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Abstract – Water temperature is an essential ecological variable that influences life beings at several
organizational levels, but its monitoring at the regional level is costly. An alternative is using models, which
summarise the knowledge of the functioning of the system so that they can be used to answer specific
questions. We present a model to calculate the epilimnion and hypolimnion temperature of inland water
bodies based on air temperature and on their geographical and morphological characteristics. The seven
model parameters were parameterized by using official monitoring data and the satellite temperature data of
the data set LakeSST for French water bodies. The performance of the parameterised model was compared
to that of two widely used models (FLake and air2water with four parameters). The model showed a good
performance in the simulation of epilimnion temperatures, especially in the summer. For hypolimnion
temperatures the performance was worse, but still comparable to that of other models. Because of its good
performance and the few data needed to run the model, it is a good choice for managers interested in the
thermal behaviour of inland water bodies.

Keywords: Epilimnion temperature / France / hypolimnion temperature / inland water body / water temperature
modelling

Résumé – Modèle de température de l’épilimnion et l’hypolimnion basée sur la température de l’air et
les caractéristiques des lacs. La température de l’eau est une variable écologique essentielle qui influence
les êtres vivants à plusieurs niveaux, mais son suivi au niveau régional est coûteux. Une alternative consiste
à utiliser des modèles, qui apportent des connaissances sur le fonctionnement des systèmes qui permettent
de répondre à des questions spécifiques. Nous présentons ici un modèle pour simuler la température de
l’épilimnion et de l’hypolimnion des masses d’eau douce continentales françaises en fonction de la
température de l’air et de leurs caractéristiques géographiques et morphologiques. Les sept paramètres du
modèle ont été paramétrés à l’aide de données de surveillance règlementaire et des données de température
satellitaires LakeSST. La performance du modèle paramétré a été comparée à celle de deux modèles
largement utilisés (FLake et air2water avec quatre paramètres). Le modèle est performant pour la simulation
des températures de l’épilimnion, surtout en été. Pour les températures de l’hypolimnion, la performance est
moins bonne mais toujours comparable à celle des autres modèles. En raison de sa bonne performance et du
peu de données nécessaires pour exécuter le modèle, il constitue un bon choix pour les gestionnaires
intéressés par connaître le comportement thermique des masses d’eau donce continentales.

Mots-clés : Température de l’épilimnion / France / température de l’hypolimnion / masse d’eau intérieure /
modélisation des températures
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1 Introduction

Water temperature influences life at several organisation
levels: metabolism, life cycle, community composition and
ecosystem functioning (Daufresne and Boet, 2007; Daufresne
et al., 2009). In the last years, the interest in water temperatures
has increased because of the effects of climate change (Webb
et al., 2008). On the one side, the paper of the interaction of
lakes with the climate system, which depends on surface
temperature, is increasingly recognised by coupling lake
temperature models to climate and meteorological models
(MacKay et al., 2009; Subin et al., 2012; Le Moigne et al.,
2016). On the other side, a generalised warming of lakes has
been observed worldwide (Schneider et al., 2009; Schneider
and Hook, 2010; O’Reilly et al., 2015), which results in the
intensification and lengthening of summer stratification (Danis
et al., 2004; Kraemer et al., 2015; Sahoo et al., 2015) and a
reduction of ice cover (Fang and Stefan, 2009; Butcher et al.,
2015). These changes in the hydrodynamic and thermal
conditions of freshwater bodies favour cyanobacteria and the
occurrence of toxic blooms will expectedly increase (Jöhnk
et al., 2008; Paerl and Huisman, 2008; Trolle et al., 2011),
affecting drinking water uptakes and bathing activities
(Falconer, 1999; Ibelings et al., 2014).

However, obtaining long term water temperature data for
multiple water bodies in a wide geographical region such as
France is costly in terms of personnel and equipment. As a
result, the knowledge of the thermodynamic behaviour of
French water bodies is limited. Monitoring networks provide
data well distributed spatially, but rare in time. Continuous
measurements have good resolution in time, but are available
on few water bodies only. Individual studies data (e.g.
Salençon, 1997) are disperse and sometimes of difficult
access. Instead, satellite images offer an interesting way of
monitoring lake temperatures; they provide information on
surface water temperature on wide spatial and temporal scales
at a low cost, so that monitoring can be extended to a great
number of non-instrumented water bodies. Thanks to their
advantages, satellite images have increasingly been used to
study the ecology of lakes in recent years (Dörnhöfer and
Oppelt, 2016). Satellite data has been used to study the
surface temperatures in extended geographical regions, such
as France (Prats et al., 2018a), the Tibetan Plateau (Wan et al.,
2017), the Arctic Coastal Plane (Huang et al., 2017), the US
(Schaeffer et al., 2018) or even at world scale (Schneider and
Hook, 2010; Layden et al., 2015). In other cases, satellite
images have been used to study internal thermal patterns in
lakes (Marti-Cardona et al., 2008; Allan et al., 2016;
Woolway and Merchant, 2018), longitudinal surface thermal
gradients in reservoirs (Martí-Cardona et al., 2016; Ling
et al., 2017) or how lakes respond to meteorological forcing
(Woolway and Merchant, 2017,2018). Since satellites provide
historical information starting in the 1980s they have been
used to obtain long term data series and analyse the effect of
climate change (e.g. Schneider et al., 2009; Schneider and
Hook, 2010; Riffler et al., 2015).

However, satellite measurements have some limitations.
The periodicity of satellite images is irregular because of
clouds or because of operational limits of the number of
images taken per day (Goward et al., 2006; Tolnai et al., 2016;
Xiao et al., 2018). In addition, satellites retrieve skin
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temperatures rather than epilimnion or bulk surface temper-
atures (Schluessel et al., 1990; Donlon et al., 2002). Skin
temperature is the temperature that should be used for the
calculation of surface fluxes of heat and gas (Kawai andWada,
2007), but for the biological and management points of
view bulk surface temperature is the relevant temperature
(Handcock et al., 2012). Depending on the time of the day
and meteorological conditions the differences between skin
temperature and bulk temperature can amount to a few degrees
(Wilson et al., 2013; Prats et al., 2018a).

Nevertheless, models can be used to provide information at
relevant spatial and temporal scales at a low cost. They can be
used to fill the gaps between measurements, to estimate past
temperatures and to make future predictions based on the
knowledge of the forcing variables. Several models are
available to simulate the water temperature of freshwater
bodies (Janssen et al., 2015). From a predictive and
management point of view, the most appropriate models
would be process-based ones, which take into account many
forcing variables (meteorology, hydrology) and characteristics
of the water body (morphology, outlet depth, etc.). Given
the complexity of this type of models, they require the
determination of many parameter values as well as temperature
series of a reasonable length for calibration and validation for
each of the modelled water bodies. Since these data were
missing or were difficult to obtain for most of the water bodies
at the moment of making the study, it may be useful to use
simpler models such as the model by Ottosson and
Abrahamsson (1998) and the four-parameter air2water model
by Toffolon et al. (2014), of statistical and semi-empirical
nature, or the simple process-based model FLake (Mironov,
2008), based on the autosimilarity concept and not requiring
inflow and outflow data.

