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1 DELIVERABLE SUMMARY 

The aim of work package 3 is the development of an enhanced self-learning monitoring and event 
detection module. In summary the principal items of work package 3 are: 
 

1) Development of a data analysis platform for the integration of the heterogeneous sensor 
measurements 

2) Development of self-learning monitoring and event detection algorithms. These algorithms 
will take into account the spatial distribution of the measurements.  

3) Integration of online plausibility checks for the results of the algorithms  
4) Deployment of tools for the launch of the enhanced event detection module 

 
This deliverable describes the integration of hydraulic information into the event detection module 
with the aim to reduce the rate of false positive alarms. 
 
Three main concepts are proposed: 

- Use of backward transit time between two sensors; 
- Knowledge of source provenance; 
- Aggregation of clusters of similar water quality for spatial segmentation. 
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2 INTRODUCTION 

In order to ensure a secure water distribution in the network, it is essential to detect any intentional and 
accidental contamination inside the water distribution system [1]. The design of sensor-based 
contaminant warning systems (CWS) is a promising approach for the mitigation of contamination 
risks in drinking water distribution systems [2]. Traditional detectors are based on data-driven 
techniques to analyse the collected signals at each monitoring station independently [3] or after 
synchronization [4] using statistical, heuristics or machine learning methods. Such event detection 
algorithms are formulated in deliverable 3.2 and require taking into account some spatio-temporal 
information in order to reduce significantly the rate of false positive alarms. 
 
Furthermore, the hydraulic conditions of a water distribution system are hardly the same in operation 
(varying water sources, tank levels, etc.) which implies the emergence of changes in the water quality 
[5]. A quality monitoring system should not trigger alarms for such normal operating changes, by 
using hydraulic modelling for example [6]. It is classically assumed that the detector can discriminate 
the presence of a specific pollutant using some drinking quality parameters (e.g. free chlorine residual, 
conductivity, pH, turbidity, etc.) [7].  
 
The deliverable is structured in two parts:  
 
Initially, an approach is described which takes into account the water flow direction and pipe velocity 
to increase the robustness of the event detection module. As a use case, a part of the network from 
Eurométropole Strasbourg is investigated. It is additionally shown how the transit time between two 
sensors can be used backward to enhance the measure repeatability. Following, the importance of the 
provenance of sources for triggering alarm is revealed.  
 
The second part tackles a more general event detection problem in Water Distribution Networks 
(WDNs) and proposes a new methodology to extract some prior knowledge which would enhance the 
performance of any detector. It can be seen as a pre-processing step easily usable by monitoring 
strategies like the event detection algorithms implemented in D3.2 or the freely available CANARY 
software [8] for instance. 
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3 VALIDATION OF EVENTS USING THE PIPE FLOW 
VELOCITY AND DIRECTION  

Distortions in water quality (e.g. contaminations, chlorine peaks) travel through the water distribution 
network. Depending on the flow and the sensor network, several sensors located in the network on the 
same path will measure these distortions. On the contrary, the recalibration of a sensor or some 
maintenance work will only affect it at a specific time. In addition, maintenance and distortions 
resemble each other making it difficult to distinguish e.g. a chlorine peak from some sensor 
recalibration. Hence, by knowing only the measurements of one sensor leads to an increased rate of 
false positive alarms. 
 
Therefore, by integrating information from the flow direction and velocity into the event detection 
module, it is assumed, that the amount of false positive alarms can be considerably reduced. Figure 1 
sketches this concept in this deliverable investigated approach. If an event has been detected by the 
data-driven module (for details deliverables 3.1 and 3.2), it is checked if the event is detected again 
with another sensor downstream. If the event is detected and the time between the two events 
corresponds to the flow velocity, the module raises an alarm, otherwise the event is rejected.  
  

 

Figure 1: Concept to reduce the amount of false positive alarms by taking into account the pipe 
flow velocity. 

3.1 Use case: Validation Chlorine Peaks at Eurométropole Strasbourg 

As a use case, the prior described approach is tested on the propagation of a chlorine peak at the water 
distribution network of CUS (Eurométropole Strasbourg). Therefore, three chlorine sensors have been 
selected that are located close to each other and shown in Figure 2 left side. In that case, the sensors 
S139 and S138 are located in parallel pipes, while sensor S137 is located farer away. Since sensor 
S139 has the highest flow rate it detects the chlorine peak in the beginning followed by sensor S139. 
Finally, sensor S137 located farer away from the others will detect the peaks the last one. 
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Figure 2: Chlorine sensor position at CUS (left); Chlorine detected by the three sensors, leading to 
three peaks in the event detection module last subfigure bottom right (right). 

