms 
have been applied by a number of authors (e.g., Herrera et al. 2010; Braun et al. 2014). Although these 
models perform reasonably well under the chosen performance measure most of these approaches 
depend heavily on consumer aggregation in district metered areas (DMAs). Other models like 
SIMDEUM (Blokker et al., 2010) and Opointe (Piller and Bremond, 2002) use stochastic consumers 
that are represented in probability distributions. Through the development of appropriate scaling laws, 
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Vertommen et al. (2015) derive an uncertainty measure for nodal demands that is based on the collected, 
aggregated data. 
 
Slow changing network parameters like pipe roughness or diameters are in general estimated through 
model calibration. The majority of calibration algorithms are based on optimization and least-squares 
approaches (Piller et al., 2010). These algorithms are designed to find deterministic parameter values 
that give the best fit between measured and simulated data with respect to a cost function. These 
approaches may consider measurements and model errors by weighting the residuals in an attempt to 
give each data point its proper amount of influence on the estimation. It is also possible to limit the 
influence of outliers on the point-wise estimation by using more robust estimators as the least absolute 
deviation criterion or the Huber function (Piller et al., 2015). Also, with these approaches, it is still 
possible to estimate confidence intervals for the predicted values for uncertainty that is introduced 
through measurement and model errors (Do et al., 2017). Typically, first-order second moment (FOSM) 
methods are applied (Bush and Uber, 1998; Lansey et al., 2001). Also, it is possible to cluster the nodal 
demand by defining a membership function based on the SVD decomposition of the sensitivity matrix 
for the head with regard to the nodal demand (Sanz and Perez, 2015). An additional benefit is the use 
of sensitivity coefficients for sampling design for calibration goal (Kapelan et al., 2003; Do et al., 2016). 
The sensitivity coefficients can be evaluated very efficiently based on explicit local sensitivity 
formulations as given in (Piller et al., 2017) even for large systems (Deuerlein et al., 2017). Nevertheless, 
the FOSM method is limited in scope to interval estimation and normal pdf distribution. Although the 
FOSM can be evaluated very efficiently based on explicit local sensitivity formulations as given in 
(Piller et al., 2017), it results in symmetrical confidence intervals. The linearization further limits the 
accuracy in cases with high variance and nonlinearity. A more complex approach for the calibration is 
introduced in (Kapelan et al., 2007) using the shuffled complex evolution metropolis (SCEM-UA) 
algorithm in a Bayesian type algorithm. It results in an approximation for more general probability 
distribution of the parameters. 
 
With an accurate description of the parameter uncertainties, it is possible to evaluate their influence on 
the QoIs. This is done by propagating them through the mathematical model. Classical approaches use 
once again the FOSM, but they suffer from the same limitations as for the parameter uncertainty 
quantification. One of the most popular approaches that have been applied in numerous studies is the 
Monte Carlo simulation (MCS). Kang and Lansey (2007) use it to validate the results for the FOSM. 
While MCS are producing more accurate results for non-linear systems, they are also computationally 
more demanding than the FOSM. This deliverable shows that with applications of the Polynomial 
Chaos Expansion (PCE) it is possible to obtain results for the uncertainty propagation with similar 
quality as the MCS, but for much lower computational cost. 
 
The objective of our work on WP4.3, presented in this deliverable, is to apply the more efficient spectral 
Polynomial Chaos Expansion to water distribution network models. Similar applications in the literature 
generally deal with small network models. By introducing a real medium sized network for the analysis 
of parameter uncertainties for the first time the scalability of the algorithms is demonstrated. 
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3 PARAMETER UNCERTAINTIES 

In order to handle the parameter uncertainties in mathematical models, they are expressed as random 
processes. This section gives a formal definition of random variables and stochastic processes followed 
by details on random number generation. 
 

3.1 Random Variables 

In measurement theory, a random variable is defined by the triple (Ω, ℱ, 𝑃) containing the sample 
space	Ω, the 𝜎-field or 𝜎-algebra ℱ and the probability measure	𝑃. The sample space Ω of an 
experiment is defined as the set of all possible outcomes	Ω	 = 	 {𝜔}. The 𝜎-algebra ℱ is a subset of the 
sample space that contains all relevant events. In this context an event may be defined as a set of 
outcomes, including the empty set ∅ and all combinations of other events in the 𝜎-field. Probability is 
a concept to measure the likelihood of occurrence for a certain event	𝑃: ℱ	 → 	 [0,1]. It has to satisfy the 
definitions	𝑃(∅) = 0, 𝑃(Ω) = 1 and if 𝐴5 	∈ 	ℱ and	𝐴5 ∩ 𝐴8 = ∅, 𝑃(⋃ 	𝐴5	:

5;< ) = ∑ 𝑃(𝐴5	):
	5;< .  

On this basis a random variable 𝑋 = 𝑋(𝜔) assigns a number to each outcome ω of a random experiment 
with a quantifiable probability. Based on the nature of the experiment the sample space may be defined 
by a discrete set of abstract outcomes like in a coin toss or as in the parameters of a water distribution 
network by a continuous range of values, which can be used directly as the random variable. 
 
There are a number of different ways for characterizing random variables. A common tool is the 
distribution as a function of the random variable. Also known as the Cumulative Distribution Function 
(CDF), which is defined for 𝐹@ → [0,1] by 
 

𝐹@(𝑥) = 𝑃{𝜔 ∈ Ω|𝑋(𝜔) ≤ 𝑥} 
	

and describes the probability that a realization of the random variable has a value lower than 𝑥. An 
illustrative derivation of the CDF is the Probability Density Function (PDF) 𝑓@(𝑥) which describes 
directly the probability of a certain realization. The PDF and the CDF are linked by the integral 
 

𝐹@(𝑥) = E 𝑓@(𝑡)
G

H:
𝑑𝑡. 