To obtain a better knowledge of the thermal behaviour of
French water bodies, we were especially interested in the
model of Ottosson and Abrahamsson (1998), that simulates
water temperature using only lake morphometric and
geographical data as input data. This model extended the
monthly epilimnion temperature model of Håkanson (1996)
to calculate also hypolimnion temperature. Later, Håkanson
and Boulion (2001) adapted the epilimnion temperature
model to the weekly time scale. However, these models are
not able to reproduce the variability at the daily and inter-
annual scale. In addition, when applied to French water
bodies the model did not reproduce well the average
epilimnion temperatures (Bouchez, 2010). We thus extended
this model to include variability at the intra-annual and inter-
annual time scales using air temperature as input data
following Kettle et al. (2004). The resulting Ottosson-Kettle
(OK) model has seven parameters. We applied and tested it on
476 water bodies. We developed a parameterization adapted
to this set of lakes by using satellite and in situ data. The
results were compared to those of two widely used water
temperature models: (i) FLake model, which uses several
input variables (Mironov, 2008), and (ii) the four-parameter
air2water model by Toffolon et al. (2014) that simulates only
epilimnion temperature as a function of air temperature. In
addition to the water temperature series provided by the
model, the regionalisation of its parameters provided
interesting insights into the thermal behaviour of inland
water bodies.
f 24
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2 Data

2.1 Study case

We tested our model on 476 lakes located in metropolitan
France with surface area≥0.5 km2.We extracted geographical,
morphological and environmental data for these lakes from
the PLAN_DEAU database (Tab. 1), maintained by the AFB-
Irstea research consortium on the hydrobiology of inland water
bodies at Aix-en-Provence (France). The extracted variables
were latitude (LLat, °N), altitude (LAlt, m), maximum depth
(LDmax, m), surface area (LA, m

2) and volume (LV, m
3), Secchi

disk depth (LSD, m) and water body type (Q: quarry lake;
P: pond;G: gravel pit lake; L: natural lake; R: reservoir). Mean
depth (LD, m) was calculated as LD= LV/LA. Lake latitude and
continentality were measured at the centre of the lake. For
lakes with significant water level variation, altitude surface
area and volume were estimated at the maximal water level.
The studied water bodies included both natural (64 natural
lakes) and artificial water bodies (328 reservoirs, 42 ponds,
36 gravel pit lakes and 6 quarry lakes).

2.2 Meteorological data

To force the water temperature models we extracted the
daily meteorological data from the SAFRAN reanalysis
(Quintana-Seguí et al., 2008; Vidal et al., 2010), which is
provided at an 8 km� 8 km spatial resolution. For each water
body, the nearest grid cell data was selected. We used air
temperature as input data for air2water and the OK model.
FLake meteorological forcing is solar radiation, air tempera-
ture, vapour pressure, wind speed and cloud cover. We applied
an elevation correction to air temperature data to account for
the difference in altitude between the water body and the
Table 1. Characteristics of the studied water bodies.

Variable Symbol Minimum Median Maximum

Altitude (m) LAlt 0.0 239.5 2841.0

Latitude (°N) LLat 41.47 46.25 50.87
Longitude (°E) LLon �4.24 2.33 9.48
Maximum depth (m) LDmax 0.8 15.0 309.7
Maximum surface
area (m2)

LA 6.0�104 7.7�105 5.8�108

Maximum
volume (m3)

LV 1.2�105 4.6�106 8.9�1010

Table 2. Characteristics of the five water bodies with continuous meas

Name Code Type* Altitude (m) Latitude (°N) Longitu

Aulnes AUL13 L 11 43.591 4.792

Bimont BIM13 R 330 43.547 5.551
Pierre-Châtel LPC38 L 923 44.974 5.778
Pavin PAV63 L 1196 45.496 2.889
Sainte-Croix SCR04 R 477 43.766 6.186

*L: natural lake, R: reservoir.
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SAFRAN grid cell. A constant adiabatic correction of
�0.0065 °C/m is often used. However, the air temperature
lapse rates vary in time and space (Dodson and Marks, 1997;
Rolland, 2003), and it is more appropriate to use a variable
correction. Temperatures at different pressure levels simulated
by climate models can be used to estimate variable lapse rates
(Mokhov and Akperov, 2006; Gao et al., 2012) and this
method has already been used for lake temperature simulations
(Woolway et al., 2017). Since the standard SAFRAN output
does not include temperature at different pressure levels, we
preferred to estimate the air temperature daily lapse rate as
the slope of the regression between the elevation and air
temperature of the 50 pixels located nearest to each water body.
These pixels are located in a radius of∼30 km around the water
body, reflecting the local meteorological conditions. In most
cases, the altitudinal difference between the lake and the grid
cell was small and only a small correction was needed, of the
order of a few tenths of degree.

2.3 Water temperature data

In situ profile temperature measurements were used to
parameterise the OK model (Sect. 5) and to assess its
performance (Sect. 6). Secchi disk measurements were also
used as input data for FLake. Temperature profiles and Secchi
disk depths were obtained from measurements made by the
French water quality networks, namely the Réseau de Contrôle
de Surveillance (RCS) and the Réseau de Contrôle Opér-
ationnel (RCO). These data were extracted from the
PLAN_DEAU data base on 7 March 2017 and were available
for 87 % of the studied water bodies (n= 414). The number of
measured profiles per water body varied between 1 and 90, but
usually monitoring takes place every three years and at least
four measurements are taken during that year. For most water
bodies in the data base (92%) there were at most 12 profiles
available. Plus, hourly profiles were obtained from the French
continuous network of lake water temperature for five water
bodies (Tab. 2).

We obtained surface skin temperature data measured by
Landsat 5 TM and Landsat 7 ETMþ for 1999–2016 from the
data set LakeSST (Prats et al., 2018a). In usual conditions for
water bodies, satellite-derived temperatures were available
every 16 days for a given satellite. Since Landsat 5 and Landsat
7 have identical orbits with a delay of 8 days, satellite images
for a given water body could be obtained every 8 days when
both satellites were active (Landsat 5 was decommissioned in
2013). This optimal periodicity of measurement was reduced
because of the presence of clouds (Tolnai et al., 2016), water
urements.

de (°E) Max. depth (m) Max. surface (m2) Max. Volume (m3)

5.5 8.75� 105 3.34� 106

55.0 1.19� 106 1.40� 107

10.3 9.66� 105 6.40� 106

96.0 4.52� 105 2.30� 107

83.0 2.20� 107 7.67� 108
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vapour content beyond the limit of applicability of the
algorithm used to estimate surface temperatures (Prats et al.,
2018a) or because of technical and cost limitations in the
number of images that could be acquired (Goward et al., 2006;
Wulder et al., 2016). The number of satellite images per water
body varied between 6 and 205, although the median number
was 59 (less than 4 images per year in average).

We used the median temperature for each date as an
estimation of the average surface temperature. We corrected
the seasonal bias be following (Prats et al., 2018a):

T skin ¼ T skin;uncorr � be ð1Þ

be ¼ �1:56þ 8:725�10�4Rs ð2Þ

where Tskin is the skin temperature (°C), Tskin,uncorr is the
uncorrected skin temperature (°C) and Rs is the average solar
radiation (J cm�2). We estimated the epilimnion temperature
as:

Te ¼ T skin � DTc � DTw ð3Þ

whereDTc is the cool skin effect (°C) andDTw is the warm layer
effect (°C). We used constant values of DTc=� 0.46 and
DTw= 0.12, based on the average cool skin and warm layer
effects estimated at the reservoir of Bimont at the time of the
satellite overpass (Prats et al., 2018a).

2.4 Data availability

The extraction of data from the PLAN_DEAU database
(lake characteristics, temperature profiles, Secchi disk meas-
urements) is available by request to the AFB-Irstea consortium
on the hydrobiology of inland water bodies (contact: pierre-
alain.danis@afbiodiversite.fr). Meteorological SAFRAN data
may be requested to Météo-France (https://donneespubliques.
meteofrance.fr/). Charges are applicable to requests for
commercial use. The LakeSST v. 1.2 data set containing
satellite-derived skin temperatures can be downloaded from
Zenodo (doi: 10.5281/zenodo.1193745).

3 Water temperature models

3.1 Ottosson-Kettle model

This model is based on the division of the water column
into two layers: the upper layer or epilimnion, and the lower
denser layer or hypolimnion. We will use this distinction even
when the temperature is homogeneous in the water column.
During these periods of time the epilimnion and hypolimnion
temperature simulated by the model are equal.