 
Figure 2, right side, shows the chlorine measurements for each station as well as the alarm index of the 
event detection module. Three distinguished peaks can be seen in the resulting alarm index generated 
from the event detection module. In this case each peak corresponds to the prior injected chlorine. By 
comparing the time difference between the peaks of the alarm index with the flow velocity in the 
pipes, it can be confirmed, that the peaks are due to an injection and not resulting from sensor 
maintenance works. 

3.2 Two of ways of using the travel time between two sensors 

The concept of integrating information from the pipe velocities can be further extended by calculating 
the transit time between two sensors. There are two ways: forward and backward. For the first one, it 
is illustrated in Figure 3, the water quality transport simulation can be used to anticipate and calculate 
which sensor will be reached and in in which time. It is here assumed that no action is taken to change 
the topology of the network (closing valves, flushing, etc.) so this is only possible when no health 
hazard is assumed. The second one, upstream backward is aimed to check the repeatability of the 
positive alarm and so will permit to limit the false positives if no detection further upstream. The 
principle is shown in Figure 4. The Irstea backtracking algorithm applied to sensor binary answers 
may be used as in [9]. 
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Figure 3: Forward transport model for normal water quality operation (e.g. a chlorine peak). 

 

Figure 4: Inverse transport simulation for improving the specificity of the classification. 
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3.3 Impact of a burst on source provenance 

It is also possible to use the hydraulic simulation to replay abnormal events and understand the 
different impact. A 400-mm nominal pipe (DN 400) has broken near the main station at 5:45. It was 
necessary to close four valves in the hydraulic segment of the broken pipe to isolate the leak. It was 
found that the consumers were not under the influence on the usual water source and there was a 
shift/move on the water quality barrier (a change of chlorine level). The software Porteau has been 
used to study the provenance of the source under different scenarios. The knowledge of water source 
provenance at sensors position is useful to identify false positive. 
 

 

Figure 5: a drastic change in water quality after a pipe break near the Strasbourg main station. 
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4 SPATIO-TEMPORAL SEGMENTATION FOR WATER 
QUALITY EVENT DETECTION SYSTEMS 

4.1 Problem Formulation 

This section investigates how to deal with the variability of water quality signals for monitoring WDN 
based on an existing deployment of water quality sensors. A WDS is a vulnerable infrastructure 
subject to deliberate or accidental contamination intrusions. The proposed approach is a two-step 
methodology to run before any Early Detection System (EDS) for scaling the problem of water 
quality monitoring. The first step of the method can be seen as a fully data-driven method that 
identifies the most representative operational periods for a WDS based on the incoming and outgoing 
flows [10]. The second step relies in discriminating automatically zones in the WDN of different sizes 
in space and time for a specific operational configuration. In other words, the first step extracts macro 
behaviors of the WDS and the second step reveals a partition of zones of equal quality in the WDN. 
 
The Figure 6 describes the global methodology to enhance any Event Detection Module monitoring 
water quality in WDN. The idea is to extract offline some prior knowledge about the spatial influence 
inside a WDN for a representative operating state of a WDS. Based on this existing spatio-temporal 
segmentation, the event detection system should trigger better alarms using online measurements of 
water quality parameters in WDN. 
 
The aim of the “time segmentation” step is to identify automatically the most representative operating 
periods in terms of water flow incoming and outgoing a Water Distribution System (WDS). A multi-
stage methodology is designed to address this initial problematic. The first substep consists in 
extracting elementary motifs from water flow time series. Each pattern characterizes a simplified 
hydraulic state defined by constant flow values, using a classical K-means algorithm. This 
multivariate discretization is used to compute a dedicated Levenshtein distance1 that compares pairs of 
pattern sequence. The DBSCAN algorithm [11] is finally used to regroup similar sequences and their 
prototypes, called temporal patterns, are determined. 
 