 

3.2 Sampling Strategies for Random Variables 

In many stochastic applications it is important to generate values of a random variable. For the 
generation of a basic independent and identically distributed (iid) random variable there exist two 
general approaches. They are known as Pseudo Random Number Generators (PRNG) and Quasi 
Random Number Generators (QRNG). 
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Pseudo Random Number Generators use an algorithm that produces a sequence of random numbers 
that has similar characteristics as the random variables. It is called pseudo random since the sequence 
of numbers is determined by the initial value which is often called the seed. Although the sequences are 
not truly random they are used because of their speed in the generation of random numbers and the 
reproducibility of particular sequences. 
 
Quasi Random Number Generators use low-discrepancy sequences to generate iid uniformly 
distributed random numbers. The low-discrepancy requirement of these sequences generates more 
evenly distributed values however the points are highly correlated. Common sequences are for example 
the Sobol Sequence, the Halton Sequence or the Mannersley Set. 
These quasi random sequences for uniform iid random variables are also helpful in the generation of 
more advanced random numbers.  
 
Inverse Transform Sampling (ITF) is a method for generating samples of a random variable with a given 
cumulative distribution function. For a realization 𝑢 of the uniform random variable 𝑈~𝒰(0,1) the 
realization of the a random variable 𝑥 can be defined as 
 

𝑥 = 𝐹@H<(𝑢). 
 
In cases where the CDF is unknown and cannot be easily derived from a known PDF, ITF can be used 
as the base random number generator for assessing the sampling distribution. 
 
Rejection Sampling (RS). The main idea of RS is to use an easy-to-sample distribution that is scaled to 
completely envelope the desired PDF. For the creation of the random numbers the enveloping 
distribution is sampled and the value is accepted with a probability that is determined by the ratio 
between the enveloping and the desired distribution function. Obviously, in order for the algorithm to 
be efficient the enveloping distribution should be chosen to closely follow the desired distribution in 
order to reduce the ratio of rejected samples.  
 
Polynomial Chaos Expansion (PCE) offers an attractive alternative to the more complicated and 
sometimes inefficient algorithms like Rejection Sampling. The PCE models a random variable by using 
a polynomial chaos expansion that is expressed in an easy to sample basic random variable 𝑍 using a 
set of joint orthogonal polynomials	Ψ5(𝑍). The polynomials have to hold under the inner product that 
is defined by 
 

〈Ψ5, Ψ8〉 	= 𝔼TΨ5Ψ8U = EΨ5(𝑧)	Ψ8(𝑧)𝑑𝑃W(𝑧) 	= EΨ5(𝑧)	Ψ8(𝑧)𝑓W(𝑧)𝑑𝑧 	= 	 𝛿58‖Ψ5‖Z 

 
with respect to the probability density function 𝑓W. 
The approximation for a random variable X is expressed by the truncated series: 

𝑋[(𝑍) = \𝑥]Ψ](𝑍)
[

];^
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with the coefficients 𝑥] and the order 𝑁 of the expansion. The coefficients are calculated by the 
projecting the random variable X on the basis polynomials: 
 

𝑥] =
〈	𝑋,Ψ]〉
‖Ψ]‖Z

.	

 
The choice of the polynomial basis generally depends on the distribution of the random variable. 
Gaussian variables are efficiently approximated by the Hermite polynomials  

 
Figure 1: (a) Hermite polynomials order N=4. (b) First order PCE with Gaussian germ. 
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4 UNCERTAINTY PROPAGATION 
4.1 Hydraulic Equations and Models 

In hydraulic modelling, the simplified topological structure of a water distribution network is 
described by a directed graph corresponding to Figure 2. In this graph, links represent pipe 
sections, valves and pumps, and nodes the resource nodes, tanks, demand nodes and connections. 
The mathematical description of this graph is given by the node-link incidence matrix	𝑨	 ∈
ℳbc×be(ℝ), where 𝑛𝑗 is the number of junction nodes and 𝑛𝑝 is the number of links. It is defined 
as	𝐀 = {𝐴	5,8}<k5kl8;<k8kln. The coefficients are defined as follows: 

𝐴	5,8 = o
−1		,	if	node	𝑖	is	the	end	node	of	link	𝑗	
	0		,	if	link	𝑗	is	not	connected	to	node	𝑖
+1		,	if	node	i	is	the	start	node	of	link	j.

 

Water distribution networks in general have a looped structure and the system state is described by 
the potentials at the nodes (heads) and the currents on the links (flow rates). The system equations 
are given by two sets of equations. First the mass balance at the junction nodes: 

𝐀𝐪	 + 	𝐜	 = 	𝟎	 (1) 

where 𝐀 is linked to the part of the network that only contains junctions with known demands, 𝐪 ∈
ℝln is the vector containing the flow rates and 𝒄	 ∈ 	ℝl8 is the vector of demands at junction 
nodes. Second the energy conservation equation: 

∆𝐡(𝐫, 𝐪) 	−	𝐀�𝐡	 −	𝐀��			𝐡� 		= 	𝟎 

where	𝐀� is the node-link incidence matrix reduced to nodes with known potential like reservoirs 
or tanks, and 𝐡 ∈ ℝl8	 is the vector containing the piezometric heads at junction nodes. Parameters 
are given by the potential vector 𝐡� ∈ ℝl�	describing fixed heads at source nodes like reservoirs 
or tanks and the vector 𝐫 ∈ ℝln	 containing the resistance coefficients for each link. The function 
∆𝐡(𝐫, 𝐪) describes the loss in head along a pipe and is defined by: 

∆𝐡:	ℝln	 × 	ℝln	 	⟶	ℝln	 
																(𝐫, 𝐪) 								⟼ 	∆𝐡(𝐫, 𝐪).	