We adapted the epilimnion temperature module following
Kettle et al. (2004) as:

Te;i ¼ Aþ Bf T�
a;i

� �
þ CSi ð4Þ

where Te,i is the epilimnion temperature, S is the solar radiation
(Wm�2), i is the day number and A, B, C are calibration
parameters. In contrast to Kettle et al. (2004), instead of using
the theoretical clear-sky radiation, we used a sinusoidal fitted
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to average daily solar radiation data. The variable T�
a;i was

defined as:

T�
a;i ¼ Ta;i �MAAT ð5Þ

where Ta,i is air temperature and MAAT is the mean annual air
temperature for the study period or for a relevant reference
period. The function f (*) is an exponential smoothing function
such that:

f T�
a;1

� �
¼ T�

a;1 ð6Þ

f T�
a;i

� �
¼ aT�

a;i þ 1� að Þf T�
a;i�1

� �
ð7Þ

where a is the smoothing factor. When Te,i< 0 °C, we make
Te,i= 0 °C.

We adapted the hypolimnion temperature module from
Ottosson and Abrahamsson (1998):

Th;i ¼ A⋅Dþ E⋅g Te;i

� �
; ð8Þ

where Th,i is the hypolimnion temperature, D and E are
calibration parameters and the function g(*) is a simple
exponential smoothing of Te:

g Te;1

� � ¼ Te;1 ð9Þ

g Te;i

� � ¼ bTe;i þ 1� bð Þg Te;i�1

� � ð10Þ

where b is the exponential smoothing factor.
Finally, we simplified the mixing algorithm used by

Ottosson and Abrahamsson (1998) and we used a basic
stability condition, i.e. if the epilimnion density is higher
than the hypolimnion density, then we make Th,i=Te,i, and if
Th,i < 4 °C, then Th,i= 4 °C, assuming a minimum hypolimnion
temperature of 4 °C. To avoid discontinuities due to this
condition, the equation (8) was implemented as:

Th;i ¼ Th;i�1 þ DTh ð11Þ

where

DTh ¼ E g Te;i

� �� g Te;i�1

� �� � ð12Þ

If the stability condition is not applied, that is, if the
hypolimnion temperature is above 4 °C all the time, the
equations (8) and (11) are equivalent.

3.2 Four-parameter version of air2water model

The four-parameter version of the air2water model
(Toffolon et al., 2014; Piccolroaz, 2016) is a simplification of
the full 8-parametermodel byPiccolroazet al. (2013) toestimate
the epilimnion temperature of lakes in the temperate region
(Piccolroaz et al., 2015; Czernecki and Ptak, 2018; Piccolroaz
et al., 2018). It is a semiempirical model that approximates
the heat balance from air and water temperature according to:

dTe

dt
¼ 1

d
a1 þ a2Ta � a3Teð Þ ð13Þ
f 24
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where Te is the epilimnion temperature, Ta is the air
temperature, a1, a2 and a3 are model parameters and d is
the proportion of the mixing layer volume respect to total
volume, estimated as:

d ¼ exp � Te � Th

a4

� 	
Te ≥ Th

1 Te < Th

8><
>: ð14Þ

where Th is the hypolimnion temperature and a4 is a model
parameter. Toffolon et al. (2014) suggest taking Th= 4 °C for
dimictic water bodies, the minimum temperature for warm
monomictic water bodies and maximum temperature for cold
monomictic water bodies. The quality of the calibration of the
four-parameter version of air2water is doubtful for percentages
of missing data above 97%, which corresponds roughly to
monthly measurements (Piccolroaz, 2016). For most water
bodies in the LakeSST data set the percentage of missing data
was higher, so that we used the parameterization presented by
Toffolon et al. (2014) derived from a set of 14 lakes from
different geographical regions and different spans of time of
available data:

a1 ¼ �0:042þ 0:017 ln LD ð15Þ

a2 ¼ 0:223L�0:635
D ð16Þ

a3 ¼ 0:175L�0:540
D ð17Þ

a4 ¼ 35:4L�0:360
D ð18Þ

However, we calibrated the model for the five sites with
continuous measurements to check the effect of the
calibration. The initial water temperature was estimated as
the median temperature in the months of December and
January calculated using the regression derived from satellite
measurements:

TDec�Jan ¼ 26:1� 0:49LLat � 0:0030LAlt þ 0:21lnLV

þ 0:0091LDmax ð19Þ

with root mean square error (RMSE) = 1.3 °C and Kendall’s
tau = 0.54.
3.3 FLake

FLake (http://www.flake.igb-berlin.de/) is a 1D hydrody-
namic model, designed as a module to be used by weather and
climate prediction numerical models (Mironov, 2008) that has
been applied to many lakes around the world (e.g., Bernhardt
et al., 2012; Kirillin et al., 2013; Heiskanen et al., 2015;
Layden et al., 2016). FLake takes into account convective and
wind mixing processes, and uses a heat balance to calculate
the variation of the content of heat in the water body. Water
temperature in the mixing layer is assumed to be uniform.
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Below the mixing layer, the vertical thermal structure is
described using the autosimilarity concept.

FLake uses the following forcing variables: solar
radiation, air temperature, air vapour pressure, wind speed
and cloudiness. The model does not have calibration
parameters and the only lake-specific parameters are mean
depth, the optical characteristics of water, the temperature at
the bottom of the sediment thermal active layer and the depth
of this layer.

Since FLake was not developed for deep lakes and
following the recommendations of its developers (http://www.
flake.igb-berlin.de/usefulhints.shtml), we fixed the mean depth
to 50m for the 13 water bodies deeper than 50m to limit
simulation errors. Calculations were made with a daily time
step. As for air2water, the initial temperature was estimated
with the equation (19).

The light extinction coefficient k was calculated as:

k ¼ 1:7=LSD ð20Þ

where LSD is the median of Secchi Disk depth measurements
(m) during the study period for each water body. The sediment
heat exchange was deactivated.

3.4 Code availability

The source code of the OK model is available at Irstea
source forge (https://forge.irstea.fr/projects/templac). Access
is granted upon request to the authors. The source code and a
Windows executable of FLake can be downloaded from FLake
website: http://www.flake.igb-berlin.de/sourcecodes.shtml
The source code of air2water is available from github:
https://github.com/marcotoffolon/air2water. An independent
implementation of the 4-parameter version of the model made
by the authors and used in this paper is available at Irstea
source forge (https://forge.irstea.fr/projects/templac).

4 Numerical calculations and statistical
analysis

The three models to estimate epilimnion and hypolimnion
temperatures were implemented in Python 2.7. We used the
packages numpy (van der Walt et al., 2011) and scipy
(McKinney, 2010). We used the L-BSFG-B algorithm (Byrd
et al., 1995) to calibrate the parameter values for each water
body.

The statistical calculations were made using R (R Core
Team, 2015) and the tidyverse (Wickham, 2017). We
favoured robust and nonparametric methods. Thus, all
regressions presented for the estimation of the OK model
parameters are robust regressions, made using the package
MASS (Venables and Ripley, 2002). We used the Wilcoxon
signed-rank test (Wilcoxon, 1945) to test departures from
zero and to compare paired groups, and the Kruskal–Wallis
H test (Kruskal and Wallis, 1952) to test the existence of
differences between groups. To identify differences between
groups we used the Conover test (Conover and Iman, 1979),
from the package PMCMRplus (Pohlert, 2018), as a post-
hoc test after the Kruskal–Wallis one-way analysis of
variance.
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We used the BIC criterion (Raftery, 1995) to select the
best regression model for the parameters a, A, B and C. First,
we ranked all possible models depending on the morpho-
logic and geographical variables (LDmax, ln LDmax, ln LA,
ln LV, LLat, LAlt, MAET) according to the value of the BIC
criterion using the R package MuMIn (Barton, 2018).
Then we applied an Occam’s window, by selecting the
model with the lowest BIC and all models with DBIC < 2.
Finally, we chose the most parsimonious model among the
remaining models.