Then, the prototype of each operating configuration is used to design a specific hydraulic model with 
the modeling software SynergiTM Water. Based on such reference period, a hydraulic model is 
calibrated and used to trace conservative substances from sources to monitoring stations. The large 
amount of propagation simulations leads to multiple WDN partitions with zones under the influence 
of specific sources, mixing areas and “dead zones”. We propose to summarize different topologies of 
the WDN in a single graph partition per operational configuration. It can be seen as a median graph 
[12] or consensus clustering [13] over a sequence of the resulting simulation graphs in the best 
possible manner. We propose a greedy like algorithm on a consensus matrix (co-occurrence of 

                                                
 
1 Initially, string metric or edit distance for measuring the difference between two sequences 
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vertices in clusters of the input partitions) which is particularly suitable to monitor the evolution of 
community structure in temporal networks [13]. 
 

 

Figure 6: Global methodology to enhance the Event Detection Module.
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4.2 The VEDIF Case Study 

The proposed approach is illustrated on a large real-world network in France. The Syndicat des Eaux 
d’Ile-de-France (SEDIF) is an association including 150 municipalities that ensures the production 
and the distribution of drinking water to more than 4.5 million inhabitants of suburban Paris. The 
network of the SEDIF is the largest drinking WDN in France with about 8,600 km of pipes, almost 
600,000 active connections and more than 750,000 𝑚" of water produced each day. The water is 
produced in three large Drinking Water Treatment Plants (DWTP) located on the three main rivers of 
the Seine river basin, as shown in Figure 7. This paper is focused on a major part of the SEDIF 
network, mainly supplied by the Neuilly-sur-Marne DWTP and located on the Marne river. This 
subnetwork is depicted as the green area in Figure 7 and can be represented by a single hydraulic 
model including multiple sectors with different elevations. This hydraulic model is simplified as a 
system, only characterized by water flows collected in 2015. As the SEDIF network is fully 
interconnected (e.g., large interconnections between the production plants, illustrated in dark blue), the 
various operational conditions are strongly impacting the water propagation into the entire WDN. 
Indeed, any point into the network can be under the influence of multiple sources depending on its 
location and time.  
 
The next part presents the time segmentation, a procedure to give an insight on the recurrent operating 
periods over a year from a single water distribution system. Both the pattern extraction and pattern 
mining methods are briefly described and fully available in reference [10]. 
 

4.3 Time segmentation in a WDS 

4.3.1 Extraction of elementary motifs 
Let {𝒚%, … , 𝒚(} denote a set of 𝑚 time series, where each one of them 𝒚* = ,𝑦%*, … , 𝑦./*0 
corresponds to water flows recorded at the border of the WDS. That is to say 𝑦* is a univariate time 
series and 𝑦1* ∈ 𝑅 is an incoming or outgoing flow. Note that no assumption is made about 
synchronization between time series and the production plant flow is omitted due to its value 
predominance and relative stability. 
 
The original time series are recorded with a fine granularity where the time step is 2’30 and present 
classical issues like noisy data and missing values. The dataset representing more than 200,000 points 
in a year per water flow time series needs to be simplified using a piecewise approximation for 
instance. The TVD-MM algorithm [14] is used to denoise each time series independently while 
preserving the signal changes and aims to minimize the objective function: 

4|𝑦1 − 𝑥1|8
.

19%

+ 𝜆4|𝑥1 − 𝑥1<%|
.

198

	, 
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where 𝜆 > 0 is the regularization parameter, (𝑦%, … , 𝑦.) represents the original signal and 
(𝑥%, … , 𝑥.) is the smoothed signal. The higher 𝜆, the smoothest the resulting signal. Note that the 
number of segments is not required, and the segment values are modeled as constants. The 
method is notably suitable when the water flow signal can be approximated by piecewise 
constant functions as illustrated in Figure 8a. 
 

 

Figure 7: The SEDIF perimeter around Paris, the three main drinking water treatment plants in red 
and their interconnections in dark blue. 

Obviously, segmenting independently each flow signal is simpler than tackling a multidimensional 
water flow. As the WDN is considered as a system, the segmented time series are then aggregated into 
a single matrix 𝒙 sharing all the change-points which can be seen as multivariate time series 
(𝒙%, … , 𝒙() over the same time grid {1, … , 𝑛}. In other words, this matrix is composed by 𝑛 
multivariate segments where each segment is an 𝑚-dimensional vector revealing 𝑚 constant flows for 
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a specific period, as shown in Figure 8b. In our case, this segmentation step allows to reduce 
significantly the size of the overall dataset by a factor 6. 
 