It is usually termed the head-loss function. For medium and large Reynolds numbers the head-loss in 
general is a non-linear function of flow	𝐪 and is linear in r, but r can depend of q. In the following 
application, the state vector 𝐱 consists of the unknown flow rates 𝐪 and the head 𝐡 and the system 
parameters are combined in the vector	𝐲.  
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Figure 2: Tree graph network. 

 
The demand boundary condition in the hydraulic model is set using one of two paradigms. In demand 
driven models (DDM), the consumption is defined as a fixed demand vector d that gives the actual 
consumption at each demand node in the network (in Eq. (1) c = d). In contrast, pressure driven models 
(PDM) define the nodal demand as a function of the available pressure		𝐡 − 𝒆 (e is the elevation vector 
at junction nodes), a predefined service pressure head 𝐡𝒔 and the minimum pressure head necessary for 
a discharge	𝐡𝒎.This function is also referred to as the pressure outflow relation (POR). Literature gives 
several possible definitions for the POR, but one of the most common and realistic definitions and the 
one used here, was introduced by Wagner et al. (1988): 
 

𝑐(ℎ5) =

⎩
⎪
⎨

⎪
⎧

0																					,	if		ℎ5 ≤ 𝑒5 + ℎ�,5											

�
ℎ5 − 𝑒5 − ℎ�,5
ℎ�,5 − 𝑒5−ℎ�,5

�

<
Z
,	if		ℎ�,5 ≤ ℎ5 − 𝑒5 ≤ ℎ�,5

𝑑5																		,	if		ℎ�,5 + 𝑒5 ≤ ℎ5.									

 

 
For the PDM paradigm 𝐜 = 𝐜(𝐡) in Eq. (1). 
 

4.2 Propagation Algorithms 

Central part of the Uncertainty Analysis is the propagation of errors and uncertainties by means of the 
mathematical model. To do so, a multitude of algorithms are available that have been tested and proven 
in numerous applications (Smith, 2014). It is possible to classify the majority of these methods in three 
groups. The perturbation or sensitivity methods, the sampling methods and the spectral methods. 
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• Perturbation Methods: These methods calculate the moments for the distribution of the quantity 
of interest directly from the system equations by means of a truncated Taylor expansion. 
Typically, the expansions employed are limited to first- or second-order expansions. This limits 
their accuracy for non-linear models with major variance in the parameters. 

• Sampling Methods: With Monte Carlo Simulations as one of the most prominent 
representatives for this group, sampling methods are often applied for the propagation of 
uncertainties in non-linear models. Although, in general, implementation of the method is a 
straightforward task, its rate of convergence is asymptotically	1 √𝑀⁄ , where 𝑀 is the number 
of simulations (Xiu, 2010; Fishman 2013). 

• Stochastic Spectral Methods: The objective of spectral approaches like stochastic Galerkin and 
stochastic collocation methods is the calculation of a spectral representation of the random 
quantity of interest. Utilizing the smoothness requirement of the basis leads to an efficient 
convergence behaviour. The Polynomial Chaos Expansion is an efficient spectral method that 
has become popular in recent years (Xiu, 2010; Smith, 2014). 
 

4.2.1 Perturbation Methods 
Perturbation methods are especially efficient for the application in water distribution network 
modelling. The basic idea is to model the uncertain parameters symmetrical about their nominal value 
which in case of an uncertain demand would be 𝑑̅5 and 𝑟̅5 for an uncertain resistance. The perturbed 
parameters can then be represented by the generalized vector 
 

𝐘 = 𝐲¤ + 𝛿𝐘 = T𝑑̅< + 𝛿𝐷<,… , 𝑑̅l§ + 𝛿𝐷l§, 𝑟̅< + 𝛿𝑅<, … , 𝑟̅ln + 𝛿𝑅lnU
�. 

 
Here 𝛿𝐘 is the perturbation or uncertainty on the random vector 𝐘. Typically, 	𝑦ª¤¤¤ is taken as the expected 
value of the parameter and 𝛿𝐘5 as two standard deviations. To propagate the parameter perturbation the 
QoI vector 𝐗 is developed in a first-order Taylor series expansion as a function of the perturbed 
parameter	𝐘. 
 

𝐗 = 𝐱(𝐘) = 𝐱(𝐲¤ + 𝛿𝐘) ≈ 𝐱(𝐲¤) + 𝐒𝛿𝐘 
 
 
where the matrix 𝐒 gives the sensitivity of the QoIs with respect to the parameters. The expected value 
of the QoI can be calculated as 
 

𝛍@ = 𝔼[𝐗] = 𝔼[𝐱(𝐲̄)] + 𝐒𝔼[𝛿𝐘] = 𝐱(𝐲¤) 
 
Using the same expansion the variance may be expressed as: 
 

𝚺@ = 𝔼 ±²𝐗 − 𝛍𝐗³²𝐗 − 𝛍𝑋³
𝑇µ = 𝔼[𝐒𝛿𝐘𝛿𝐘𝐓𝐒�] = 𝐒𝚺𝐘𝐒� 
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where	𝚺· is the covariance matrix of the parameters. The sensitivities with respect to demand and 
roughness may be directly evaluated by: 

