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Abstract

It is expected for new clustering algorithms to find the appropriate number of clusters when dealing with complex
data, meaning various shapes and densities. They also have to be self-tuning and adaptive for the input parameters
to differentiate only between acceptable solutions. This work addresses this challenge. At the beginning mutual
nearest neighbors are merged without any constraint until the number of groups including at least two items reaches
a maximum. Subsequent mergings are only possible for mutual neighbor groups with a similar distance between
neighbors. Finally, to manage more nuanced situations, heuristics that combine local density and distance are
defined. The whole strategy aims to progressively consolidate the data representation structures. Munec requires
some parameters. Most of them were integrated as constants and a single user parameter controls the process:
the higher its value, the more constraints there are on the merging and the higher the number of clusters. Tests
carried out using 2-dimensional datasets showed that Munec proved to be highly effective in matching a ground truth
target. Moreover, with the same input configuration it can identify clusters of various densities, arbitrary shape and
including a large amount of noise. These results hold for spaces of moderate dimension.

c© 2011 Published by Elsevier Ltd.
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1. Introduction

Data reduction plays an important role in data mining area and clustering is a popular
way to achieve this goal. Clustering is probably the most extensively studied process in the
pattern recognition community. It is considered as the reference tool for unsupervised clas-
sification as it is useful to summarize and understand the data. An operational definition
of clustering can be stated as follows: Given a representation of objects, find the groups
based on a measure of similarity such that the similarities between objects in the same
group are high while the similarities between objects in different groups are low. After more
than 40 years of research, several popular clustering approaches now exist. They differ in
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the definition of a cluster and the processes used to partition the data. Clustering remains
a challenging issue for the pattern recognition community [24] as no universal algorithm
yet exists. Several proposals aim to improve the popular approaches by solving specific
cases to address well-identified drawbacks. The most representative example is the k-means
algorithm: a large number of methods have been proposed to reduce its sensitivity to initial-
ization or to make it faster. As datasets grow in size and dimension, resource management,
runtime and memory space become important.

Three basic notions of what a cluster is lead to three main types of algorithms. If a
cluster is defined by its center and a basin of attraction then distance is the central concept.
It is also possible to define a cluster as a dense area separated from another cluster by a
sparsely populated zone; in this case, density is the key idea. Finally, a third definition is
based on a set of connected points, in which case neighborhood is of prime concern.

The best-known representative of distance-based clustering algorithm is the k-means one
[19]. In the partitioning around medoids (PAM) version [29] the median item substitutes the
centroid as the group representative. A graph implementation is called CLARANS [34]. The
main drawback of these algorithms is that they are limited to spherically shaped clusters.
Density-based algorithms, such as DBSCAN [13] and its derivatives [38, 2], or CLIQUE [10],
are able to manage arbitrarily shaped clusters. They mainly differ in the density estimation
method: grid [35, 1], kernel [30] or neighborhood [11, 5]. When the parameter for density
estimation is static, these algorithms are unable to deal with density variations. Density
and distance methods are hybridized [18, 40], especially through agglomerative approaches
such as Chameleon [28], BIRCH [49] or DENCLUE [21], or split and merge frameworks [45].
The results are quite sensitive to the setting as only a few split and merge criteria can adapt
to the data. The trend is to design increasingly complex algorithms restricted to data of
moderate size, with the noticeable exception of [40].

Neighborhood is a transversal notion that can be used either in distance (volume) or
density (number of points) based algorithms [9, 47], or as the basis of the algorithm [25,
17, 32]. Its definition is usually a highly sensitive parameter. To eliminate this parameter,
the mutual nearest neighbors can be used. With the restriction to the first mutual nearest
neighbor no threshold, whether on distance or on the number of neighbors, is required.

This concept may be useful if one considers a more nuanced cluster definition, based on
internal structure, which can be called texture. In the field of image analysis [16], texture is
not formally defined even if widely used. It can be based on structural patterns or statistical
metrics. This concept is used here in a similar, intuitive, way. Neighboring and distance
are of major importance for cluster separation. The human eye and brain are capable of
combining the two in order to identify natural clusters. When the between group distance is
high with respect to the within group organization, there is no ambiguity: distance is of prime
concern. But when the between group distance decreases, the internal structure becomes
the main criterion: two groups are well identified if they have a different internal structure
or texture, even if they are close to each other. The internal structure is characterized by
density, or distance between neighbors. This is obviously a matter of degree, and sometimes
various configurations are acceptable.

Clustering algorithms have to deal with complex data, meaning different types of at-
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tributes, various shapes and densities, and must include outlier and noise management. The
expectations for new proposals can be grouped in two categories. The first one concerns the
dimension and volume of 21st century databases. It involves the curse of dimensionality and
algorithm scalability. The second one is to identify data structure without a priori informa-
tion. Clearly, approaches driven by the number of clusters are nowadays out of date as this
number is usually unknown. More generally, knowing that there exists a set of parameters
able to handle a particular situation does not help when the objective is knowledge discov-
ery. The challenge for new algorithms is to be sufficiently self tuning and adaptive for the
result to be acceptable whatever the input parameters, or put differently, for the same set
of parameters to be able to manage various datasets. In that sense, the input parameters
only differentiate between acceptable solutions and allow the user to select a more or less
detailed representation of her data.

This work addresses the second type of challenge. The main ambition of the proposal
concerns the discovery of clusters with different shapes and densities without laborious
tuning procedures.

The proposal assumes that a cluster is characterized by the distribution of its neighboring
patterns: there is no sharp change between neighboring patterns within the same cluster
and the difference between two clusters stems from their inner spatial arrangement and their
proximity. The mutual neighbor concept is useful for the inner structure description as well
as for characterization of the between group proximity.

The proposed algorithm1 is based on a iterative process that merges mutual nearest
neighbors. The hierarchical process has to be stopped before all the items are grouped in a
unique cluster. As no index is meaningful at the beginning, the first merging steps are only
controlled by the number of sub-clusters, to yield a skeleton of the data structure. Then,
two distinct stages are proposed. The first one involves the similarity of distances between
neighbors, in each group and between groups. In a second phase, three heuristic conditions
are introduced in order to discriminate between more nuanced situations. They are based
on a combination of several notions such as distances between mutual neighbors, nearest
neighbor group of higher size and local neighborhood density. They aim to provide the
algorithm with self-control abilities to become as generic as possible with a reduced number
of parameters.

In the following, the main neighborhood-based approaches are studied in Section 2 and
their limits are highlighted using examples. The definitions required by the key ideas of the
proposal are introduced in Section 3 and the process is illustrated using a toy example. Then
the whole algorithm is detailed in Section 4. The heuristics are motivated and illustrated
with data already used in the literature. In Section 5 the proposal is compared to alterna-
tive approaches using several datasets that illustrate the diversity of situations a clustering
algorithm has to cope with. Finally the main conclusions are summarized in Section 6.

1A sample code is available at: http://frederic.rosresearch.free.fr/mydata/homepage/
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2. Neighborhood-based clustering: literature review

Although developed independently the proposal draws on several concepts and ideas,
such as neighborhood, peak density or single-link distance, that have proven relevant to
cluster data for which classical techniques fail. This section presents a selected review of
previous work.

The neighborhood concept has been used in many clustering techniques. There are two
main ways to define a neighborhood. The first one counts items that fall within a space,
usually a hypersphere of radius r centered on the point. Let X = {x1, x2, . . . , xn} be a set
of items. The neighbors of x are the items located at a distance less than r:

Nr(x) = {xi | ||x(i) − x|| < r} (1)

The second one is the set of nearest neighbors. Let {x(1), x(2), . . . , x(n−1)} be the permu-
tation of the elements of X \ {x}, such that:

||x(1) − x|| ≤ ||x(2) − x|| ≤ . . . ||x(n−1) − x|| (2)

The k-nearest neighbors of the x item are the set defined as:

Nk(x) = {x(1), x(2), . . . , x(k)} (3)

The Chameleon approach [28] was the pioneer and is still the basis of, or a source of
inspiration for, recent developments. The algorithm uses a neighborhood sparse-graph for
item representation. Two vertices, x and y, are connected by an edge if:

x Cham y ⇐⇒ x ∈ Nk(y) OR y ∈ Nk(x) (4)

The edges are valued by the similarity between the considered items. In this way a
connected sub-graph corresponds to a cluster. The algorithm includes two steps. First the
graph is partitioned into many sub-clusters according to a min-cut criterion [8]. In the second
step, sub-clusters are iteratively merged based on their similarity, defined as a combination
of relative interconnectivity (RI) and relative closeness (RC). Using relative values instead
of absolute ones enables an adaptive modeling. The similarity between sub-clusters ci and
cj is defined as:

Sim(ci, cj) = RI(ci, cj) ·RC(ci, cj)
α (5)

α > 0 is used for weighting the relative closeness with respect to the relative intercon-
nectivity.

