Variational Data Assimilation with Turbulence Modelling
P. Chandramouli, E. Mémin, D. Heitz

To cite this version:
P. Chandramouli, E. Mémin, D. Heitz. Variational Data Assimilation with Turbulence Modelling, Conférence - Colloque National d’Assimilation de Données (CNA), Sep 2018, Rennes, France. 2018. hal-02608777

HAL Id: hal-02608777
https://hal.inrae.fr/hal-02608777
Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Variational Data Assimilation with Turbulence Modelling

Pranav Chandramouli\(^1\), Etienne Memin\(^1\), Dominique Heitz\(^2\)

To assimilate observations and optimise the analysis trajectory for turbulent flows using:

- Turbulence modelling\(^{[1, 2]}\)
- Volumetric observations\(^{[3]}\)
- Accurate background condition\(^{[3]}\)
- Background covariance estimation
- Optimised model coefficient

Mathematical Formulation\(^{[4]}\)

\[
\begin{align*}
\text{Cost} & = \frac{1}{2} \| \delta x_0 \|_{a^{-1}}^2 + \frac{1}{2} \int_0^T \| \delta u \|_{R^{-1}}^2 \, dt + \frac{1}{2} \int_0^T \| \mathbf{H} (x(t)) - \mathbf{y}(t) \|_{a^{-1}}^2 \, dt \\
\frac{\partial}{\partial (\delta x_0)} &= -\lambda (t_0) + B^{-1} \delta x_0 \\
\frac{\partial}{\partial (\delta u)} &= -\lambda (t_0) + B^{-1} \delta u + (\partial_a \mathbf{M}) \lambda
\end{align*}
\]

Glossary:

- \(x_0\) - Initial state \((x)\) of the system
- \(u\) - Control parameters
- \(B\) - Background covariance matrix
- \(R\) - Observation covariance matrix
- \(\lambda\) - Adjoint variable

Numerical Formulation

- **Forward/Tangent Iteration**
 - \(\mathbf{H}\) - Observation operator
 - \(\mathbf{M}\) - Dynamical evolution model
- **Backward/Adjoint Iteration**
 - \(\partial_a \mathbf{M}\) - Adjoint of the control dynamical model

Case

Analysis at \(t_3\)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Reference

Conclusion

- Turbulence modelling facilitates assimilation of turbulent flows
- Well-estimated background significantly improves analysis
- Physically relevant coefficient estimation is feasible via data assimilation
- Fully-defined background covariance matrix reduces computational time significantly at minor loss of accuracy
- Reconstructed volumetric observations are sufficient to perform assimilation and achieve meaningful results

Contact: cpranav93@gmail.com