𝐒§ = ¸

𝜕𝐪
𝜕𝐝
𝜕𝐡
𝜕𝐝

» = ¼−𝐃
H<𝐀�(𝐀𝐃H<𝐀�)H<

−(𝐀𝐃H<𝐀�)H<
¾ 

𝐒¿ = ¸

𝜕𝐪
𝜕𝐫
𝜕𝐡
𝜕𝐫

» = ¼𝐃
H<𝐀�(𝐀𝐃H<𝐀�)H<𝐀�𝐃H<𝐁 − 𝐃H<𝐁

(𝐀𝐃H<𝐀�)H<𝐀�𝐃H<𝐁
¾ 

 
Here, 𝐃 is the diagonal Jacobian matrix containing the derivatives of the head-loss with respect to the 
flow rate and 𝐁 is the diagonal Jacobian matrix for the derivatives of the head-loss with respect to the 
resistance. 
This formulation for the sensitivities can either be derived directly by deriving the system equations 
with respect to the demand and resistance or through the evaluation of the adjoint sensitivities. Although 
an adjusted formulation for the sensitivities exists for the pressure driven model (Piller et al., 2017) its 
usefulness for uncertainty quantification is limited to symmetrical confidence intervals or pdf as normal 
or uniform distribution. 

4.2.2 Monte Carlo 
Monte Carlo simulations (MCS) are stochastic collocation algorithms that rely on random sampling to 
obtain an approximate result for the problem at hand. In uncertainty quantification applications, it is 
used to repeatedly evaluate the deterministic system equations for a random sample of the uncertain 
parameter with the objective to obtain an approximate representation of the PDF of the QoIs. 
Monte Carlo methods are very popular due to their straightforward implementation of the general 
procedure. In the first step iid random samples are generated from the parameter space 𝐘(5) =
Á𝑑<

(5), … , 𝑑]
(5), 𝑟<

(5), … , 𝑟Â
(5)Ã, 𝑖 = 1,… ,𝑀 according to their respective distributions. This step makes 

heavy use of random number generation algorithms like the ones described in Section 3.2. In the second 
step the deterministic system is evaluated for each sample 𝑖 = 1,… ,𝑀 from the parameter space 𝐘 to 
obtain the solution ensemble	𝐗. In the last step, the solution ensemble is used to evaluate the solution 
statistics defined in Section 3.1 where the mean is approximated by the sample average 

𝔼[𝐗] ≈ 𝛍Ä@ =
1
𝑀\𝐱(5)

Å

5;<

 

 
and the sample variance for each component as 

𝔼 ±²𝑋] − 𝜇@Ç³
Zµ ≈ 𝜎È@Ç

Z =
1

𝑀 − 1\²𝑥](5) − 𝜇̂@Ç³
Z

Å

5;<
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The Monte Carlo method is driven by two basic statistical principles: The Law of Large Numbers (LLN) 
and the Central Limit Theorem (CLT) (Billing et al., 1979). The Law of Large Numbers states that if 
the samples are iid the sample average 𝜇̂@Ç	will converge to the true mean in the limit of 𝑀 → ∞. This 
also holds for the sample variance 𝜎È@Ç

Z  and higher moments. Although the LLN guarantees the 
convergence of the MCS it does not evaluate the accuracy of the approximation. To do so the CLT has 
to be applied. Under the condition that the sample size justifies the LLN and the solution ensemble is 
iid, the Central Limit Theorem states that the sample distribution of the sample average converges to a 
Gaussian distribution 𝒩²𝔼[𝑋]], 𝜎@Ç

Z 𝑀⁄ ³, with a standard deviation of 𝜎@Ç √𝑀⁄  and 𝜎@Ç as the 
standard deviation of the true solution. This relation justifies the concept that the MCS converges 
proportional to the inverse of the square root of the sample size. It is obvious that the MCS can be easily 
generalized to more complex and even high dimensional applications, but due to its slow convergence 
with 1 √𝑀⁄  it is prone to suffer from the curse of dimensionality. 
 
 

4.2.3 Spectral Stochastic System 
In the application of the Polynomial Chaos Expansion random variables are substituted by their spectral 
series expansion. This includes parameters for which the coefficients are known and the QoI for which 
the coefficients still have to be determined. This substitution is formulated in the stochastic system 
equations. 
 

𝐀𝐪𝑵 + 𝐝𝑵 = 𝟎	
∆𝐡(𝐫𝑵, 𝐪𝑵) − 𝐀�𝐡𝐍 − 𝐀��𝐡� = 𝟎 

 
In this system of equations, the random variables have been replaced by their PCE of the order 𝑁, 
following the description in section 3.2. There exist two general approaches to evaluate the coefficients 
of the QoI with their respective benefits and drawbacks. The first option is an intrusive approach that 
requires a reformulation of the system equations to allow for the direct solution. Although 
computationally very efficient it may pose certain complications since it is not possible to use existing 
implementations for the solution of the problem. Further, the handling of nonlinearities may require 
additional steps that introduce additional errors. The second option is given by non-intrusive algorithms 
which use a number of samples similar to the Monte Carlo simulation to evaluate the coefficients. This 
means that in regards to the computation current software and models may be used; on the other hand, 
though more efficient than the MCS, at some point the curse of dimensionality will make the 
calculations infeasible. 
 