The relative interconnectivity is the absolute interconnectivity, the sum of the weights of
the edges in the two clusters, normalized by their internal connectivity. The relative closeness
is defined in a similar way with the average weight. The relative closeness discourages the
merging of small sparse clusters into large dense ones, and the resulting cluster has a uniform
degree of closeness among its items. The two parameters of the algorithm are α (in the
original paper α = 2) and the number of neighbors (10). No clue is given to choose this
influential parameter. There is no clear insight about noise management.

4
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2.1. The DensityPeaks algorithm

A recent study [40], referred to as DensityPeaks hereafter, is based on the idea that
cluster centers are characterized by a higher density than their neighbors and by a large
distance from items with a higher density. The local density, ρ, is estimated by the sum
of distances of neighbors included in the r-hypersphere (Eq. 1) and the distance, δ, is the
minimum distance to any higher density point. The distance to the highest density points
is set at the maximum distance between two points.

The 2D-plot ρ-δ allows for the identification of centers and outliers. The former have
high values on the two axes, while the latter are characterized by a low density and a high
distance. The number of clusters can be found using the Elbow method [42] applied to the
values of the ρδ product plotted in decreasing order.

The main parameter is the radius that defines the neighborhood. As a rule of thumb,
this paper proposes to choose the value that yields an average number of neighbors between
1 and 2 % of the data. This algorithm is already popular. It has been recently applied to
real world problems [43] and has undergone various improvements. Recent studies aim to
better select the neighborhood parameter [33, 44] that has a strong influence on the results,
or to improve the decision making process thanks to graph properties [45, 9], beyond the
original rule based on the ρδ product.

This algorithm proved to be relevant for various datasets including popular difficult
benchmark problems2. It has, however, some fundamental limitations when the local den-
sities are rather homogeneous and not easily defined as peaks. In such cases, where the
neighborhood is large, different peaks can be identified in a single cluster which is then split
into different sub-clusters. This is the case for spirals with uniform densities.

Figure 1. Illustrative example with density peak clustering [40]: the two clusters are not correctly identified.

2https://cs.joensuu.fi/sipu/datasets/, [15]
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The limitations of the algorithm are illustrated in Figure 1. The data are organized in
two clusters of the same size, 100 points, and different densities. Even if the local density is
estimated using a Gaussian kernel the two clusters cannot be correctly separated whatever
the radius parameter. The resulting clusters are shown in different colors in the figure. For
small-medium values (average number of neighbors less than 3 % of the data), the first two
dominant peaks are located in the densest cluster (left part of the figure). Using a larger
radius, the first two dominant peaks may be located in the two clusters. But, in this case,
some points of the less dense cluster have a higher density than expected and are attracted
by their denser neighboring cluster, as shown in the right plot of Figure 1.

2.2. The SCDOT algorithm

The Spatial Clustering with Density-Ordered Tree (SCDOT ) [6] method is based on the
two previously described methods. Cluster centers are also assumed to be density peaks
that have a relatively large distance from higher density peaks. Local density and distance
are estimated in the same way as in [40]. The first difference is that there is only one highest
density point. If there are several maxima, a small value, randomly chosen, is added to
one of them. The other difference is in the local density estimation: in DensityPeaks a
radius parameter is used whereas in SCDOT the k nearest neighbors are used. A graph is
constructed, as in Chameleon clustering [28], but with an additional constraint to yield a
tree. A node is connected to only one other node, i.e. its nearest neighbor of higher density.
The edge valuation is the same as in [40]. Cluster centers are recognized as points for which
the edge value is larger than the typical nearest neighbor distance. They are detected in
the distribution using the box-plot parameters, based on the interquartile range (IQR). The
outliers are labeled as mild (value higher than 1.5×IQR+Q3, the third quantile) or extreme
(value higher than 3× IQR +Q3).

The algorithm has a unique parameter, the number of clusters.
The tree is partitioned according to the edge values. The extreme outlier-edges are first

removed, yielding a number of sub-trees. If this number is below the desired number of
clusters, then mild outlier-edges are removed. If the number of sub-trees remains less than
the number of clusters then the edge with the largest value is removed until the desired con-
figuration is reached. Sub-trees composed of a single node are considered as noise. The last
step of the algorithm consists in merging the sub-clusters in a way similar to the Chameleon
method. Instead of maximizing the similarity, the authors minimize the disconnectivity,
according to the formula first published in [31], where |ci| stands for cluster i cardinality:

dis(ci, cj) =

∑
i∈ci

∑
j∈cj

bij + bji
d(i, j)

|ci| |cj|
, bij =

{
1 if j ∈ Nk(i)
0 otherwise

(6)

The disconnectivity of two clusters is defined as the inverse of the sum of distances in
the merged cluster. A penalty is added when one point does not belong to the set of the
nearest neighbors of the other. The disconnectivity concept is then extended to the whole
partition and the goal is to minimize its value by merging the less disconnected clusters

6
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until the desired number of clusters is reached. The algorithm starts with a small number
of neighbors, k = 4. The disconnectivity of two clusters may be zero with a small size
neighborhood, i.e. when bij = bji = 0, and no merging is possible. To get the desired
number of clusters, the split and merge loop is repeated with increasing values of k.

The algorithm is driven only by the number of clusters, c. As this number is usually
unknown, this is a strong limitation of the algorithm: it does not contribute to structure
identification. Even when this number is known, SCDOT may fail to identify the relevant
structure, as illustrated in Figure 2.

Figure 2. Illustrative example with the SCDOT algorithm [6]: two sub-clusters include points from the two
clusters (left) giving an unexpected final partition (right).

The goal is to identify the two clusters with different densities: the less dense cluster is
the set of points with an abscissa less than −0.6. The algorithm was run with different values
of c, the number of desired clusters. For c = 2 (resp. 3), the number of sub-clusters after
the split step is 17 (14). Using these values the merging is not efficient and yields 14 (15)
final groups, meaning that the algorithm cannot yield the desired number of clusters. Figure
2 shows the sub-clusters (left plot) and the final partition after merging (right) when the
algorithm is run with c = 4. The left plot shows that two sub-clusters include points
belonging to the two different clusters. The ’natural’ border at the abscissa of −0.6 is not
respected in the upper part of the plot, y ≈ 1.1 with the green star symbol, and in the lower
part of the left plot, y = −1.2 with the pink diamond symbol. Then the merging step yields
the unexpected final partition shown in the right part of Figure 2.

2.3. The MutualClust algorithm

The concept of mutual nearest neighbors was introduced in 1978 [17] in the same period
as the pioneering method of Shared Nearest Neighbors [25]. The authors’ motivation “comes
from real life observations. Two persons A and B group together as close friends if they
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mutually feel that the other is his closest friend. If A feels that B is not such a close friend
to him, then even though B may feel that A is his closest friend, the bond of friendship
between them is comparatively weak. If each feels that the other is not his friend, then the
two do not group together as friends. In other words, the strength of the bond of friendship
between two persons is a function of mutual feelings rather than one-way feeling. Similarly
two samples form a cluster if they are mutually near neighbors rather than simply near
neighbors” [17].

The mutual neighborhood concept was investigated for the development of recent clus-
tering algorithms [4] or cluster validation indices [31, 32]. In [22], the algorithm is similar to
the Mountain Method proposed by Yager [46] but the local density is assessed using mutual
neighboring. The concept is used to find points with a local maximal density that are later
merged to form the clusters [5]. Several existing algorithms referred to as shared nearest
neighbor techniques are also based on this concept.