We used the R package tabulizer (Leeper, 2018) to extract
from a pdf document the data shown in the Figures 4 and 5
from Kettle et al. (2004). The data were checked after
extraction and corrected where necessary.

5 Parameterization of the Ottosson-Kettle
model for French lakes

The model parameterization was made separately for
the epilimnion and for the hypolimnion temperature
modules. The parameter values were calibrated for the
study lakes and then parameterized as a function of lake
characteristics.

5.1 Epilimnion temperature

The four parameters of the epilimnion module a, A, B and
Cwere calibrated using satellite image data for French lakes in
the period 1999–2016.
5.1.1 Parameter A

In all-year-round ice-free water bodies, the parameter A
corresponds to the mean annual epilimnion temperature
(MAET) (Ottosson and Abrahamsson, 1998). For lakes with
ice cover during part of the year, the parameter A corresponds
to the mean of a sinusoidal function fitted to the temperature
data during the ice-free period. We fitted a multiple robust
regression between MAET and lake latitude (LLat), altitude
(LAlt) and surface area (LA):

A ¼ MAET ¼ 39:9� 0:484LLat � 0:00452 LAlt � 0:167 InLA;

ð21Þ

with an RMSE of 0.74 °C and Kendall’s tau of 0.64 (Fig. 1). Of
the coefficients of the equation (21) the one multiplying ln LA
is the one with the lowest p-value (p-value = 3.9� 10�8). For
the other coefficients, p-value <10�16.
5.1.2 Parameter a, B and C

Using the value of A calculated with equation (21), the
value of the coefficients a, B and C were calibrated for each
water body. The combinations of parameter values for which
a < 0.01 were discarded as physically implausible and were
deemed to be calibration artefacts. The distribution of the
fitted values for the three parameters is shown in the Figure 2.
The parameter a varied between 0.03 and 0.64, with a
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median of 0.19; B varied between 0.61 and 1.35, with a median
of 1.05; and C varied between �0.025 and 0.010, with a
median of 0.0002.

Initially, following Kettle et al. (2004), we fitted the value
of t = 1/a instead of a. However, this causes a high uncertainty
in the prediction of high values of a, with a Kendall’s tau
correlation of 0.65 between fitted and estimated values and
an RMSE of 0.22. Instead, it seemed preferable to fit ln a.
In fact, lnt = ln(1/a) =� lna. Using the BIC criterion, we fitted
a multiple linear regression function of the lake altitude (LAlt),
surface (LA) and volume (LV):

lna ¼ 0:52� 3:0�10�4LAlt þ 0:25lnLA � 0:36 lnLV ð22Þ

So that

a ¼ exp 0:52� 3:0�10�4LAlt þ 0:25lnLA � 0:36 lnLV
� �

ð23Þ

Now, Kendall’s tau correlation coefficient was 0.66 and
the RMSE was lower, 0.08. Although there was still higher
uncertainty for high values of a, it was greatly reduced (Fig. 3).
The Figure 3 also shows that the estimations of a using
equation (5) in Kettle et al. (2004) were lower than those made
with equation (23).The parameter B showed a small variability,
with 90% of the values comprised between 0.89 and 1.15. Still,
it showed a dependence on maximum depth (LDmax):

B ¼ 1:058� 0:0010LDmax ð24Þ

The estimated values of B had RMSE= 0.08 and Kendall’s
tau = 0.10. In contrast to Kettle et al. (2004) (Tab. 3), in our
case the relation between B and LDmax seemed linear rather
than logarithmic (Fig. 4). Regarding the parameter C, model
selection based on the BIC criterion showed it depended
mostly on volume, MAET and maximum depth (Fig. 5):

C ¼ 1:12�10�3 � 3:62�10�6LAlt ð25Þ

with RMSE= 0.004 °Cm2 W�1 and Kendall’s tau = 0.22.

5.2 Hypolimnion temperature

Using the epilimnion parameter values estimated with
equations (21–25), we calibrated the hypolimnion parameters
b and E for each water body using profile data for 411 water
bodies from the PLAN_DEAU data base for the period 1999–
2016. Only the parameter values for the 357 water bodies for
which the fitting was successful were kept.

5.2.1 Parameter D

Above a certain value, the model was insensitive to the
value of the parameter D. This critical value depended on
the value of E, being greater for greater values of E. Since
there were few water bodies with winter profile data and
because of the interaction between parameters it was difficult
to calibrate D and we kept the constant value D= 0.51
proposed by Ottosson and Abrahamsson (1998). This value
may be considered as the minimum value to assure there is
autumn overturn independently of the value of E. For low
f 24



Fig. 1. MeasuredMAETas a function of altitude (A), latitude (B) and surface area (C), and comparison withMAETestimated with equation (21)
(D). The diagonal line indicates the 1:1 relation.

Fig. 2. Distribution of the fitted values of the parameters a, B and C.
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Fig. 3. Comparison between individually fitted values of a and values estimated using equation (23) in this paper and equation (5) in Kettle et al.
(2004).

Table 3. Parameterisations of model parameters for different geographical regions.

Parameter Swede (Ottosson and Abrahamsson, 1998;
Håkanson and Boulion, 2001)

Greenland (Kettle et al., 2004) France (this work)

a 6c

A⋅L0:1V

(1þ1.234lnLDmaxþ 0.035LA)
�1 exp(0.52� 3.0� 10�4LAltþ 0.25lnLA� 0.36lnLV)

A
44� 750

90� LLat

� 	1:29

�0:1L0:5Alt � 0:25 L0:9Cont þ 500
� �0:52

�1.86þ 1.672lnLDmax 39.9� 0.484LLat� 4.52� 10�3LAlt� 0.167lnLA

B 1 1.087� 0.125lnLDmax 1.058� 0.0010LDmax

C 0 2.08� 10�2� 3.44� 10�4LDmax 1.12� 10�3� 3.62� 10�6LAlt
b A�0.5 � 1 E > 0:95

0:13 E � 0:95




D 0.51 � 0.51
E 2:2

LD þ 0:1
þ 0:4

�
e1 þ 1� e1

1þ exp e3 e2 � lnLDð Þ½ �

LA: lake surface area (m
2), LD: lake mean depth (m), LDmax: lake maximum depth (m), Lv: lake volume (m3), LAlt: lake altitude (m), LLat: lake

latitude (°N); LCont: lake continentality (km). c = 1 for monthly simulations, c = 12/52 for weekly simulations, c = 12/365 for daily
simulations. (e1, e2, e3) = (0.10, 2.0, �1.8) for natural lakes and (e1, e2, e3) = (0.49, 1.7, �2.0) for artificial ones.

Fig. 4. Parameter B as a function of and maximum depth. Fitted values for this study and for Kettle et al. (2004) and robust linear regression
(Eq. (24)) for this study’s data.
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Fig. 5. ParameterC as a function of altitude. Fitted values for this study and for Kettle et al. (2004) and robust linear regression (Eq. (25)) for this
study’s data.

Fig. 6. Distribution of the fitted values of the parameters b and E.
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values of D, the epilimnion and hypolimnion temperature
curves do not intersect, so that the mixing algorithm is not
applied. That would be the case of a water body stratified all
the year round.