For the Intrusive Methods, the most prominent approach is the Galerkin Projection. It projects the 
stochastic system equations on the polynomial basis functions 𝚿] to create a new augmented system of 
equations that has 𝑁 + 1 times the number of equations to determine the expansion coefficients of the 
QoI. 
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〈𝐀𝐪𝑵 + 𝐝𝑵,𝚿]〉 = 𝟎	
〈∆𝐡(𝐫𝑵, 𝐪𝑵) − 𝐀�𝐡𝑵 − 𝐀��𝐡�,𝚿]〉 = 𝟎 

Non-intrusive methods follow more the spirit of stochastic collocations like Monte Carlo simulation 
does in the sense that it uses collocation points for which the deterministic system equations are 
evaluated. In contrast to the MCS, the direct evaluations in Intrusive Methods are used to fit the 
coefficients of the Polynomial Chaos Expansion to the data. For a QoI X vector: 

Ï
Ψ^²𝐳(<)³ … Ψ[²𝐳(<)³

⋮ ⋱ ⋮
Ψ^²𝐳(Å)³ … Ψ[²𝐳(Å)³

Ó Ô
𝐱<�
⋮

𝐱[�
Õ =

⎣
⎢
⎢
⎢
⎡𝐱 Á𝐲²𝐳(<)³Ã

𝑻

⋮

𝐱 Á𝐲²𝐳(Å)³Ã
𝑻

⎦
⎥
⎥
⎥
⎤
	

Where the 𝐳(5) are realizations of the Z random vector and Ψ]²𝐳(5)³ is the value of the 𝑘-th polynomial 
basis function at the realization 𝐳(5). The right-hand side is determined by the simulation result 𝐱 of the 
deterministic system at the parameter vector 𝐲	that is associated with the realization 𝐳(5) of the germ 
distribution. 𝐱] are the coefficients for the PCE of the state vector, which allows to evaluate the 
approximation from section 3.2. 
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5 EVALUATION OF UNCERTAINTIES 

Result of the polynomial chaos expansion is a vector containing the coefficients for the spectral 
expansion of all Quantities of Interest in the network. This is by far more powerful than a simple 
estimation of the confidence intervals used in frequentist hypotheses testing. The following sections will 
show how the spectral expansion can be used to construct an estimate of the probability density function 
which gives the full information on the probability of every value for a QoI. Further, it will be shown 
how the stochastic moments like mean and covariance can be calculated directly. 

5.1 Stochastic Moments  

In many applications the probability distribution of random variable is characterized by a number of 
derived parameters called stochastic moments. The 𝑘-th moment of a distribution is defined by 

µ] = 𝔼[|𝑋|]] = E 𝑡]𝑓@(𝑡)
:

H:
𝑑𝑡. 

The first moment is also known as the mean and gives the balance point of the distribution. With the 
use of the first moment it is possible to define the 𝑘-th central moment as: 

𝜎] = 𝔼[|𝑋 − 𝜇<|]] = E (𝑡 − 𝜇<)]𝑓@(𝑡)
:

H:
𝑑𝑡. 

The central moments give a characterization for the shape of a distribution. For simple distributions a 
good characterization may be given by the mean and the second to fourth central moments also known 
as the variance, kurtosis and skewness.  
 

5.2 Marginalization  

One is often interested in the marginal density distribution of a QoI. The marginal distribution can be 
interpreted as a projection of the multivariate distribution on one of the output variables. This allows for 
a more comprehensible evaluation, however additional information like the covariance is lost in this 
representation. The marginal density is defined as 

𝑓@à²𝑥8³ = E 𝑓@²𝐲~8³
	

𝒟𝐱~à

𝑑𝐲~8 

with the simplified notation 𝐲~8 = 	 ²𝑦<, … , 𝑦8H<, 𝑦8â<, … , 𝑦Å³
�. Their spectral representation of the 

integral may be formulated using the PCE and the marginal of a QoI in a 𝑀 dimensional parameter 
space is given by 

𝑋[²𝑍8³ = E \𝑥]Ψ](𝐙)
[

];^

	

𝒟𝐙~à

𝑑𝐙~8.	

In general, this integral is evaluated using the Monte Carlo algorithm by sampling the multivariate basic 
random variable	𝐙~8.  
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5.3 Estimation of the Probability Density Function 

The uncertainty propagation gives a characterization for the result random variables that allows for 
further evaluation and the estimation of the confidence intervals. One of the most common ways to 
visualize sampling data, which is generated by Monte Carlo type algorithms or from the Polynomial 
Chaos Expansion, is a histogram. In the histogram the parameter domain 𝑥 is divided into 𝑁 equidistant 
sections and the density for each section is approximated by 
 

𝑓ä(𝑥) =
1
𝑁
Number	of	𝑥5	in	same	section	as	𝑥	

Width	of	section  
 
Kernel Density Estimation: A more general approach is the Kernel Density Estimation (KDE). It 
achieves a smooth and continuous approximation for the probability density function based on a chosen 
kernel function  
 

𝑓ä(𝑥) =
1
𝑀ℎ\𝐾Á

𝑥 − 𝑥5
ℎ Ã

Å

5;<

 

 
Here, 𝑀 is the number of samples, 𝐾 is the chosen kernel function and ℎ is a smoothing factor. The 
choice of the kernel function greatly influences the final result. One of the most common examples is 
the KDE with a Gaussian kernel function. In this case the only parameter is the standard deviation which 
is chosen based on the number of samples. 
Pearson distributions: A theoretic way for the reconstruction of a probability density function that does 
not depend on sampling is given by the Pearson distributions. The Pearson distributions are a set of five 
functions that, based on the first four moments of a random variable, give a direct expression for the 
probability density function. Although this approach works quite well for random variables that have 
been modelled on a one dimensional parameter space, the application to more complex distribution of 
a random variable modelled on a two dimensional parameter space fails to give an accurate description 
of the real probability distribution.  
 