The objective of the pioneering work was to find mutual homogeneous clusters, with
ideas that are still inspiring. This algorithm is referred to as MutualClust. Two items, x
and y, are mutual nearest neighbors if:

x Mnn y ⇐⇒ x ∈ Nk(y) AND y ∈ Nk(x) (7)

The mutual neighborhood strength is quantified by the mutual neighborhood value:

mnv(x, y) =

{
e+ f if x Mnn y
∞ otherwise

(8)

where x is the eth nearest neighbor of y, and y is the f th nearest neighbor of x, 1 ≤
e (f) ≤ k.

Mutual homogeneous clusters are based on the mutual neighborhood values. Let (xp, xq) ∈
ci be a merged pair of items,

M = max
(xp,xq)∈ci

mnv(xp, xq), D = max
(xp,xq)=M

d(xp, xq) (9)

ci is said to be mutually homogeneous if:

∀(xp, xq) ∈ ci, ∀y /∈ ci, mnv(xp, y) ≥M, mnv(xq, y) ≥M, d(xp, y) ≥ D and d(xq, y) ≥ D
(10)

If this property stands for all the clusters in the partition, the partition is said to be
mutually homogeneous.

The merging is done according to increasing values of mnv and, in the event of equality,
increasing values of d, until a desired number of clusters is reached. No specific procedure
is proposed for noise or outlier management and their presence is a potential source of
failure. The algorithm also fails in situations without noise as illustrated in Figure 3 with
three clusters of different density. The one with intermediate density is in the upper part
of the plots, points with an ordinate higher than 0.5. The space covered by the three

8
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Figure 3. Illustrative example with the mutual neighborhood approach [17]: clusters are mixed in some
sub-clusters at an intermediate stage (left) yielding an unexpected final partition (right).

clusters, from the sparsest to the densest, are the following intervals for the (x, y) coordinates:
([−2.2,−0.5], [−1.5, 0.2]), ([−0.5, 1.7], [−1.5, 0.5]) and ([−1.6, 0.1], [0.5, 2.2]).

The algorithm MutualClust was run to obtain c = 3 clusters. The neighborhood size, k,
was increased to get the desired number of clusters. The final number of groups for k = 2
to 5, was respectively 232, 87, 19 and 3. The configuration with k = 5 is plotted in Figure
3. The left part of the figure shows an intermediate step of the process: the number of
sub-clusters is 9, and all are valid as all of them include only points belonging to the same
cluster. At this stage, different candidates are possible for the merging, with no difference
according to the mutual neighborhood value criterion. The algorithm therefore gives the
preference to the minimum distance which yields an unexpected merging: the red-circle sub-
cluster, points located at (−1.7, [−1.5, 0.2]), is merged with the cyan-cross one, points located
at ([−1.8,−0.9], [0.5, 2.2]), instead of being merged with the twelve black-square points at
([−2.3,−2], [−1.5, 0.2]) or with the twelve green-triangle points at ([−1.3,−1], [−1.5, 0.2]).
This finally gives the unexpected configuration plotted in the right part of Figure 3.

This short review shows that even if some progress has been made, improvements are
still needed. Not only do the studied algorithms fail in some situations, but they can also
be difficult to tune in order to get the expected result.

3. Munec: key ideas

The algorithm is based on the mutual nearest neighbor notion and the key idea is quite
simple: it is an iterative process that merges mutual nearest neighbors. This concept is
extended here to the groups to be merged: they must be mutual nearest sub-clusters. This
merging process can be carried out until all the items are grouped in a unique cluster. Let

9
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us denote x, y, . . . the elements of a data set and let us denote c1, c2, . . . the clusters. Initially
we have n clusters, each containing a single element, i.e. ci = {xi}, i = 1, ..., n.

At the beginning of the process, the mutual nearest neighbors are merged until the
number of groups including at least two items reaches a maximum. The result is a skeleton
of the data structure. Then, a similarity index is computed from the distances between
neighbors in each group and the between group distance. These three distances must be
similar for the groups to be merged.

In a second phase, heuristics are proposed in order to discriminate between more nuanced
situations and to stop the algorithm. The first one is based on the homogeneity index. It
is derived from the similarity index but the merging is oriented: a sub-cluster can only be
merged with its mutual neighbor if it is of higher density. This idea,i.e the nearest group of
higher density, is inspired from the DensityPeaks algorithm. Only two distances are used;
the inner distance of the less populated group is not taken into account. A threshold on
this index is progressively decreased in order to consolidate the existing structures, avoiding
the setting of a sensitive parameter. The second one combines distance and local mutual
neighborhood. A threshold is defined on the number of mutual neighbors between the two
groups to be merged weighted by the homogeneity index: the merging is canceled when the
number of mutual neighbors in the neighborhood of the connection is high with respect to
the homogeneity index. A high value of this product is likely to reveal a discontinuity. The
threshold on the product is not a parameter; the constant value is part of the algorithm.
The last heuristics aims at texture discrimination: the difference in density between the two
groups is weighted by the homogeneity degree. The unique parameter of the algorithm is
the threshold defined on this heuristics.

The control mechanisms are detailed in Section 4. In this section, the mutual neighbor
concept, defined for items, is extended to groups. Two cluster characteristics are proposed to
summarize the information and they are easily updated after a given merging. The merging
process is illustrated using a toy example. It is shown that none of these characteristics can
be used as a stopping criterion.

3.1. Mutual nearest neighbor clusters

Two clusters, cl and cm, are mutual nearest neighbors if there exist x ∈ cl and y ∈ cm
where x and y are mutual nearest neighbors when the neighbors in their respective groups
are not considered.

The distance between the two neighbors is the single-link distance between the mutual
nearest neighbor clusters:

dl,m = min
x∈cl,y∈cm

d(x, y) (11)

A cluster is characterized by:

• n: the number of distances between two neighbors. The total number of points is
n+ 1;

• d: the mean distance between two neighbors.
10
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This distance is also called the inner distance of the cluster, in contrast with the between
group distance. It is noted di for cluster i.

3.1.1. Hierarchical merging

At each step the process merges all the mutual nearest neighbor clusters. At the begin-
ning, there are only isolated points, for which n = 0 and d = 0. First only mutual nearest
neighbor pairs, (xi, xj), are connected: n = 1 and d = d(xi, xj). There are two kinds of
clusters, isolated points and pairs. At the next step, pairs can be connected together or a
point may be connected to a pair.

Dealing with mutual nearest neighbors avoids setting the number of nearest neighbors
to be considered in this kind of algorithm. This is important as neighbor-based algorithms
are known to be sensitive to this value [48].

It is worth mentioning that several mergings can be done at each step. This is an
important difference with respect to algorithms that only merge the pair that best satisfies
the merging criterion, in this case the two clusters for which the single link distance is
minimum. This way, the data structure is progressively captured whatever the distance
between mutual neighbors in the different parts of the input space.

Merging update:. When two clusters, 1 and 2, are merged, the internal descriptors, n and d,
become:

n = n1 + n2 + 1, d =
1

n
(n1d1 + n2d2 + d1,2) (12)

3.1.2. Merging process illustration

The whole merging process is illustrated with the synthetic data shown in Figure 4. The
pairwise distance matrix, based on the Euclidean distance between points, is given in Table
1. Connections link mutual neighbors, either points or sub-clusters. A different color is used
for the different merging steps.

2 3 41Steps:  

B

C

H

E
F G

D

A

Figure 4. Mutual neighbor merging: illustrative example

The clustering process is as follows. At each step the new clusters, with their character-
istics n and d, and the current partition, P , are given:
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Table 1. Pairwise distance matrix for the data plotted in Figure 4

A B C D E F G
B 24
C 25 5
D 22 23 19
E 42 61 54 31
F 58 77 70 46 11
G 68 88 81 58 22 6
H 40 67 57 35 4 16 24

1. Three pairs of mutual nearest neighbors
BC (n=1, d=5)
EH (1, 4)
FG (1, 6)
P={BC, EH, FG, A, D}

2. EH and FG are mutual nearest neighbors. E and F are mutual nearest neighbors
considering the groups they are not part of, d(E,F)=11.
BC and D are mutual nearest neighbors (D and C), d(C,D)=19.
BCD (2, d = 1

2
(5 + 0 + 19) = 12)

EFGH (3, d = 1
3

(4 + 6 + 11) = 7)
P={EFGH, BCD, A}

3. BCD and A are mutual nearest neighbors (D and A), d(A,D)=22.
ABCD (3, d = 1

3
(2× 12 + 0 + 22) = 15.33)

P={ABCD, EFGH}
4. The last two groups are merged according to the distance between D and E, d(D,E)=31.