(a) Univariate segmentation. (b) Multidimensional time series. 
Figure 8: Univariate segmentation (8a) using the TVD-MM algorithm over three days in June 2015 
– the raw data of water flow are painted in black and the piecewise constant functions are in cyan. 
The segmented multivariate time series (8b) with change points as vertical dotted lines. 

A classical clustering method is performed on the multivariate time series (𝒙%, … , 𝒙(). The well-
known K-means algorithm [15] is applied using various random initializations and the partition 
with the lowest intra-cluster inertia is selected. The number of clusters 𝐾 is usually assigned by 
minimizing some information criterion (e.g., AIC or BIC) but here no clear minimum could be 
found due to the large size of the data. Then, the 𝐾-value is selected by minimizing a penalized 
and weighted version of the intra-cluster inertia defined by 𝐶 = 𝐷 + 𝛾𝜈J𝑙𝑜𝑔(𝑛(𝑚 + 1)), where 
𝐷 is a distance defined by the following equation, 𝛾 > 0 is the penalization parameter and 𝜈J =
𝑚𝐾 is the number of free parameters. 

𝐷 = NO
P
∑ RS

TU,𝒙S,𝝁WS|WSXY0
TP

SXO    with 𝜑(𝒙[, 𝝁\) = NO
]
∑ ^_S/<`Y/a

T]
/XO  ,  (1) 

and 𝛿[ is the duration (in hour) of the segment 𝑖, 𝑧[ is the label of segment 𝑖 and 𝝁\ =
(𝜇\%, … , 𝜇\() is the mean centroid of cluster 𝑘. Note that 𝐷 is linearly correlated to the inertia 
optimized by K-means. 
 
The next part describes a strategy to extract meaningful “patterns” or subsequences in the time 
series (𝝁%, … , 𝝁g) where each temporal centroid 𝝁[ ∈ {𝝁%, … , 𝝁J} is called an “elementary 
motif”. The sequential pattern mining method is based on a dedicated Levenshtein distance. 
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4.3.2 Sequential pattern mining 
Let us introduce a distance in order to quantify the difference between sequences of elementary 
motifs that represent the pattern instances. Moreover, a reformulation of the Levenshtein distance 
[16] is adopted due to its capacity to integrate each sequence order and the three single-character 
operations (insertion, deletion and substitution). Some other distances (e.g., Hamming distance) 
do not share these features. The distance noted 𝐿 is based on the function 𝜑 defined in Eq. (1); let 
us note 𝜑(𝜇\, 𝜇i) = 𝜑\,i and 𝜑(𝜇\, 0) = 𝜑\, ∀(𝑘, 𝑙) ∈ {1, … , 𝐾}8. Considering two patterns 𝑢 
and 𝑣, the Levenshtein distance is defined as (∀𝑖 = 1,… , |𝑢|, ∀𝑗 = 1,… , |𝑣|) 

⎩
⎪
⎨

⎪
⎧

𝐿(0,0) = 0
𝐿(𝑖, 0) = 𝐿(𝑖 − 1,0) + 𝛿rS𝜑stSuO,stS
𝐿(0, 𝑗) = 𝐿(0, 𝑗 − 1) + 𝛿v/𝜑sw/uO,sw/

𝐿(𝑖, 𝑗) = 𝑚𝑖𝑛 x𝐿(𝑖 − 1, 𝑗) + 𝛿rS𝜑stSuO,stS , 𝐿(𝑖, 𝑗 − 1) + 𝛿v/𝜑sw/uO,sw/ , 𝐿(𝑖 − 1, 𝑗 − 1) + 𝑆𝑢𝑏(𝑧rS, 𝑧v/){

	 

and the substitution cost is defined by  

𝑆𝑢𝑏 ,𝑧rS, 𝑧v/0 =

⎩
⎪
⎨

⎪
⎧ 𝛿rS𝜑stSuO,stS + 𝛿v/min	 ,𝜑sw/uO,sw/ , 𝜑sw/,sw/�O0 if	𝑖 = |𝑢|

𝛿rS min ,𝜑stSuO,stS , 𝜑stS,stS�O0 + 𝛿v/𝜑sw/uO,sw/ if	𝑗 = |𝑣|

𝛿rS min ,𝜑stSuO,stS , 𝜑stS,stS�O0 + 𝛿v/min	 ,𝜑sw/uO,sw/ , 𝜑sw/,sw/�O0 otherwise

 . 