5.4 Confidence Intervals 

The objective of an interval estimate is to determine the values 𝑥ë and 𝑥ì that bound the location of the 
true value	𝑥ë ≤ 𝑥 ≤ 𝑥ì. The estimate is based on a set of realizations	{𝑥<, … , 𝑥Å} of the random 
variable and the interval [𝑥ë, 𝑥ì] is called an interval estimator. A confidence interval is the combination 
of an interval estimator and a confidence coefficient. The confidence coefficient can be interpreted as 
the probability that the interval estimator contains the true value	𝑥. The (1 − 𝛼) × 100% symmetrical 
confidence interval for [𝑥ë, 𝑥ì]	is defined such that for all	𝑥 ∈ 𝔽, 
 

𝑃[𝑥ë ≤ 𝑥 ≤ 𝑥ì] = 1 − 𝛼,𝑤𝑖𝑡ℎ	𝑃[𝑥ë ≥ 𝑥] =
𝛼
2. 
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6 APPLICATION 

This section introduces the example networks and presents the results for the application of the 
uncertainty propagation methods to different scenarios.  
 

6.1 Network Models 

All scenarios will be applied to one of the following networks. The first network is used for the simple, 
linear structure. The second one introduces the looped topology and the third network gives a realistic 
graph from the Veolia network. 
 
Tree Network 
The first network shown in Figure 2 is defined by tree shaped graph with a reservoir at the root node. 
Tree networks are special since the continuity equations are a determined system of linear equations 
(same number of unknowns and number of equations), which means that the flows can be calculated 
using the continuity equations and the demand vector	𝐝 (for the DDM case). In contrast, the head is 
calculated by the energy equation, which is a nonlinear system of equations. The state vector 𝐱 ∈
ℝZ^contains the flow rate of 10 pipes and the head at 10 junction nodes. The network is supplied by 
one tank at the tree root. 
 
Small Looped Network 
For the application of the uncertainty propagation algorithms in a fully nonlinear model, the small 
exemplary network illustrated in Figure 3 is used. The network contains three reservoirs and one loop. 
With the state vector 𝐱 ∈ ℝZ< containing 12 flow rate values and 9 head values, the mass conservation 
equation is underdetermined and may no longer be solved directly. As for the tree network, uncertainties 
are directly imposed on nodal demands or the resistance of a specific pipe. 

 

Figure 3: Small looped network. 
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Realistic Medium Sized Network 
For testing the scalability of the propagation algorithms for bigger more complex networks, the second 
model illustrated in Figure 4 is introduced. It is based on a part of a real network that is managed by 
Veolia and contains a total of 2,175 pipes, 1,822 junction nodes and one reservoir node. In contrast to 
the small looped network, the uncertainty is imposed on the multiplier of the demand pattern so the 
effect is introduced on the whole network. The model currently contains two demand patterns. 

 

Figure 4: Medium sized network model. 

 

6.2 Uncertainty Quantification Scenarios 

In this section, the test scenarios are described for each network followed by a short discussion of the 
results. 

6.2.1 Linear Tree Network 
In this simple scenario, one of the demands at node 9 is uncertain and is modelled by a Gaussian 
distribution. For the propagation, three approaches are chosen for comparison. The FOSM, MCS and 
PCE are applied to compare their performance. Applying the FOSM the sensitivities have to be 
calculated. For the Monte Carlo simulation the complete system was evaluated a total number of	𝑀 =
1𝑒4 times. Due to the Gaussian form chosen for the uncertain parameters, the PCE uses the orthogonal 
Hermite polynomials as basis functions and in order to model the non-linear effects for the head, the 
expansion order has been chosen to be	𝑁 = 2. The results are shown for the flow rate through pipe 9 in 
Figure 5 (a) and for the head at node 7 in Figure 5 (b). 
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Figure 5: Flow rate and head PDFs for the tree network in 1D demand uncertainty. 

For the flow, it is obvious that the three methods are in good agreement. This is due to the determined 
linear system of equations for the mass conservation. That means that the FOSM is able to calculate the 
exact Gaussian solution using the sensitivities. The MCS is able to reproduce a fairly accurate 
representation of the PDF. Actually, the PCE would be able to produce the same result using a first 
order expansion as this would also be a perfect Gaussian distribution. For the head, the result of the 
FOSM is different from the MCS and the PCE, since FOSM is not able to capture the non-linear effects 
of the energy equation. However, depending on the variance in the uncertain parameter the FOSM 
solution comes relatively close to the more complex methods in respect to the mean and the variance.  
This scenario has also been tested with an application of the intrusive Galerkin projection. In general, 
the results were comparable, but the intrusive method adds further error due to the non-polynomial 
head-loss function which here was approximated by a Taylor series expansion. 
 

6.2.2 Small Looped Network 
For the small looped network, four scenarios have been applied. First, a one-dimensional parameter 
space is chosen for one of the demand nodes. In order to test the multidimensional polynomial expansion 
the second scenario introduces a two dimensional parameter space with two uncertain demands. In the 
third scenario, a comparison is made between the demand-driven and the pressure-driven model. The 
fourth scenario deals with the influence of demand uncertainties on water age. 
 
1D Parameter Space DDM 
The application of the one-dimensional parameter space to the small looped network is in fact very 
similar to the one chosen for the tree network. As uncertain parameter, the demand at node 5 is chosen. 
Since the branched network has shown that the FOSM is of limited use in non-linear applications, the 
evaluation is performed using only the PCE and the MCS. The result of the PCE is evaluated using two 
different methods. The first one samples the polynomial series expansion of the QoIs and approximates 
the PDFs using the kernel density estimation. To do so the PCE has been sampled a total number of 
𝑀 = 1𝑒4 times. This result is represented by the solid red line in Error! Reference source not 
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found.Figures 6a and 6b. In the second approach, the moments of the PDFs are evaluated directly from 
the polynomial series through numerical integration. With the estimates for the first four moments, it is 
possible to draw the PDFs using the Pearson distributions. This result is given by the dashed yellow 
line. The result of the MCS is given by the blue histogram. As before, the histogram is based on 𝑀 =
1𝑒5 total evaluations of the hydraulic equations.  