ABCDEFGH (7, d = 1
7

(3× 15.33 + 3× 7 + 31) = 14)

This is a hierarchical process and, as illustrated in the example, it can be carried out
till all the items are grouped into a single cluster, unless a meaningful stopping criterion is
found.

3.1.3. The cluster characteristics cannot be used as a stopping criterion

Let d be the average of d over all the clusters of the partition. To be used as a stopping
criterion this index would have to show a distinctive breakpoint in its evolution curve and
the latter would have to be meaningful with respect to stopping the process. Unfortunately,
this is not the case.

Property: d is monotonically increasing.
The proof is as follows.
A given merging modifies only two clusters, e.g. 1 and 2. If d could decrease, it would

mean:
n1d1 + n2d2 + d1,2

n1 + n2 + 1
<
n1d1 + n2d2
n1 + n2

(13)
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The condition for d to decrease is:

d1,2 <
n1d1 + n2d2
n1 + n2

(14)

This is not possible at the second step of the process. If some point, C, were closer to
one point in the pair (A,B), e.g. A, then the mutual nearest neighbors would have been
the pair (A,C) instead of (A,B). This is not possible between two pairs of mutual nearest
clusters, such as (E,H) and (F,G) in Figure 4, for the same reason.

As the computation of the mean distance in the cluster, d, involves only neighbors, and
not all the pair distances, if the distance between the two clusters were lower than the mean
distance between neighbors the merging would have been done before.

None of the cluster characteristics can serve as a stopping criterion: the average distance,
d, and the number of distances between two neighbors, n, are monotonically increasing. To
avoid unexpected mergings in more complex data, these basic ideas have to be complemented
by adaptive mechanisms. They are introduced in the following section.

4. Munec: the proposed algorithm

The algorithm is made up of two distinct steps. The first one structures the data in
subgroups that are small and numerous enough to ensure that their elements belong to the
same cluster and the second one uses new heuristics to yield the final partitions.

4.1. Mutual nearest neighbor controlled step

At the beginning of the algorithm, only mutual neighborhood (without any restriction)
is taken into account. This preliminary step, without any other control, is required to start
the process with isolated points or pairs of points, for which any index would be meaningless.

In such an agglomerative process, the number of clusters larger than a threshold higher
than 1 starts from zero and ends at one when all the items are grouped in a single cluster.
This number grows monotonically until a maximum is reached and then decreasing untill
the end.

This preliminary step is carried out until the maximum is reached for the number of
clusters including at least two items. The smallest value, 2, is chosen as the objective is to
build a skeleton of the data structure.

Once this skeleton has been defined, a distance-based group similarity index is intro-
duced. The similarity index is only based on the three distances, without accounting for the
cluster cardinalities. It is computed as:

s =
√
si,j sj,i (15)

where si,j =
min(di, di,j)

max(di, di,j)
, and sj,i is defined in the same way with respect to dj.

The closer the distances, di, dj, di,j, the higher the index and the more suitable the
merging of the considered sub-clusters. In this preprocessing step, a high threshold value,
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SecureThres = 0.95 is used. This value can be interpreted as follows: At this stage of the
process the between group distance is larger than the two within group ones. To consider
an extreme situation, let the between group distance be comparable to one of the inner
distances, e.g. di,j = di. The merging condition, s < 0.95, requires sj,i < 0.90, meaning that
di,j < 1.1 dj. Only groups for which the distance between the mutual neighbors is less than
10% larger than the average of the distance between neighbors in each group are allowed to
be merged. This is a restrictive constraint.

The first stage of the algorithm is described in Algorithm 1.

Algorithm 1 Munec: the preprocessing part of the algorithm

1: Input: X, dataset
2: Output: S, set of sub-clusters
3: S = X, |S| = n
4: while (The number of sub-clusters of size at least 2 is growing) do
5: for all (i, j) ∈ S × S do
6: if (i Mnn j) then
7: Merge i and j. |S| = |S| − 1
8: end if
9: end for

10: end while
11: SecureThres = 0.95, Merge=true
12: while (Merge==true) do
13: Merge=false
14: for all (i, j) ∈ S × S do
15: if (i Mnn j AND si,j > SecureThres) then
16: Merge=true. Merge i and j. |S| = |S| − 1
17: end if
18: end for
19: end while
20: return S

Figure 5 illustrates the results of the process with data structured in clusters of different
shapes including a large amount of noise. The original dataset includes 8000 2D items widely
used by the community [28]. A sample of 754 items, yielded by the DENDIS algorithm [41]
with a 0.002 granularity, is used.

The left part shows the number of sub-clusters (red line with circle) and the number of
sub-clusters larger than n/100 = 7 according to the value of the similarity index, s. The
first curve is monotonically decreasing while a maximum can be observed in the second one.
Tests on various datasets proved that automatic procedures based on the location of this
maximum are not robust enough, as they still yield unexpected mergings.

Until s = 0.7, the result is as expected as shown in the central part of Figure 5. But
when the threshold is slightly decreased, s = 0.66, two sub-clusters are merged in the same
group (the light blue points in the right part of the figure). It seems difficult to deduce the
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Figure 5. After the mutual neighborhood connection phase: the left plot shows the number of sub-clusters
(red) and the number of sub-clusters with at least n/100 points (blue) for different values of s in two y
axes. The central and right plots show the data partition for two values of s. The axes are the x and y
coordinates.

suitable threshold value from the evolution curve plotted in the left part of Figure 5.
In this particular case, with nested shapes and noise, 0.7 would be an acceptable value

for the threshold. This reinforces the choice of SecureThres = 0.95.
The first step of the algorithm aims to connect clusters based on their mutual neighbor-

hood as introduced in Section 3. This step is easy to understand, and is controlled only by
a cautious threshold for the similarity index. It yields a skeleton of the data structure which
is the starting point of a smarter algorithm.

4.2. A second step based on new heuristics

While the first step only aims to connect mutual neighboring groups with similar between
neighbor distances, density is now taken into account. The similarity index, see Eq. (15),
is adapted as the homogeneity degree. There are three main differences between these two
indices. First, for a pair of sub-clusters, (i, j), the homogeneity degree is positive if and only
if j is the nearest neighbor of i, and if it is of higher size. Second, it is no longer required for i
to be the nearest neighbor of j. Third, the distance between neighbors of the less populated
group is not taken into account. The homogeneity merging degree is computed as:

hi,j =


min(dj, di,j)

max(dj, di,j)
if j = N1(i) and nj > ni

0 otherwise
(16)

As in the DensityPeaks approach, when the homogeneity degree is high enough the two
groups are merged to yield a bigger sub-cluster. The main differences with the DensityPeaks
algorithm are the gradual consolidation of the final partition, thanks to an evolving merging
threshold, and the restriction to the nearest neighbor, as shown in Eq. (16), making the
algorithm free of the distance parameter.
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Moreover three complementary tests to cope with the diversity of situations are intro-
duced to avoid unsuitable mergings. The overall algorithm is described in Algorithm 2.

Algorithm 2 Munec: the heuristic part of the algorithm

1: Input: S, set of sub-clusters, u
2: Output: S, new set of sub-clusters
3: SecureThres = 0.95, LowThres = 0.15, hth = 0.8
4: while (hth > LowThres) do
5: Merge = true
6: while Merge == true do
7: Merge = false
8: for all (i, j) ∈ S × S do
9: if (hi,j > SecureThres) OR (C1(hth) AND C2 AND C3(u)) then

10: Merge=true. Merge i and j. Update Neighbors.
11: end if
12: end for
13: end while
14: hth = hth − 0.05
15: end while
16: return S

The three conditions, to be detailed and motivated in the sequel, are:

• C1: hi,j > hth where hth is a threshold value

• C2: (1− hi,j) Mnn(x, y) < max (0.5 ·min(vi, vj), 2),

with Vi = {xi ∈ i | d(x, xi) < 2 · di,j}, vi = |Vi| and Mnn(x, y) =
∑

xi∈Vi,yj∈Vj

1(xi Mnn yj)

• C3: (1− hi,j)
min(vi, vj)

max(vi, vj)
> u, e.g. u = 0.06,

The items x ∈ i and y ∈ j, used in conditional tests C2 and C3, are the mutual nearest
neighbors of the two groups, the ones such that di,j = d(x, y).