A clustering algorithm exploiting the previous distance is used to aggregate similar patterns 
among the overall sequence of elementary motifs. It is worth noting that successive motifs with 
identical labels are merged. First, a sequence of 𝑝 candidate patterns are enumerated according to 
some prior knowledge relative to the addressed problem. Then, the DBSCAN algorithm [10] 
groups candidate patterns in high density regions; that is to say, a similar pattern has a distance 
less than a given threshold 𝜀 > 0. This algorithm has a worst case complexity of 𝑂(𝑝8) and does 
not require setting the number of clusters (unlike K-means). The estimation of the 𝜀-value is 
needed and a greedy-like procedure is performed to identify few potential clusters, where each 
iteration is defined such as 

1. Selection of the best pattern (depending on the addressed problem: most frequent, etc.); 
2. Aggregation of candidate patterns similar to the best pattern instances (distance < 𝜀). 
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Then, the DBSCAN algorithm is used on all the patterns identified by the greedy clusters. The final 
threshold 𝜀 is chosen such as the DBSCAN rate of good classification is maximized while its 𝜀-value 
is the lowest. Note that pattern overlapping can occur between patterns of different clusters but not 
inside each cluster. Finally, the most meaningful operational periods are identified as the medoid 
pattern per cluster. 
 

4.4 Spatial segmentation in a WDS 

4.4.1 Contamination simulation 
Following the description of the case study in subsection 4.2, nine time series of water flow 
collected in 2015 are used for characterizing successive hydraulic states of a WDS with respect 
to water exchange with its adjacent hydraulic systems (two plants and six sectors). The medoid 
of the first representative pattern is illustrated by Figure 9. The SubFigure 9a draws the medoid 
which is defined by the sequence of labels ‘isisisisisisisis’, a succession of two 
elementary motifs ‘i’ and ‘s’. It lasts 25h12min early from the 7th to the 8th of August and its 
belonging cluster represent a cumulated duration of 42% in 2015. The motif s marks the 
intermittent significant flows that come from sectors 4 and 5. For brevity, a short description of 
the two elementary motifs occurring in the first medoid is given in SubFigure 9b and SubFigure 
9c. The motif ’i’ shows an incoming flow at about 700 𝑚"/ℎ from sector 4 and 5, while the 
period ’s’ displays higher flows of about 2,000 𝑚"/ℎ and 1,000 𝑚"/ℎ respectively.  
 

 
(a) Medoid of the first most representative operating period. 
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(b) Elementary motif ‘i’. 

 
(c) Elementary motif ‘s’. 

Figure 9: Description of the elementary motifs appearing in the first two pattern medoids: arrows 
represent water flows (m^3/h) between the WDS and other adjacent hydraulic systems (two plants 
and six sectors). Each color is associated to a specific water flow: flow 1 in red, flow 2 in 
orange…up to flow 9 in mauve. Note that most of the differences between the four elementary 
motifs can be seen through water coming from the sector 3, 4, 5 and plant 1 (via the flow 8). 

The prototype of the most representative operating period is used as a reference period to calibrate a 
hydraulic model based on real water signals. The hydraulic modelling implements a major part of the 
SEDIF network represented by a single calibrated model including multiple sectors and containing 
about 30,000 nodes and 40,000 pipes. Using the hydraulic modeling software SynergiTM Water, 
several contamination scenarios are set up including various times, durations and locations of 
injections. The resulting dataset of contamination simulations leads to multiple WDN partitions of 
water quality zones. The next part describes briefly how to extract a unique network partition for each 
operating period. 

4.4.2 Consensus clustering 
Consensus clustering, also called cluster ensemble, has received considerable attention in the statistics 
and machine learning communities. Different cluster ensemble approaches are considered in the 
literature, including graph partitioning, Voting approach, Mutual information algorithms and Co-
association based functions [17]. The Figure 10 illustrates the time series of the water distribution 
system. The consensus clustering aims to get a unique graph partitioning among the various WDN 
partitions obtained with the different scenarios of contamination distribution. 
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Figure 10: Time series of a real water distribution network. 
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Most of the methods are based on the computation of a consensus matrix. Let us suppose that we wish 
to combine 𝑛� partitions found by a clustering algorithm on a network with 𝑛 vertices. The consensus 
matrix 𝐷 is an 𝑛 × 𝑛 matrix, whose entry 𝐷[* indicates the number of partitions in which vertices 𝑖 
and 𝑗 of the network were assigned to the same cluster, divided by the number of partitions 𝑛�. The 
matrix 𝐷 is usually much denser than the adjacency matrix 𝐴 of the original network, because in the 
consensus matrix there is an edge between any two vertices which have co-occurred in the same 
cluster at least once. On the other hand, the weights are large only for those vertices which are most 
frequently co-clustered, whereas low weights indicate that the vertices are probably at the boundary 
between different (real) clusters, so their classification in the same cluster is unlikely and essentially 
due to noise [13]. 
 