5.2.2 Parameters b and E

The fitted values of both parameters b and E vary between
0 and 1 and show an approximately bimodal distribution
(Fig. 6). The parameter b shows a peak at just above 0 and at 1;
the parameter E shows a peak at about 0.6 and at 1. Their
estimated joint distribution (Fig. 7) shows these bimodal
distributions are related and linked to a threshold behaviour.
The Figure shows two main groups of data points: (1) a group
with values of b and E near or equal to 1; and (2) a group with
a wide range of values of E and low values of b (around
b= 0.13). In fact, b could be considered as a constant
parameter with a threshold behaviour that depends on the value
of E. In addition, the value of E depends on depth (Fig. 8). For
very shallow water bodies (up to 2–3m deep), the value of
E is high (approx. E > 0.90) and, since Te≈ Th, there is no
smoothing and b≈ 1. When water bodies become deeper, the
value of E decreases and the value of b decreases sharply, to
values of about 0.13.
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An appropriate value for the critical value of E for
stratification was obtained by analysing the relation between
E and the median of the difference between epilimnion and
hypolimnion temperatures DTeh= Te� Th for the months of
July to September:

E ¼ 1:01� 0:062DTeh ð26Þ

that has an RMSE= 0.15 and a Kendall’s tau = 0.65. Assuming
the frequently used criterion of a 1 °C difference between Te
and Th for identifying stratification (Stefan et al., 1996; Foley
et al., 2012; Woolway et al., 2014) and applying the equation
(26), the critical value of E should be 0.95. We then
parameterised b as:

b ¼ 1 E > 0:95
0:13 E � 0:95



ð27Þ

The values of b thus estimated showed an RMSE of 0.41
and a Kendall’s tau of 0.37. Although for stratified water
bodies (E� 0.95) the median value of b was 0.21, we used the
value of 0.13 that corresponded to the maximum of the
distribution of b for stratified water bodies (Fig. 7). In support
of this decision, the model was not very sensitive to the value
f 24



Fig. 7. Estimated kernel density of (E, b).

Fig. 8. Parameter E as a function of depth and lake type (Q: quarry lake; P: pond; G: gravel pit lake; L: natural lake; R: reservoir). The lines
indicate the estimations of E according to equation (28) and the values in the Table 4.
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of b and, because of the great variability of the parameter, by
using 0.21 instead of 0.13 in the equation (27) the RMSE of the
estimated b was almost equal, 0.39. In addition, because of
the low sensitivity of the model to b and the paucity of profile
measurements available, it was difficult to accurately estimate
the value of b. In fact, a value of b= 0.13 corresponds to an
exponential smoothing time constant of 8 days, while most
often the temperature profiles used for calibration were taken
several months apart.

The parameter E reflects the temperature gradient
between the epilimnion and the hypolimnion. For E ≈ 1,
the water body can be considered polymictic (Te ≈ Th), and
the lower the value of E the more intense the stratification.
Page 10
Figure 8 also shows that natural lakes tended to have lower
values of E than reservoirs, because reservoirs tend to have
less intense stratification than natural lakes. Subsurface
outlets present in many reservoirs cause the lowering of
the thermocline and a more gradual temperature gradient
(Han et al., 2000; Prats et al., 2018b). As a consequence, we
defined two different parameterizations of E as a function of
lake depth, one for natural lakes and another for artificial
lakes. We parameterized E as a sigmoid function of lake
depth LD:

E ¼ e1 þ 1� e1
1þ exp e3 e2 � lnLDð Þ½ � ; ð28Þ
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where the fitted values of the coefficients e1 to e3 can be found
in Table 4. For this we used data points such that E > 0 and
E < 1. For natural lakes RMSE was 0.18 and Kendall’s tau
was 0.65; for not-natural lakes RMSE was 0.18 and Kendall’s
tau was 0.52.

6 Model evaluation

The simulation period was from 1 January 1999 to 31
December 2016. Two kinds of data were used to assess the
performance of the three presented models: RCS-RCO
networks profile measurements for 404 water bodies and
continuous profile measurements for 5 water bodies.
Fig. 9. Root mean square error (RMSE) and mean error (ME) of the simu
models (FL: FLake; OK: Ottosson-Kettle model; a2w: 4-parameter air2w

Table 4. Fitted values of the coefficients of equation (28).

Type of water body e1 e2 e3

Natural lakes 0.14** 1.9*** �1.9***

Artificial lakes 0.53*** 1.7*** �2.5***

***Statistically significant with p-value <0.001; **statistically
significant with p-value <0.01.
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6.1 Overall evaluation results

The simulation results of the OK model are good in
absolute terms and in comparison to the results of the other
two models (Fig. 9). The epilimnion temperatures simulated
using the OK model showed a small bias (median ME
of �0.49 °C, statistically different from zero with p-value
< 0.001 according to the Wilcoxon test) and an acceptable
median RMSE of 1.7 °C. For hypolimnion temperatures,
the model was unbiased, with a median ME of �0.16 °C
(p-value = 0.07) and a median RMSE of 2.3 °C. These
performance statistics compare favourably to those of FLake
and air2water models. For epilimnion temperature the
median RMSE was 2.6 °C for FLake and 2.3 °C for air2water.
FLake simulated hypolimnion temperatures with a median
RMSE of 3.3 °C.

The quality of the epilimnion temperature simulations
was similar for most water body types (Fig. 10 left), with
median RMSE between 1.3 °C and 1.7 °C. The RMSE was
lowest for quarry lakes but the differences between groups
were not statistically significant (p-value = 0.19 according to
the Kruskal–Wallis test). Instead, there were differences
between water body types for the hypolimnion simulations
(p-value< 0.001 according to the Kruskal–Wallis test). There
lation of epilimnion and hypolimnion temperatures for the three tested
ater). No hypolimnion temperatures are simulated by the a2w model.
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Fig. 10. Root mean square error (RMSE) and mean error (ME) of the simulation of epilimnion and hypolimnion temperatures with the Ottosson-
Kettle model by water body type (Q: 6 quarry lakes; P: 26 ponds; G: 27 gravel pit lakes; L: 63 natural lakes; R: 282 reservoirs).
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were statistical differences between gravel pit lakes and
ponds (p-value = 0.05), between gravel pit lakes and natural
lakes (p-value = 0.03) and between reservoirs and natural
lakes (p-value = 0.01). The median RMSE of hypolimnion
simulations was below 2 °C for all water body types except
for gravel pit lakes and reservoirs (Fig. 10 right), which
showed higher errors (RMSE= 2.7 °C for gravel pit lakes, and
RMSE= 2.3 °C for reservoirs).

The lowest quality simulations of epilimnion temperatures
occurred for water bodies (lakes and reservoirs) deeper than
10mand forponds around1mdeep (Fig. 11).The lowest quality
simulations of hypolimnion temperature occurred for water
bodies of depths between ∼3m and ∼30m. This corresponds
to a transition zone between polymictic water bodies and
stratified water bodies with hypolimnion at ∼4 °C. For deep
water bodies (LD> 10–15m) the quality of hypolimnion
temperature simulations was better for lakes than for reservoirs.

6.2 Summer and winter surface temperatures

To describe the thermal environment of ectotherms it is
necessary to take into account the range of temperature
variation (Camacho et al., 2015). In particular, environmental
agencies and stakeholders are most interested in high
temperatures, which can cause mortality and thermal stress
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(Caissie et al., 2001; Davies-Colley et al., 2013). In fact, in
France maximum annual water temperature is the main
parameter determining the composition of the fish commu-
nity in lakes (Roubeix et al., 2017). However, low temper-
atures are important too. Low winter temperatures are
important for the recruitment of fish species (McCollum
et al., 2003) and can act as thermal barrier against invasive
species (Hesselschwerdt and Wantzen, 2018). For these
reasons, it is especially important to simulate accurately
summer and winter temperatures. The results for these
periods by model are shown in the Figure 12. In average the
OKmodel tended to give slightly biased estimates of summer
temperatures (median bias of 0.52 °C, p-value < 0.001
according to the Wilcoxon test), in contrast to FLake, which
provided overall unbiased summer temperatures (median
bias of 0.15 °C, p-value = 0.15), and air2water, which
underestimated summer temperatures by 1.12 °C
(p-value < 0.001). In winter, all models showed some
kind of bias: FLake showed a median ME of �2.71 °C
(p-value < 0.001); the OK model showed a median ME of
1.37 °C (p-value < 0.001); air2water showed a median ME
of �0.73 °C (p-value < 0.001). Air2water had the smallest
median RMSE for winter temperatures (1.09 °C).