A SecureThres is still used in this part of the algorithm, meaning that when the homo-
geneity between a sub-cluster and its nearest neighbor, if it is bigger in size, is very high,
then no further test is required for the merging (line 9). This is likely to occur at any stage
of the process, whatever the current hth value.

Condition 1. The first condition is the most important one. The restrictions it imposes
on the merging, based on the homogeneity merging degree, define the originality of the
proposal.

The mutual nearest neighbor connection process can be safely carried out until s = 0.7
as illustrated in the central plot of Figure 5. Thanks to C1 the first unexpected merging is
delayed until h = 0.5 as illustrated on the left part of Figure 6 with the red group.
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Figure 6. C1: Resulting partitions for three different thresholds on the homogeneity merging degree, h. The
axes are the x and y coordinates.

As the threshold on the homogeneity merging index decreases, more unsuitable mergings
are done, until all the points, either belonging to different clusters or noise, are gathered
into a unique group as shown on the right part of Figure 6, for h = 0.4.

The lower limit of the threshold is set at 0.15 (line 4). As only two distances are consid-
ered, see Eq. (16), this value means that one distance is 6.66 times the other!

Condition 2. Some unsuitable mergings involve structured groups.To identify these groups,
the neighborhood around the connecting points, x and y, is considered. The volume is
defined by the radius in each dimension set to twice the single link distance di,j = d(x, y).
The set of neighbors in each cluster, Vi and Vj, is computed as well us the number of mutual
neighbors between them. The condition weights the number of mutual nearest neighbors
between the two groups, Mnn(x, y), by the homogeneity merging degree: the lower the
degree, the larger the number of mutual nearest neighbors. The result is compared to a
threshold function of the smaller cardinality of the sets of neighbors.

This test is useful for the separation of parallel shapes.
The results are illustrated in Figure 7. The nested U -shaped groups are no longer merged

despite their proximity and whatever the homogeneity degree threshold.
In the central plot, h = 0.45, the two clusters, in green and black, would have been

merged using the di,j criterion because of the data points located on the abscissa about 1.
Even with a more tolerant threshold, h = 0.25 (right plot), they remain distinct.

However, some noise is still included in the groups, especially between the two sub-
clusters with positive abscissae, in black and green points with h = 0.25. In all the plots,
noise is not displayed as only data points belonging to a cluster larger than n/100 (7 in this
case) are shown.

Condition 3. The main purpose of this test is to manage density difference, including noise
filtering. The heterogeneity between groups also involves their cardinalities. It is measured
by the ratio of the minimum to the maximum of the two cardinalities of the set of neighbors,
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Figure 7. C1 and C2: Resulting partitions for three different thresholds on the homogeneity merging degree,
h, when C2 is also applied. The axes are the x and y coordinates.

Vi and Vj, defined above. As in the previous test, the ratio is weighted by the homogeneity
merging degree. The threshold value, e.g. u = 0.06 is discussed in the next section.

Figure 8. C1, C2 and C3: Resulting partitions for three different thresholds on the homogeneity merging
degree, h, when C2 is also applied and u = 0.06. The axes are the x and y coordinates.

The three plots of Figure 8 show the impact of the last condition: compared to Figure
7, fewer noisy data points are gathered in clusters as the test does not allow for groups with
different densities to merge. The process is still controlled by the homogeneity degree: the
lower the threshold the higher the amount of noise included in clusters.

The condition behavior is illustrated using the data shown in Figure 9. This toy example
includes two groups with distinct between neighbor distances, dleft = 0.22 and dright = 0.5.
The number of mutual neighbors is 3. To illustrate this behavior, the evolution of the
conditional indices with respect to a decreasing distance between the two groups is shown in
the central graph. As the left group is larger, the homogeneity merging degree is computed
as hr,l. In this case, the two groups are merged for dr,l < 0.63. The right part of Figure 9
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Figure 9. The global behavior is illustrated using the data shown in the left plot: the central plot shows the
evolution of the three conditions C1 (red), C2 (green) and C3 (blue) according to the distance between the
two groups of points. In the right plot, the same evolution is plotted when the more populated group is the
one with x > 4. The ordinate is a common scale for the three conditions.

considers the other configuration: the right group is now the most important one, and the
homogeneity is then computed as hl,r. The behavior is noticeably different. The merging
condition is reached for dr,l < 0.9 and moreover the SecureThres, h > 0.8, is valid for
dr,l < 0.63. Within this distance range, C2 and C3 are not used.

The final results for the data in Figures 5-8 are shown in Figure 10. First, the num-
ber of clusters at the different steps of the algorithm is plotted for the three values of u:
0.02, 0.06, 0.10. The higher the value, the more constrained the merging and, consequently,
the higher the number of groups in the partition.

Figure 10. Sensitivity to the u parameter: The left plot shows the evolution of the number of clusters for
the data used in Figures 5-8 and three values of u. The other three plots show the final partition for each
of the u values. The axes are the x and y coordinates.

In the three partitions, thanks to the three complementary conditions, no unsuitable
merging is done and only a small amount of noise is included in the clusters, even with a
relatively low threshold value on the homogeneity degree.
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4.3. Overview remarks

The dataset used in this section is representative of the main challenges for clustering
algorithms: nested shapes, distinct densities, fuzzy boundaries due to a large amount of
noise.

Despite its apparent complexity, Munec is extremely easy to use: the first step is fully
automatic and the second one is driven by only one parameter, the threshold for the C3 test,
u. The threshold for C1, h, is decreased from 0.8 to 0.15, and the one for C2, t, is set at 2
in all the experiments. The iterative evolution for h plays an important role: the structure
is consolidated step by step and this helps the other two complementary conditions, C2
and C3, to work well. Moreover, thanks to its embedded controls, the algorithm yields
acceptable results for a wide range of values.

Figure 11. Illustration of the whole process with D11 data: the left plot shows the number of clusters versus
the u parameter. The two possible final partitions for u = 0.8 and u = 0.4 are shown in the central and right
plots. The axes are the x and y coordinates. These results stand for three values of u: 0.02, 0.06 and 0.10.

The whole process is illustrated with two datasets, described in the next section, Table
3 and Figure 13, D11 and D14. Figures 11 and 12 show the same information for the two
sets. The left part shows the evolution of the number of clusters versus the Condition 1
threshold on hi,j. The center plot corresponds to the h = 0.8 configuration, meaning that
only the first step of the algorithm, based on mutual neighboring was completed. In the
right part of the two figures the threshold is set to h = 0.4.

The D11 data are correctly managed by the first step of the algorithm: the number of
clusters is only decreased by one in the remaining part. This is not the case for the D14
data, the spirals. The final number of clusters, 2, is reached for threshold values lower than
0.4. These results are identical for three values of u, 0.02, 0.06 and 0.10.

More extensive tests are needed to validate the method. This is the goal of the next
section.

Algorithm complexity. The number of distances to compute at each iteration in order to find
the mutual neighbors is n2. Each iteration of the two algorithms has the same complexity,
in O(n2), even if in the second one more operations are performed to handle the heuristics.
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Figure 12. Illustration of the whole process with D14 data: the left plot shows the number of clusters versus
the threshold on the homogeneity degree, h. Two partitions for h = 0.8 and h = 0.4 are shown in the
central and right plots. The axes are the x and y coordinates. These results stand for three values of u:
0.02, 0.06 and 0.10.

In the worst case, there are n-1 iterations. The algorithm complexity is thus O(n3). In
practice the number of iterations is much lower than n: several mergings are allowed at
each iteration and there are many pairs of mutual neighbors at the beginning of the process.
The processing time can be decreased by increasing the space complexity: when the n × n
distance matrix is stored and maintained, there is no need to compute the distances at each
step.

5. Numerical experiments

Two kinds of experiments are proposed in this section. The first subsections deal with 2-
dimensional datasets as they allow for a human assessment of what partitions are acceptable.
To begin with, several algorithms are compared with respect to their ability to reach the
partition target. In this case, external validation indices can be used to compare the expected
partition with the one yielded by the algorithm. However, in real life the reference is
unknown and clustering algorithms are used to analyze the data. In the case where there is
no reference, in order to characterize the partition, only internal validation indices can be
used. Munec was run with the same setting to check whether it is able to identify the data
structure of various datasets. Then, a more qualitative comparison with the best alternative
was carried out using a dataset for which no ground truth stands out. The last subsection
illustrates the behavior of the proposal in various cases of higher dimension.