 
 

Figure 6: Flow rate and head PDFs based on 1D uncertain demand for the small loop network. 

Through the introduction of the loop in the network graph, the mass conservation equations are 
underdetermined and need the solution in combination with the energy conservation equations to find a 
unique solution. This means that the flow rates are no longer determined by a linear system of equations 
and explains the clearly non-linear behaviour of the flow in Error! Reference source not found.Figure 
6a. Apart from this, all three methods give very similar results and the conclusions from the linear 1D 
case still hold. 
 
2D Parameter Space DDM 
Expanding the previous example, a second uncertain demand is added to the parameter space. Now the 
demands at nodes 5 and 6 are represented by Gaussian random variables. The evaluation methods are 
unchanged using the PCE with the kernel density estimation and the Pearson distribution using the first 
four moments. As before MCS is used for the validation of the results. 
From a numerical point of view the MCS shown in Figure 7 uses a total number of 𝑀 = 1𝑒5 
simulations in order to converge while the PCE still uses 𝑀 = 1𝑒4 evaluations. However, this time 
with respect to the multidimensional parameter space the PCE is chosen to be 8th order expansion. 
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Figure 7: Flow rate and head PDFs based on 2D uncertain demands for the small loop network. 

In Figure 7, once again, the MCS is given by the histogram and the kernel density estimation of the PCE 
in red. Since the Pearson distribution only uses the first four stochastic moments it is not able to capture 
the accurate shape of this distribution. 
 
1D Parameter Space PDM 
The third scenario for the looped network investigates the influence of PDM and compares the results 
to the classical DDM approach. In order to compare both modeling paradigms the same boundary 
conditions are applied in both cases and have been chosen to resemble those of the 1D DDM scenario. 
The only difference is the introduction of the POR for modeling the pressure dependence for demand. 
 

 

Figure 8: Comparison of flow rate and head DDM and PDM PDFs based on 1D uncertain demand 
for the small loop network. 

The difference between the DDM and the PDM becomes apparent in Figure 8. Instead of a distribution 
with one peak as for the one-dimensional parameter space in the DDM, the PDM introduces a second 
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peak for elements where there is insufficient pressure to satisfy the requested demand. This pressure 
boundary condition also helps to explain the phenomenon. The flow displayed in Figure 8 (a) has a 
similar PDF for lower flows. If the flow rate reaches a certain value it is impossible for the PDM to 
exceed the flow based on the available pressure. Similar, Figure 8 (b) shows that the flow reduction 
restricts the pressure to a minimum value below which it cannot fall. The second peak in both figures 
may be explained by shifting the insufficient cases into the viable pressure region. 
 
1D Parameter Space Water Quality 
This scenario is designed to evaluate the influence of demand uncertainties on water quality, which in 
this case is represented by the water age (or water residence time). The uncertainty is given by a normal 
distribution (𝜇 = 1, 𝜎 = 0.3) on the demand multiplier of the domestic demand pattern. The results are 
obtained with the transport module of the software Porteau (from Irstea Partner). Porteau calculates a 
flow-weighted average age together with the min and max ages, which gives more insight for the water 
quality assessment than the average value alone. 
 
The propagation is done using an extended period simulation (EPS) over the course of one week to get 
rid of the initial conditions. Figure 9 shows the mean water age together with the 95% confidence 
intervals as a function of the simulated time. It can be seen that after roughly one day the result stabilizes 
and is not dependent of the initial conditions. In Figure 10, the estimate PDF is visualized for the same 
nodes after a simulation period of 24 hours. The PCE and MCS are in good agreement for both 
distributions, but while the MCS uses a total number of 𝑀 = 1𝑒5 evaluations the PCE uses 𝑀 = 1𝑒3 
evaluations for an expansion of the order 𝑁 = 8. 

 

Figure 9: Min, average and max water ages predictions for two nodes in the small looped network. 
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Figure 10: Water age distributions for small network: (a) Meshed part of the system (b) at Branch 
in the network. 

Medium Sized Network 
1D Parameter Space DDM 
In the medium sized network the demand on each node is defined by the product of a base demand and 
a demand multiplier. For the application of the uncertainty propagation the demand multiplier is chosen 
as the uncertain parameter. Since this multiplier is applied to all demand nodes in the network, the 
uncertainty influences the complete network and not as before single elements. In general a 
multidimensional extension of this approach is possible by adding additional demand multipliers that 
are applied to groups of demand nodes. 
Figure 11 shows the result of a normally distributed demand multiplier on the flow in the looped part of 
the network. The histogram represents the MCS with a total number of 𝑀 = 1𝑒5 evaluations and is 
compared to a PCE of the order 𝑁 = 12 based on a total number of 𝑀 = 1𝑒3 evaluations.  
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Figure 11: Flow rate PDF based on 1D uncertain demand for VEDIF medium-sized network. 

Figure 10 shows the estimate for the resulting flow rate PDF for one of the pipes in the looped part of 
the network. It becomes clear that the distributed influence of the demand uncertainty has a strong 
nonlinear influence on the system. Further, it can be concluded that in this case, still the computationally 
much more efficient PCE gives comparable results to the MCS within a reasonable margin. 
 