Figure 13 shows the OK model results for summer and
winter by water body type. In the summer, the RMSE was
of 24



Fig. 11. Root mean square error (RMSE) of the simulation of epilimnion and hypolimnion temperatures with the Ottosson modified model for
different water body types (Q: 6 quarry lakes; P: 26 ponds; G: 27 gravel pit lakes; L: 63 natural lakes; R: 282 reservoirs).
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lowest for ponds (median RMSE= 1.0 °C), and was statisti-
cally different from RMSE for natural lakes (p-value = 0.007
according to Conover test) and reservoirs (p-value = 0.008
according to Conover test). According to the Conover test,
there were statistical differences in ME between ponds and
quarry lakes (p-value = 0.014), and between ponds and
reservoirs (p-value = 0.013). ME was mainly positive for
quarry lakes (median ME= 1.48 °C, p-value = 0.03) and
reservoirs (median ME= 0.66 °C, p-value < 0.001) and
unbiased for natural lakes (median ME= 0.31 °C, p-value =
0.18), ponds (median ME=�0.20 °C, p-value = 0.29) and
gravel pit lakes (median ME= 0.07 °C, p-value = 0.86). In the
winter differences between groups were not statistically
significant (p-value = 0.65 for RMSE, p-value = 0.15 for
ME, according to the Kruskal–Wallis test). Although some
patterns other than those expressed above seem to appear in the
figures, the low number of water bodies in some categories
and the great variability in the reservoirs and natural lakes
groups do not allow to state further conclusions.

Figure 14 shows the ME for epilimnion temperature
simulations with the OK model for summer and winter. In the
summer there was a positive correlation betweenME andmean
depth (Kendall’s tau = 0.31, p-value< 0.001) and in the winter
there was a negative correlation between these variables
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(Kendall’s tau =�0.20, p-value = 0.001). In the summer the
epilimnion temperature of shallow water bodies (LD < 5m)
tended to be underestimated by the OK model by 0.25 °C in
median (p-value = 0.003, according to the Wilcoxon test),
while in the winter it tended to be overestimated by 1.91 °C in
average (p-value < 0.001, according to the Wilcoxon test).
For water bodies deeper than 5m, the epilimnion temperatures
were overestimated by 1.16 °C in average in summer (p-value
< 0.001, according to the Wilcoxon test), and by 0.97 °C in
winter (p-value < 0.001).

6.3 Evaluation with continuous profiles

Model performance varied with water body, and the
simulated epilimnion or hypolimnion temperatures (Tabs. 5
and 6, Figs. 15 and 16). For the five sites of the French
continuous network of lake water temperature (Tab. 2), the
air2water model with fitted parameters simulated epilimnion
temperatures best in all cases, with negligible ME and RMSE
< 1 °C in most cases. The OK model was second best, except
for SCR04, where FLake performed slightly better. In this
case, the OK model accurately simulated the temperatures
during the warming part of the annual cycle, but FLake
simulated better the cooling part of the cycle. Most of the time,
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Fig. 12. Root mean square error (RMSE) and mean error (ME) of the simulation of epilimnion summer and winter temperatures for the three
tested models (FL: FLake; OK: Ottosson-Kettle model; a2w: 4-parameter air2water).
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the air2water model with fitted parameters and the OK model
showed similar trajectories following closely the measured
temperatures. However, the OK model tended to overestimate
temperatures, except in autumn and winter in SCR04 where it
tended to underestimate them. In addition, the variability of
winter temperatures simulated by the OK model seemed to be
too high compared to measurements in several cases (see
BIM13, LPC38, PAV63 and SCR04 in Fig. 15).

Hypolimnion temperatures were simulated best by FLake
at four out of five sites, the exception being PAV63, where the
OKmodel performed better. However, the correlation between
measurements and simulations was better for the OK model,
except at LPC38 where it was very similar for both models.
In fact, FLake often predicted sharp increases of the
hypolimnion temperature at the end of the stratification
season, when mixing takes place (see BIM13, PAV63 and
SCR04 in Fig. 16), which explains the lower correlation. In
addition, the evaluation of the performance of hypolimnion
temperature simulations made using profile data and continu-
ous data seemed to produce different results, that is, with
profile data the OK model performed better than FLake, while
with continuous data FLake seemed to perform better than the
OK model. However, this difference was not statistically
significant (p-value = 1 for RMSE, p-value = 0.81 for ME,
according to the paired Wilcoxon test comparing the
performance results for the five water bodies).
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7 Discussion

7.1 Parameterization of the OK model

Although the OK model is not process-based, the values of
its parameters reflect the thermal processes taking place. They
show geographical and altitudinal gradients, as well as the
influence of morphometry. According to equation (21), the
MAET (parameter A) depends on latitude and altitude. Such
patterns have been identified of old (Delebecque, 1898;
Stra�skraba and Gnauck, 1985; Hostetler, 1995), but this work
identifies more precisely the influence of latitude and altitude
in French lakes, with a decrease in MAET of 0.48 °C for each
degree in latitude and a decrease of 4.5 °C for each kilometre in
altitude. The equation (21) also shows that the MAET
depended on the surface area of the water body too: the MAET
decreased with increasing surface area. This effect is linked to
wind effects, that favour mixing (Rueda and Schladow, 2009)
and evaporation.

The latitudinal dependence of the MAET found for France
is greater than the value of 0.34 °C per degree in latitude used
in the model LAKETEMP of worldwide lake temperature
(Stra�skraba and Gnauck, 1985). The rate of epilimnion
temperature decrease with altitude is coherent with estimations
of 4.3 °C/km for lakes in Papua New Guinea (Vyverman and
Sabbe, 1995), but they contrast to average values of 6.9 °C/km
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Fig. 13. Root mean square error (RMSE) and mean error (ME) of the simulation of summer and winter epilimnion temperatures with the
Ottosson modified model by water body type (Q: quarry lake; P: pond; G: gravel pit lake; L: natural lake; R: reservoir). In the summer data was
available for 6 quarry lakes, 26 ponds, 27 gravel pit lakes, 63 natural lakes and 282 reservoirs; in the winter data was available for 4 quarry lakes,
4 ponds, 5 gravel pit lakes, 17 natural lakes and 89 reservoirs.
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found for Swiss lakes below 2000 masl for the months of June
to September (Livingstone et al., 2005). The reason for such
high lapse rates for Swiss lakes may be the effect of ice and
snow in the catchment area (Livingstone et al., 1999). For
lakes above 2000 masl Livingstone et al. (2005) also found a
change in the lapse rate compared to lower altitude lakes: it
was greater from June to August, but it was smaller in
September. Although some of our study lakes were above 2000
masl, there were not enough satellite images, or there were not
enough measurements in the year, to determine the MAET.
Thus, our data does not allow us to confirm whether such a
change in lapse rate occurs in French lakes.

The parameter a, the smoothing parameter of the air
temperature exponential smoothing function, is related to the
way the epilimnion responds to meteorological forcing.
Greater surface areas tend to decrease smoothing, while
greater volumes and depths tend to intensify it, as reflected in
equation (23). Given two water bodies of equal volume, the
one with a greater surface area has a greater surface of
exchange of heat with the atmosphere and responds more
steadily to atmospheric conditions. Plus, the greater the
volume (and depth) of a water body is, the greater its thermal
inertia. In our case, for individually fitted lakes the median
value of a was 0.19, the mean value was 0.22 and the 25% and
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75% percentiles were 0.13 and 0.29, respectively. These values
are coherent with the values found by Kettle et al. (2004), with
a median value of a= 0.23, and 25% and 75% percentiles of
0.15 and 0.31. Still, Livingstone et al. (2005) used a constant
value of a = 0.33 for all lakes, since an individually optimized
value of a provided only a slight improvement in the
performance of simulations.