5.1. Datasets

A wide range of datasets (16) is used as benchmarks in this section. The data may
include some variations in the clusters. The main sources of variation with their associated
code are given in Table 2. They are the shape and the size of the clusters, their level of
separation, the variation of density either between or within clusters and the amount of
noise.
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Table 2. The main sources of variation and their corresponding code

1 2 3
Shape Rather spherical or square Long or thin Ring, arbitrary, irregular
Size Similar Small variation Large variation
Separation Well separated Separated Overlap
Density No variation Inter clusters Inter and intra clusters
Noise None Small amount Large amount

Some are from the data clustering repository of the computing school of Eastern Finland
University3, while others come from the UCI machine learning repository4 or were proposed
in the published literature. These datasets are usually considered for testing new clustering
algorithms but they do not represent the diversity of cases a clustering algorism has to tackle.
Homemade data have been added to complete this diversity. They represent additional
configurations where clusters are different in size, shape, density, amount of noise and degree
of separation.

The preprocessing includes a {µ, σ} standardization step and, for the datasets with more
than one thousand items, a sampling [41] in order to store the distance matrix in memory
and to complete the tests in a reasonable amount of time.

Table 3. The sixteen datasets
Size Size-S Partitions Name Origin

D1 3000 758 3 A.set 1 [26]
D2 5250 822 1 A.set 2 [26]
D3 7500 841 2 A.set 3 [26]
D4 240 240 1 FLAME [15]
D5 373 373 1 JAIN [23]
D6 5000 721 1 S.sets 1 [14]
D7 5000 694 3 S.sets 1 [14]
D8 5401 814 1 Dim sets 1 Footnote 3
D9 6751 754 2 Dim sets 2 Footnote 3
D10 8000 761 2 Chameleon [28]
D11 40000 588 1 H1 Homemade
D12 3800 786 2 H2 Homemade
D13 2200 604 1 H3 Homemade
D14 2000 489 1 H4 (Spiral) Homemade
D15 5500 717 1 H5 Homemade
D16 12500 603 1 H6 Homemade

Their main characteristics are summarized in Table 3 and the acceptable partitions are
displayed in Figure 13. In Table 3, Size-S stands for the sample size and Partitions for

3https://cs.joensuu.fi/sipu/datasets/
4https://archive.ics.uci.edu/ml/
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the number of acceptable partitions according to three human experts or the published
literature.

The datasets considered in this study are now classified according to the main sources
of variations, as shown in Table 4. The sum reported in the last column reflects the level of
difficulty for a clustering algorithm to process the corresponding data.

Table 4. The sixteen datasets classified according to their irregularities

Shape Size Separation Density Noise Sum
D1 2 1 2 1 1 7
D2 1 1 3 1 1 7
D3 1 2 3 1 1 8
D4 3 2 3 1 2 11
D5 3 2 2 3 1 11
D6 2 1 2 1 1 7
D7 2 1 3 1 1 8
D8 1 1 2 1 1 6
D9 1 2 2 1 1 7
D10 3 3 3 1 3 13
D11 3 3 1 1 2 10
D12 3 3 1 3 1 11
D13 1 2 1 2 1 7
D14 3 1 2 1 1 8
D15 3 1 2 3 2 11
D16 1 2 3 2 1 9

5.2. Competitive algorithms

The proposal was compared to eleven selected algorithms, described in Table 5 with
their free parameters. The first ones are classical algorithms whose limitations are also well
known: k-means generates spherical clusters, single-linkage hierarchical clustering is sensi-
tive to noise, the complete-linkage one tends to find compact clusters with equal diameters
and DBSCAN does not cope with varying density clusters. This drawback is likely to be
overcome by a recent improvement called Recon-DBSCAN [50]. While DBSCAN defines
reachable points using two parameters, the radius ε and the minimum number of points in
the corresponding volume, Minpts, Recon-DBSCAN considers two radii, ε and θ with θ ≥ ε.
The reachability is based on the density ratio Npts(ε)/Npts(θ) compared to the τ threshold.

The Shared Nearest Neighbor algorithm, SNN [25], as well as its variants [12], is a density
based clustering algorithm working similarly to DBSCAN. The main difference is that the
volume is not defined by the radius but is induced by the nearest neighbors. The volume
can be optionally limited by a radius. The algorithm is thus driven by two main parameters:
the number of nearest neighbors to be considered and the minimum number of points that
define the reachability. A less important parameter allows for noise management. When the
sum of shared nearest neighbors for a given item, i, with all the remaining others, j, is less
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Figure 13. Ground truth for the 16 datasets (D1, top left - D16, bottom right). The axes are the x and y
coordinates.
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Table 5. The competitive algorithms
Algorithm Acronym Param Range Ref
k-means A1 c [1, 50] [24]
Single-linkage A2 c [1, 50] [24]
Complete-linkage A3 c [1, 50] [24]
DBSCAN A4 ε,Minpts [0.05, 0.25], [1, 10] [13]
Recon-DBSCAN A5 ε,θ,τ [0.05, 0.25], [1.1, 1.5], [0.25, 0.6] [50]
DensityPeaks (pioneer) A6 c,dc [1, 50], [0.018, 0.05] [40]
DensityPeaks Data Field A7 c [1, 50] [44]
SNN A8 MinPts, k [2, 10],

√
n · [0.05, 0.5] [25, 12]

SNN (with Radius) A9 MinPts, k, Radius [2, 10],
√
n · [0.05, 0.5], [0.05, 0.3] [25, 12]

MutualClust A10 c [1, 50] [17]
SCDOT A11 c [1, 50] [6]
Munec A12 u {0.02, 0.06, 0.10}

than a threshold value, i is labeled as noise. Tests on the sixteen datasets showed that the
best configuration always involved the same smallest value: 1.

The other algorithms are detailed in Section 2 of this paper. The DensityPeaks algorithm
has been recently improved [44]. The threshold distance dc is now automatically set using
a potential entropy of data field approach. The local density is now estimated using a
Gaussian function instead of the classical nearest neighbor count. This important change
was also implemented in the pioneering version of the algorithm for this study.

5.3. Quantitative comparison: protocol

All these algorithms were implemented in C and the experiments were carried out on a
unique machine. Thirty runs were performed for k-means as it includes random aspects.

The objective of the quantitative comparison was to check whether each of the compet-
itive algorithms is able to reach the ground truth target. This choice of external validation
was motivated by the lack of a generally accepted internal index validation. Some of the
selected data can be quite naturally clustered; in this case the three human experts agree
on the target partition. Otherwise, the target is not unique but may include two or three
partitions, as shown in Figure 13. In this case, the best fit is taken into account. Two
popular indices were used for partition comparison: the Mutual Information Index [7] and
the Rand Index [39].

Two strategies are possible for noise management as some algorithms, like DBSCAN
or Munec, include a noise category. The usual one is to consider all the data points; this
strategy penalizes the methods that explicitly define noise elements. The other one is to
include a noise category in the ground truth. The mutual information index was performed
by skipping noise points for the two partitions (while the amount of noise is kept below
20%). The Rand Index was computed from all the data, including noise.

For each algorithm considered, the input parameters were tuned in order to maximize
the result for each dataset. The ranges are given in Table 5.

When the parameter was an integer, such as the number of clusters or the minimum
number of points, all the values were used, whereas when it was a floating point number,
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10 equally separated values were taken in the range. Some of the parameters were defined
to limit the number of tests. This is the case for the cutoff distance of DensityPeaks, dc
for A7. It was calculated so that the average number of neighbors was between 1% and
2.5% of the total number of points in the dataset. For SNN (with Radius) only three values
were selected for MinPts and NoisePts in their ranges. For MutualClust and SCDOT the
maximum number of neighbors was set to 80.

The number of runs for each dataset is highly dependent on the algorithm. It ranges
from 3 in the case of Munec to 1000 for SNN (with Radius) or Recon-DNSCAN.

5.4. Quantitative comparison: results

The results for the mutual information index are summarized in Table 6. A row corre-
sponds to a dataset and reports the mutual index when noise is considered as a category for
each of the algorithms. The values below 0.8 are in bold font. In the last two rows the mean
and standard deviation are computed for each algorithm over the 16 datasets. The values
of mean higher than 0.9 are in bold font.