1D Parameter Space Water Quality 
Similar to the small network the influence of uncertain demand is investigated for the medium size 
network. The uncertainty is again given by a normal distribution (𝜇 = 1, 𝜎 = 0.3) on the demand 
multiplier of the domestic demand pattern. In contrast to the small network where there were minimal 
differences in minimum, average and maximum water age Figure 12 shows all three at node 15Nf79 
after the simulated time of 116 hours and 130 hours. These correspond to the maximum and minimum 
of the periodic age pattern. The PCE and MCS are again in good agreement with a total number of 𝑀 =
1𝑒5 MCS evaluations and a total of𝑀 = 1𝑒3 evaluations for the PCE with an expansion of the order 
𝑁 = 12. 
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Figure 12: Water age distributions for the large Network: (a) Meshed part of the system after 116 
hours simulation time; (b) Meshed part of the system after 130 hours simulation time. 
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7 LESSONS LEARNED 

This section takes a closer look on technical questions that came up during the numerical experiments. 
First the necessary expansion order of the PCE is discussed. This is followed by a comparison of the 
efficiency between Monte Carlo methods and the PCE. The section closes with a comparison of the 
feasibility of intrusive and non-intrusive methods for the PCE. This section is based on the scenario in 
section 6.2.1, but the conclusions are representative for all applications. 
 

7.1 Evaluating the Expansion Order 

An important task for any application of an expansion approach is the evaluation of accuracy for the 
chosen development order. Since it is not possible to do so a priori this section shows the measures that 
have been taken based on the estimated coefficients. In a first iteration, the expansion order is chosen 
due to experience. Based on the evaluation it has to be adapted. The appropriate expansion order 
depends on factors like the non-linear properties of the modelled system and the desired accuracy for 
the application. Similar to other examples from polynomial approximation theory, it is assumed that the 
expansion converges to the true solution and that the theoretical infinite series may be represented by a 
truncated series of order	𝑁. From this it follows that coefficient values of higher order polynomials 
should be small and go to zero. Figure 13 (a) illustrates the convergence behaviour of the coefficients 
for a fourth order PC expansion. The coefficients are shown for the flow through pipe 5 and the pressure 
at node 8. As expected, their values decline rapidly and are close to zero for higher orders. Figure 13 (b) 
shows the probability density function for the pressure at node 5 up to a PC expansion of order four. 
While there are big differences between the first and the higher orders it is obvious that the distribution 
tails converge quickly for the orders three and higher. 
 

 

Figure 13: Probability density function for the pressure at node 7 based on the uncertain demand. 
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7.2  Monte Carlo versus Non-Intrusive Spectral Projection 

Looking at the fact that both the Monte Carlo simulation and the non-intrusive spectral projection may 
be classified as sampling methods one may ask why the application of the Polynomial Chaos expansion 
is beneficial. From literature the answer to this question lays in the fact that PC methods use the 
smoothness of the orthogonal basis polynomials and in effect have superior convergence behaviour. To 
illustrate this, Figure 13 (a) shows the value for the standard deviation of the pressure at node 5 over the 
number of sampling points evaluated. For a low dimensional problem as the one discussed in this 
deliverable report a very small number of points is sufficient to get a good estimation of the PCE 
coefficients. For higher dimensional parameter spaces the number of sampling points will obviously 
increase. 
 

7.3 Intrusive versus Non-Intrusive Methods 

As introduced in Section 4.2.3 there exist two basic approaches to the calculation of the expansion 
coefficients with the intrusive and non-intrusive methods. As discussed, the intrusive Galerkin approach 
has to use a polynomial approximation for the non-linear head-loss function which introduces additional 
model errors into the system and for a low dimensional parameter space as in the presented scenarios 
the non-intrusive matrix inversion can reach very good results with as few as of 5 to 10 evaluations of 
the full system. Further, the application of the intrusive PCE is challenging, since the newly created set 
of equations changes for the addition of new, uncertain input parameters or with a change in the 
expansion order. This means it is not easily adaptable to new network models. The adaptation of non-
intrusive methods to higher order expansions and a bigger parameter space on the other hand is relatively 
easy. This makes the approach more flexible. It follows that for reasonable sizes of the parameter space 
the non-intrusive approach gives an efficient and flexible framework, especially since methods like 
sparse grid collocation may reduce the amount of sampling points considerably. 
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8 CONCLUSION AND NEXT STEPS 

The deliverable has introduced the theoretical framework for uncertainty quantification with the 
modelling of parameter uncertainties, the propagation of uncertainties and the evaluation for the QoIs. 
For the uncertainty propagation in addition to the two well-known approaches of the FOSM and MCS 
the new PCE approach has been introduced to water distribution network modelling.  
 
In section 6, the performance of the different propagation methods has been compared in a number of 
different scenarios using network models of increasing complexity. It could be established that, as long 
as the uncertainty distribution has an inherent smoothness, the PCE is by far superior to the FOSM and 
even the MCS. 
 
Further work will consider the use of reduced order models for a more efficient sampling in the 
parameter space. This will permit to deal with large-sized network as the Strasbourg network. In the 
cases presented in this deliverable, the parameter uncertainties have, in general, been assumed to follow 
a Gaussian distribution. However, in reality this is a strong assumption that is not always well supported 
by the data. Inverse modelling in the Bayesian sense gives a strong platform in order to infer the value 
of the parameters using measured data in the form of a probability distribution. The PCE can play a 
major role in making these computations more efficient. One shortcoming of the non-intrusive PCE is 
the repeated solution of the original network model for slightly changed boundary conditions. For high 
dimensional parameter spaces this may lead to a high computational load. In this respect, the 
introduction of reduced order models is beneficial to lower the burden and allow for a more efficient 
solution. 
 
Among future applications that may be forecast is using uncertainty quantification as a guide for future 
data collection, calibration, state estimation, reliability studies incorporating probability assessment for 
the state to be in normal good condition and robust optimisation. 
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