The parameter B affects the amplitude of the annual water
temperature cycle. Kettle et al. (2004) suggest the parameter B
is dependent on the mixing depth, so that deep lakes are less
sensitive to meteorological forcing. In contrast to their results,
in our case the relation between B and depth was linear rather
than logarithmic (Tab. 3, Fig. 4), and decreased more slowly
with depth. Still, the variation in the individually fitted values
was great in comparison to the slope of the linear regression,
which resulted in a low correlation coefficient with the
simulated values.

The parameter C affects the mean, amplitude and phase of
the annual water temperature cycle: an increase in the value
of C increases the mean temperature, advances the annual
temperature maximum and enlarges the annual amplitude. The
parameter C interacts with the other epilimnion temperature
parameters A, a and B (Kettle et al., 2004), so that is it difficult
to explain the physical meaning of the regression equation used
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Fig. 14. Mean error (ME) of the simulation of summer and winter epilimnion temperatures with the Ottosson modified model for different water
body types (Q: quarry lake; P: pond; G: gravel pit lake; L: natural lake; R: reservoir) and LOWESS smoothing line over all data points
(discontinuous line). In the summer data was available for 6 quarry lakes, 26 ponds, 27 gravel pit lakes, 63 natural lakes and 282 reservoirs; in the
winter data was available for 4 quarry lakes, 4 ponds, 5 gravel pit lakes, 17 natural lakes and 89 reservoirs.

Table 5. Root mean square error (RMSE) of epilimnion and hypolimnion temperatures by the three models (FL: FLake, OK: Ottosson-Kettle
model, a2w: 4-parameter air2water, a2w fitted: air2water with parameters fitted to the data) at five sites with continuous measurements available.

Epilimnion temperature Hypolimnion temperature

Water body FL OK a2w a2w fitted FL OK a2w a2w fitted

AUL13 2.60 1.41 1.57 0.94 2.79 3.00 – –

BIM13 2.05 1.74 1.93 0.89 2.69 4.30 – –

LPC38 1.73 1.66 2.75 1.27 1.59 3.77 – –

PAV63 2.96 1.51 3.34 0.99 1.62 0.85 – –

SCR04 1.30 1.46 2.29 0.58 1.41 2.57 – –
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to estimate it. This also explains that it can take negative values
to compensate for the effect of the other parameters.

In Greenland lakes, Kettle et al. (2004) found higher values
of the parameter C (Fig. 5) and lower values of the parameter B
(Fig. 4) than those found in this study. Also, their equation (5)
applied to our data results in lower values of a than the
equation (23) used herein (Fig. 3). These differences may be
the reflection of a geographical variation of the thermal
processes taking place, which the limited latitudinal variation
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in our data set (between 41.5 °N and 50.9 °N) does not allow to
identify. Still, annual surface temperature ranges are lower in
higher latitudes than in medium latitudes (Stra�skraba and
Gnauck, 1985; Green et al., 1987), which is consistent with
lower values of the parameter B.

As described in the Section 5.2.1, the hypolimnion
temperature parameters showed a threshold behaviour,
oscillating between two states: (1) polymictic and (2) stratified.
The location of the critical point for stratification at E = 0.95
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Table 6. Mean error (ME) of epilimnion and hypolimnion temperatures by the three models (FL: FLake, Om: Ottosson modified,
a2w: 4-parameter air2water, a2w fitted: air2water with parameters fitted to the data) at five sites with continuous measurements available.

Epilimnion temperature Hypolimnion temperature

Water body FL OK a2w a2w fitted FL OK a2w a2w fitted

AUL13 �1.99 1.05 1.00 �0.02 �1.12 �2.67 – –
BIM13 0.58 0.42 �1.48 �0.00 �0.89 �4.03 – –
LPC38 �1.23 0.47 �2.25 �0.00 �0.12 �2.28 – –
PAV63 �1.26 0.28 �2.38 �0.05 1.09 0.57 – –
SCR04 0.39 �0.49 �2.13 �0.12 0.53 0.80 – –

Fig. 15. Epilimnion temperature: continuous measurements and simulations with the three different models (FL: FLake; OK: Ottosson-Kettle
model; a2w: 4-parameter air2water, a2w fitted: air2water with fitted parameters) for 2013–2016.
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Fig. 16. Hypolimnion temperature: continuous measurements and simulations with the different models (FL: FLake; OK: Ottosson-Kettle
model) for 2013–2016.
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(Eq. (27)) means water bodies with mean depths below ∼2m
are classified as polymictic, which is consistent with an
observed depth limit of 2–8m between polymictic and
monomictic lakes (Touchart, 2002). In a study of 86 Canadian
lakes of <500 ha, Snucins and Gunn (2000) found lakes
below 5m deep did not usually stratify. Other authors propose
that the transition between polymictic and stratified lakes
occurs at LA

0.25/LDmax ∼2.5–5.0 m�0.5 (Stefan et al., 1996)
and more complex indexes based on physical derivations
have been proposed (Gorham and Boyce, 1989; Kirillin and
Shatwell, 2016).
Page 18
7.2 Model performance

One of the objectives of this paper is to derive a
parameterization for the OK model that can be applied to
French lakes where data for calibration is insufficient and to
assess its performance in comparison to two other widely used
models. Our results support the good performance of the
parameterized OK model, which performed better than
FLake and the parameterized version of air2water. However,
FLake used no calibrated values and the calibrated parameters
used in the implementation of air2water were a preliminary
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calibration with 14 (mostly large) lakes (Toffolon et al., 2014)
that might not be representative of the studied group of French
water bodies.

Still, using individually calibrated values improves the
quality of the simulations and is preferable when sufficient data
is available and the modeller is interested in simulating
accurate temperatures rather than understanding general
patterns. In fact, when using the individually calibrated values
of the parameters for the OK model, the median RMSE of
epilimnion temperatures was 1.5 °C, a slight improvement
respect to the parameterized version (median RMSE= 1.7 °C).
For air2water, the median RMSE of the simulations with the
original calibration data was 1.2 °C, for both the 8-parameter
version and the 4-parameter version (Toffolon et al., 2014).
Also, the air2water simulations with calibrated parameters for
the five water bodies with continuous measurements showed a
radical improvement in the performance of the model, with
RMSE < 1 °C in most of the cases. In addition, Layden et al.
(2016) showed that by tuning some lake properties (lake depth,
snow and ice albedo and light extinction coefficient) the bias of
FLake epilimnion temperature simulations could be reduced
from ∼3 °C to <1 °C.

The performance of the OK model was also good in
comparison to more complex lake models. The physically
based 1D General Lake Model (GLM) was recently tested on a
set of 32 lakes worldwide in the framework of the Multi-Lake
Comparison Project (Bruce et al., 2018). Under these
conditions GLM showed a mean RMSE of 1.62 °C for
epilimnion temperatures and of 1.31 °C for hypolimnion
temperatures. The RMSE for the simulation of hypolimnion
temperatures under this test was much lower than the obtained
in our study both for FLake of the OK model. However,
hypolimnion temperatures are easier to simulate in deep water
bodies, where it remains rather constant near 4 °C throughout
the year. And in fact, their set of lakes included only 10% of
lakes with maximum depths below 10m, compared to about
30% in our case. A previous application of GLM to 2368
Winsconsin lakes (Read et al., 2014), with a much greater
proportion of shallow lakes (median LDmax of 6.71m), resulted
in an overall RMSE of 1.74 °C for epilimnion temperatures and
of 3.33 °C for hypolimnion temperatures. In the application of
another water quality model, MINLAKE, to a set of 28
Minnesota lakes, the average standard error of temperature
simulations was 1.47 °C (Fang et al., 2012).