For k-means, the standard deviation of the mutual index corresponding to the best
configuration for each dataset is reported in Table 7.

Table 6. Mutual Index when noise is considered as a separate category for the 16 datasets and the 12
algorithms

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
D1 0.940 0.950 0.928 0.964 0.9950 1.000 0.992 0.838 0.870 0.965 0.944 0.989
D2 0.971 0.863 0.951 0.938 0.997 0.975 0.986 0.966 0.922 0.885 0.924 0.980
D3 0.937 0.968 0.978 0.960 0.997 0.947 0.987 0.981 0.975 0.939 0.932 0.981
D4 0.560 0.808 0.364 0.402 0.480 0.706 1.000 0.541 0.623 0.420 0.625 1.000
D5 0.520 0.991 0.664 0.862 0.898 0.505 0.520 1.000 0.964 1.000 0.977 1.000
D6 0.980 0.967 0.976 1.000 1.000 0.995 0.995 0.985 0.974 0.923 0.965 0.991
D7 0.977 0.802 0.945 1.000 1.000 0.981 0.981 0.931 0.908 0.792 0.936 1.000
D8 0.943 1.000 1.000 1.000 1.000 1.000 0.998 0.998 1.000 1.000 0.980 1.000
D9 0.960 1.000 1.000 1.000 1.000 1.000 0.998 0.902 0.918 1.000 0.987 1.000

D10 0.668 0.655 0.652 0.919 0.952 0.780 0.780 0.796 0.861 0.870 0.786 0.945
D11 0.982 0.931 0.987 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.977 1.000
D12 0.690 1.000 0.596 0.915 1.000 0.664 0.673 1.000 1.000 1.000 0.985 1.000
D13 0.921 1.000 0.9401 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000
D14 0.193 1.000 0.560 1.000 1.000 1.000 0.331 1.000 1.000 1.000 0.415 1.000
D15 0.839 0.554 0.846 0.983 0.983 0.897 0.897 0.975 0.990 0.929 0.934 1.000
D16 0.916 0.863 0.900 0.930 0.902 0.994 0.994 0.981 0.916 0.918 0.963 0.982

Mean 0.812 0.897 0.799 0.930 0.950 0.903 0.883 0.930 0.932 0.915 0.896 0.990
σ 0.227 0.134 0.270 0.147 0.130 0.154 0.205 0.121 0.093 0.145 0.159 0.016

Table 7. Standard deviation (regarding the best configuration) of the Mutual index for the 16 datasets for
k-means (A1)

D1 D2 D3 D4 D5 D6 D7 D8
σ 0.026 0.011 0.038 0.007 0.003 0.031 0.029 0.057

D9 D10 D11 D12 D13 D14 D15 D16
σ 0.069 0.035 0.030 0.000 0.053 0.053 0.029 0.035

26

Author-produced version of the article published in Information Sciences, 2019, N°486, p. 148-170. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ins.2019.02.051



F. Ros and S. Guillaume / Information Sciences 00 (2019) 1–37 27

The poorest results are for D4, D5 and D10. Except Munec, SNN is the only one able
to find the 2-cluster partition for D4, but this method performs poorly with D5 and D10.

For datasets D1, D2, D3, D6, D8, D9, D11 and D13 all the algorithms yield a result
higher than 0.8. Even if they differ in the amount of noise, these data share some character-
istics likely to explain these results: clusters are represented by density peaks and are more
or less spherical.

The other datasets illustrate the limitations of some competitors. In D7 some groups
are not spherical-shaped. This is also the case in D12 and D14. As these datasets do not
contain density peaks, the methods based upon this concept, A6 and A7, fail to reach the
correct partition. With D16, SNN is the least efficient algorithm, showing that sharing
neighbors is not enough to obtain the expected partition.

k-means includes a random aspect giving variable results for the same cluster number
(Table 7). σ for the mutual index varies from 0.0003 (D12) to 0.069(D9) for the 16 datasets.
D4, D5 and D12 produce the smallest ones. These datasets present the common difficulty
of having clusters with irregular or non-convex shapes that cannot be detected by the k-
means algorithm independently of the random aspect. D8, D9, D13 and D14 are related
to the highest σ. D8 and D9 share the difficulty of having one or two cluster subsets
with overlapping leading to different clusters. For D13, the instability is more due to the
difference in size. For D14, the reason is different. k-means is not suitable for spiral data.
It has a tendency to split the clusters into different groups that change from one run to
another then mitigating the performance and producing instability.

Munec is the only one of the studied methods able to identify one of the targets for all
the datasets. This is highlighted by the last two rows of the table. Recon-DBSCAN and
Munec values are above 0.95.

The same two algorithms, Munec and Recon-DBSCAN, give the best results when the
Rand Index is used for all the data points, Table 9, despite the fact that the two methods are
penalized as the noise labeled points, which are handled as a unique category, are scattered
throughout the whole space.

The runtime must be considered as it is likely to restrict the practical use of slow algo-
rithms to moderate size datasets. The average time for a single run on a dataset is given in
Table 10. The last row gives the standard deviation over all the datasets.

k-means and DensityPeaks are the fastest algorithms while the runtime of Munec is
intermediate, comparable to A4, A5, A8 and A9.

The two external indices used in Tables 6 and 9 handle the two types of errors in the
same way. A non symmetric index, the F-measure was also computed from the results given
by Munec (weighted combination). When noise is considered as a separate category the
mean and standard deviation are 0.944 and 0.056. These values become 0.985 and 0.030
when noise points are not taken into account.

5.5. Working without ground truth

The former section showed that the studied algorithms are able to find, but not always,
some input configuration to reach a predefined target. But clustering algorithms are used to
identify unknown data structures without any a priori information. This is especially true
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Table 8. The configuration that yields the best result in Table 6. When the parameter is a discrete value,
this value is reported in the table. For a continuous range the code corresponds to the fraction of the range,
0 for the minimum and 9 for the maximum.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
D1 31 31 50 20 5,4,5 19,0 20 4,6 0,4,2 38 21 0.10
D2 39 50 48 20 4,7,0 40,0 35 8,8 0,2,6 47 45 0.10
D3 24 18 21 60 4,0,8 16,1 27 0,4 0,4,4 20 23 0.10
D4 3 2 3 0 9,2,3 3,0 2 2,7 0,7,7 23 5 0.06
D5 8 4 8 80 9,2,3 12,0 10 0,7 0,7,9 3 4 0.02
D6 14 15 13 30 4,6,3 14,1 15 8,9 2,4,9 35 21 0.06
D7 16 12 16 80 9,9,6 14,1 14 4,6 0,4,4 50 16 0.06
D8 9 8 8 0 1,5,4 8,0 8 0,3 0,3,3 1 1 0.02
D9 6 4 39 20 1,2,6 5,0 5 7,8 0,3,0 1 5 0.06

D10 9 7 50 40 6,4,0 7,1 8 8,9 0,3,4 35 8 0.06
D11 21 47 50 40 3,2,3 14,0 15 3,6 0,4,3 37 21 0.06
D12 6 5 50 80 5,1,5 8,0 9 0,3 0,3,6 1 9 0.02
D13 7 9 49 50 7,0,0 11,0 11 0,4 0,4,5 1 4 0.02
D14 48 2 50 0 4,0,0 1,0 39 0,3 0,3,3 2 2 0.06
D15 14 47 50 50 4,2,0 8,0 9 4,6 2,4,3 46 21 0.06
D16 5 4 21 90 9,6,0 4,1 5 7,9 0,3,8 23 5 0.06

Table 9. Rand Index when all the data points, including noise, are considered: mean and standard deviation
over the 16 datasets for the 12 algorithms

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
Mean 0.902 0.933 0.901 0.951 0.959 0.941 0.924 0.928 0.935 0.949 0.948 0.969

σ 0.127 0.115 0.127 0.024 0.018 0.077 0.129 0.077 0.071 0.032 0.082 0.023

when dealing with high dimensional data, that are not easy to visualize. Algorithms driven
by the number of clusters, a category that includes some recent proposals such as SCDOT
or DensityPeaks, are discarded. The only way to use them is to rank the resulting partitions
according to a validation index and none of them reaches an agreement in the scientific
community. Smarter algorithms, such as DBSCAN, are extremely sensitive to tuning. This
is not the case for Munec.