 



RESIWATER DELIVERABLE 3.3 PAGE 20 

 
 

Integration of hydraulic information into the Event Detection Module 

5 REFERENCES 

[1] N. Sankary and A. Ostfeld. Inline mobile sensors for contaminant early warning enhancement 
in water distribution systems. Journal of Water Resources Planning and Management, 
143(2):04016073, 2016. 

[2] W. E. Hart and R. Murray. Review of sensor placement strategies for contamination warning 
systems in drinking water distribution systems. Journal of Water Resources Planning and 
Management, 136(6):611–619, 2010. 

[3] X. Yang and D. L. Boccelli. Bayesian approach for real-time probabilistic contamination 
source identification. Journal of Water Resources Planning and Management, 
140(8):04014019, 2013. 

[4] C. Kühnert, M. Baruthio, T. Bernard, C. Steinmetz, and J.-M. Weber. Cloud-based event 
detection platform for water distribution networks using machine-learning algorithms. 
Procedia Engineering, 119:901–907, 2015. 

[5] M. Housh and Z. Ohar. Integrating physically based simulators with event detection systems: 
Multi-site detection approach. Water research, 110:180–191, 2017. 

[6] N. Oliker, Z. Ohar, and A. Ostfeld. Spatial event classification using simulated water quality 
data. Environmental Modelling & Software, 77:71–80, 2016. 

[7] D. G. Eliades, D. Stavrou, S. G. Vrachimis, C. G. Panayiotou, and M. M. Polycarpou. 
Contamination event detection using multi-level thresholds. Procedia Engineering, 119:1429–
1438, 2015. 

[8] A. Leow, J. Burkhardt, W. E. Platten III, B. Zimmerman, N. E. Brinkman, A. Turner, 
R.Murray, G. Sorial, and J. Garland. Application of the canary event detection software for 
real-time performance monitoring of decentralized water reuse systems. Environmental 
Science: Water Research & Technology, 3(2):224–234, 2017.  

[9] H. Ung, O. Piller, D. Gilbert, and I. Mortazavi, "Inverse Transport Method for Determination 
of Potential Contamination Sources with a Stochastic Framework," in World Environmental 
and Water Resources Congress 2013, C. L. Patterson, S. D. Struck, and D. J. Murray, Eds. 
Cincinnatti (Ohio), USA: ASCE, 2013, pp. 798-812. 

 
[10] N. Cheifetz, S. Kraiem, P. Mandel, C. Féliers, and V. Heim. Extracting temporal patterns for 

contamination event detection in a large water distribution system. In the 15th International 
Computing and Control for Water Industry conference (CCWI 2017), 2017. 

[11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering 
clusters in large spatial databases with noise. In the Second International Conference on 
Knowledge Discovery and Data Mining, volume 96, pages 226–231, 1996. 



RESIWATER DELIVERABLE 3.3 PAGE 21 

 
 

Integration of hydraulic information into the Event Detection Module 

[12] X. Jiang, A. Munger, and H. Bunke. On median graphs: properties, algorithms, and 
applications. IEEE Transactions on pattern analysis and machine intelligence, 23(10): 1144–
1151, 2001. 

[13] A. Lancichinetti and S. Fortunato. Consensus clustering in complex networks. Scientific 
Reports (Nature Publisher Group), 2:336, 2012. 

[14] M. A. Figueiredo, J. B. Dias, J. P. Oliveira, and R. D. Nowak, “On total variation denoising: A 
new majorization-minimization algorithm and an experimental comparison with wavelet 
denoising,” in IEEE International Conference on Image Processing, 2006, pp. 2633–2636. 

[15] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in 
Symposium on Mathematical Statistics and Probability. Univ. of California Press, 1967. 

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in 
Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707–710. 

[17] H. Elghazel, K. Benabdeslem, and F. Hamdi. Consensus clustering by graph based approach. 
In the 18th European Symposium on Artificial Neural Networks (ESANN), 2010. 