Regarding summer temperatures, which are of special
interest for managers, they were well simulated by the OK
model, with a median RMSE of 1.4 °C. Winter temperatures
were simulated slightly less well, with a median bias of 1.4 °C
and a median RMSE of 1.6 °C. This different performance
between seasons may be due to the unequal distribution of
satellite measurements throughout the year. Because satellite
surface temperature measurements depend on the absence of
clouds, more measurements were available in the spring,
summer and autumn than in winter, so that winter measure-
ments had less weight in the fitting of the parameters for
individual water bodies. In addition, the values of the
epilimnion temperature parameters a, B and C should be
expected to vary throughout the year, in stratified water bodies.
In summer, it is mostly the epilimnion that responds to
meteorological forcing while in the winter all the water column
is affected (Boehrer and Schultze, 2008). Recent results by
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Schmidt et al. (2018) support this hypothesis. They found
water temperature variability at the monthly time scale at
Müggelsee increased from winter to summer, and decreased
from summer to winter. In addition, they found differences in
water temperature variability between spring and autumn that
were not due to differences in air temperature variability or
mean water temperature, but to the vertical thermal structure
and associated mixing processes. Woolway et al. (2014) also
found an increase in the diel surface temperature range at the
onset of the stratification. Surface water temperature is more
sensitive to air temperature variations in the warming phase of
the annual cycle than in the cooling phase (McCombie, 1959;
Livingstone and Lotter, 1998).

In the winter reservoirs showed a much greater variability
in bias than the other types of water body (Fig. 13). In some
cases the winter bias could amount to several degrees (Figs. 13
and 14). The reservoir bias was negatively correlated with
surface area (Kendall’s tau =�0.38, p-value < 0.001).
However, in the winter the number of reservoirs with available
profile measurements (89 reservoirs) was much greater than
for the rest of water bodies (4 quarry lakes, 4 ponds, 5 gravel pit
lakes and 17 natural lakes), which could explain the greater
variability in bias for reservoirs. Another possible explanation
is that the water level in reservoirs varies much more than in
other types of water body, affecting their thermal behaviour,
while the water level is considered constant in the simulations.

The quality of the hypolimnion temperature simulations
made with the OK model was worse than that of epilimnion
temperature simulations. In fact, there was a high uncertainty
in the parameterisation of the parameters b and E. In particular,
the value of E for stratifying not-natural lakes depends greatly
on the outlet depth and water level management plan.
However, since the objective was to derive a parameterisation
based on morphometry and geographical variables, this fact
has not been taken into account, causing higher errors in the
simulations of hypolimnion temperatures for this type of water
bodies (Fig. 10). In those cases, and especially for deep
reservoirs, it would be advisable to use individually fitted
values of E. If at least summer temperature profile data is
available, the equation (26) may be used to estimate E.

In addition, we propose here a constant critical value for
stratification of E = 0.95. Still, the value of E is related to
several variables (Prats and Danis, 2015), including wind
speed and Secchi disk depth, and a more appropriate course of
action might be the derivation of a criterion based on the use of
stability indexes that take into account the effect of wind such
as Schmidt stability or the Wedderburn number (Imberger and
Patterson, 1989). A first attempt to include such effects was
done by Bouchez (2010) by proposing a mixing criterion that
depended on the Wedderburn number. This has not been done
here to keep the model as simple as possible and to limit the
requirements of input data.
7.3 Limitations of the proposed modelling approach

The simulation of water temperature is a complex issue that
depends on the exchanges of heat (short wave and long wave
radiation, evaporation and conduction), matter (water vapour,
inflows and outflows) and mechanical energy (wind stress)
(Imberger and Patterson, 1989). The simulation of water
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temperatures also depends on the internal mixing and
stratification processes driven by the exchanges of energy
and influenced by chemical and thermal gradients and by
biological activity (Imberger and Patterson, 1989; Boehrer and
Schultze, 2008). Process-based lake ecosystem models are
designed to take into account all these factors and are the best
option when the system is well known and we are interested in
studying its behaviour out of the range of historical
observations (Robson, 2014). However, they require lots of
data to calibrate the model (Mooij et al., 2010; Robson, 2014).

For many water bodies detailed data (flow, water level,
bathymetry, etc.) is not available and a simpler approach is
necessary. The approach proposed here requires only air
temperature as forcing data and a few morphological and
geographical characteristics to determine the value of the
model parameters. While the results show a good performance
compared to other models, its limitations should be acknowl-
edged. First, given the statistical nature of the parameteriza-
tion, the model cannot be applied out of the range of conditions
for which it has been derived (Robson, 2014). In particular,
simulations to assess the effect of climate change should be
interpreted with caution, not only because of the statistical
nature of the model, but also because it does not take into
account all the factors that may affect the thermal behaviour.
Climate change can affect other meteorological variables in
addition to air temperature. For example, the warming of
surface water in Lake Zurich has been attributed to the
combined effect of increased air temperature and solar
radiation (Schmid and Köster, 2016).

In addition, the model does not take into account the effect
of inflow and outflow. For example, under climate change an
increase of snowmelt from glaciers can cause the cooling of
lakes (Pizarro et al., 2016). Thermal effluents from power
plants or the variation in the inflow volume can also affect the
thermal behaviour of lakes (Kirillin et al., 2013; Valerio et al.,
2015). These effects cannot be simulated by the models used in
this paper, and are expected to be more important in water
bodies with short residence times (Rimmer et al., 2011).

Other factors not taken into account by the OK model are
water transparency and wind speed. One-dimensional models
are sensitive to the value of water transparency, especially for
clearwaters (light extinction coefficient<0.5m�1) (Henderson-
Sellers, 1988; Heiskanen et al., 2015). In our data set 23% of
waterbodieshad light extinctioncoefficients below0.5m�1, and
transparency was correlated to depth, with deeper water bodies
being clearer (Roubeix and Danis, 2016). Since wind speed
affects evaporation and the mixing regime, the lake surface
temperature is very sensitive to it (Henderson-Sellers, 1988). A
part of the effect of wind is taken into account through the
epilimnion parameters depending on surface area, the surface
overwhich thewind canact.However, this is a general effect and
transient effects due to high wind speeds that can produce the
mixing of the water column are not taken into account. The
inclusion of transparency and wind effects in future versions of
the model would probably improve its performance further.

8 Conclusions

We present herein a two-layer water temperature model
based in the modification of the model of Ottosson and
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Abrahamsson (1998) by replacing the epilimnion tempera-
ture formulation by that proposed by Kettle et al. (2004) and
by proposing a new parameterisation of the model
parameters adapted to metropolitan France. The new
parameterisation is dependent on the geographical (latitude
and altitude) and morphological characteristics (depth,
surface and volume) of the water bodies. And it includes
a different parameterisation of the parameter E, which
determines the vertical temperature gradient, for natural and
not-natural lakes. We believe the proposed parameterisation
should be applicable to water bodies with similar character-
istics to those in the study set and not affected by upstream
glaciers. The performance of the model was good (median
RMSE of 1.7 °C for the epilimnion and of 2.3 for the
hypolimnion), in particular for the simulation of epilimnion
summer temperatures (median RMSE of 1.4 °C). Simulated
epilimnion winter temperatures, though, tended to be
overestimated by 0.5 °C in median. The simulation of
hypolimnion temperatures was best for shallow water bodies
and for deep natural lakes. For the simulation of
hypolimnion temperatures for deep reservoirs, and given
the fact that the model does not take into account the outlet
depth and water level management, it would be preferable to
use a value of E based on actual measurements of the vertical
temperature profile. Because of the simplicity of the model,
which only requires air temperature as forcing data and the
geographical and morphological characteristics of the
studied water bodies, and because of its good performance,
the modified Ottosson’s model is a good choice for managers
for the simulation of lake water temperatures, and in
particular of summer water temperatures.
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