Table 11 depicts the results obtained with Munec for three distinct values of the pa-
rameter, u = {0.02, 0.06, 0.10}. The last two rows report the mean and standard deviation
for each configuration over the 16 datasets. The indices are similar to those in Table 6,

Table 10. Runtime (ms) for a run on a dataset for the 12 algorithms

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
Mean 20 2842 3283 210 209 18 941 228 229 476 838 197
σ 13 297 320 29 27 8 97 35 32 70 627 19
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the Mutual index is computed and noise is not taken into account. The standard deviation
becomes smaller with high mean values.

Table 11. Munec with three values of u: Mutual information index for the 16 datasets
u 0.02 0.06 0.10
D1 0.436 0.915 0.989
D2 0.326 0.949 0.980
D3 0.452 0.938 0.981
D4 0.000 1.000 1.000
D5 1.000 0.529 0.416
D6 0.914 0.991 0.947
D7 0.637 1.000 0.949
D8 1.000 0.964 0.962
D9 1.000 1.000 0.953
D10 0.852 0.945 0.768
D11 1.000 1.000 0.967
D12 1.000 0.791 0.633
D13 1.000 0.891 0.840
D14 1.000 1.000 1.000
D15 0.941 1.000 0.953
D16 0.882 0.982 0.944
Mean 0.778 0.931 0.892
σ 0.312 0.121 0.160

The variation of the index with respect to the parameter u depends on the data: it is
monotonically increasing for D2 and monotonically decreasing for D5, and not monotone
for D7. This is expected as all these indices are computed from a ground truth target.

Two values of u give good average results for the 16 datasets, higher than 0.9. The mean
for u = 0.02 is penalized by the zero for D4 data. This value is easily explained: there is
no mutual information when the algorithm yields a 1−group partition. When the zero is
removed, the mean becomes 0.911.

The best mean, 0.938 for u = 0.06 is close to the mean of Recon-DBSCAN in Table 6.
The main difference is that the setting of the latter was tuned for each dataset whereas it is
the result of a single parameter here.

5.6. Qualitative comparison

The most two effective methods, Recon-DBSCAN and Munec are now compared using
the dataset introduced in [14] and called S.sets 4. It is made up of 4051 2D-points, which
are processed to yield a sample of size 756. No ground truth stands out for these data as
the groups of various densities are not clearly separated.

The two algorithms were run to generate three partitions. Recon-DBSCAN was first run
to identify the parameters that yield stable results, ε = 0.15 and θ = 1.3ε. Then the three
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values of the threshold were used: τ = {0.3, 0.5, 0.7}. The settings for Munec were chosen
to yield a similar number of clusters to Recon-DBSCAN : u = {0.03, 0.08, 0.14}.

Figure 14. Recon-DBSCAN : Three partitions corresponding to τ = {0.3, 0.5, 0.7}. The axes are the x and
y coordinates.

Figure 15. Munec: Three partitions corresponding to u = {0.03, 0.08, 0.14}. The axes are the x and y
coordinates.

The resulting partitions are shown in Figures 14 and 15. The studied algorithms behave
in the same way: the higher the constraint, τ or u, the higher the number of clusters as shown
in Table 12. Several indices were proposed to characterize a partition, 42 are implemented in
the clusterCrit R5 package. All the indices aim to characterize both internal cluster cohesion
and between cluster separation. They could be clustered in families according to their
similarities and differences. The available scientific reviews do not conclude about when one
of them should be preferred to another. In this work, as well as in many other publications,
the Silhouette and Dunn indices are used [3]. They can be seen as complementary in the
information they use: in Silhouette cohesion is based on the distance between all the points
while Dunn restricts to the nearest neighbor; separation is evaluated using the nearest
neighbor distance in Silhouette and the maximum cluster diameter in Dunn. Their values
are given in the last two columns: they are similar for the two algorithms.

It is worth noting that the two algorithms are able to identify patterns based either on
density peaks or texture differences. This result is important as the groups partially overlap.

5https://www.r-project.org/
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Table 12. Silhouette and Dunn indices for three configurations of Recon-DBSCAN and Munec that yield a
similar number of clusters

Config nb clusters nb noise Silhouette Dunn
Recon-DBSCAN 30 7 99 0.192 0.028

50 13 61 0.321 0.014
70 18 111 0.472 0.005

Munec 0.03 3 40 0.159 0.026
0.08 14 143 0.420 0.012
0.14 17 231 0.477 0.009

5.7. Complementary experiments with datasets of higher dimension

Two kinds of experiments were carried out to assess the behavior of the algorithm in
higher-dimensionnal spaces.

In the first one the goal is to identify 9 distinguishable clusters with Gaussian distribu-
tions in dimension 2 to 15. The data were proposed in [27]. The number of samples increases
with the dimension. The sample size, n is proportional to the dimension, d: n = 675d + 1.
Munec was run with the following values u = {0.02, 0.06, 0.1}. For all the dimensions, at
least one value of u yielded the right number of clusters and a Rand Index of 1 with respect
to the true partition. When u = 0.1 the constraints are so strong that the final number of
clusters is usually higher than the expected one.

The second experiment is based on the genRandomClust R package. This is an imple-
mentation of the method proposed in [36]. The degree of separation between any cluster and
its nearest neighboring cluster can be set to a specified value regarding the separation index
proposed in [37]. The cluster covariance matrices can be arbitrary positive definite matrices.
They correspond to different shapes, diameters and orientations. The eigen method is used
in the experiment. It first randomly generates eigenvalues (λ1, . . . , λp) for the covariance
matrix then uses columns of a randomly generated orthogonal matrix, Q = (α1, ..., αp), as
eigenvectors. The covariance matrix is then built as Q · diag(λ1, ..., λp) · QT . The package
uses the basic parameters for cluster generation such as the number of clusters, the space
dimension and their respective sizes but also allows for variability management. A ratio
between the upper and the lower bound of the eigenvalues can be specified. The default
value is 10, but 30 was used in all the experiments. The range of variances in the covariance
matrix was set to the default value, rangeV ar = [1, 10]. The only parameter used in this
experiment is the value of the separation index between two neighboring clusters, SepV al.
It ranges from −1 to 1. The closer to 1 the value, the more separated the clusters. The
behavior of these two parameters is illustrated with 2-dimensional clusters on Figure 16
through 4 typical configurations.

The package was used to generate data structured in 5 clusters in spaces from 2 to 10
dimensions with a number of samples per cluster increasing linearly with the dimension from
300 to 1500. For each replicate, the pair of values was randomly chosen in each interval. The
tests were carried out with 4 values of the separation degree: SepV al = {0.1, 0.2, 0.3, 0.4}.
The RI was computed with respect to the true partition and averaged over the 10 replicates
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Figure 16. Four configurations of SepV al for random cluster generation, from left to right: 0.4, 0.3, 0.2 and
0.1. The axes are the x and y coordinates.

for each configuration. Three values of u were studied, u = {0.02, 0.06, 0.1}, and the best
RI was kept.

Figure 17. Random cluster generation: Rand Index versus the dimension for the 4 SepV al configurations

The results are summarized in Figure 17. Munec is able to find the expected partition,
whatever the dimension, when the clusters do not overlap too much. This ability decreases
with the degree of cluster separation. When SepV al = 0.1, making the cluster poorly
distinguishable, the correct structure is identified when the space dimension is at most 5.

The results for this configuration, SepV al = 0.1, are detailed in Table 13. For each
dimension, the average and standard deviation of the RI and the final number of clusters
are reported. It is worth mentioning that even with u = 0.1 the number of clusters found
is slightly below the expected number, when the dimension is higher than 5. The average
of the Silhouette and Dunn indices confirm that the cluster separation is not clear: the two
indices drop to 0 as soon as the dimension is higher than 2. This is explained by the high
level of noise and shape variation generated by the selected setting. The averaged Silhouette

32

Author-produced version of the article published in Information Sciences, 2019, N°486, p. 148-170. 
The original publication is available at https://www.sciencedirect.com 
Doi: 10.1016/j.ins.2019.02.051



F. Ros and S. Guillaume / Information Sciences 00 (2019) 1–37 33

Table 13. Munec results with random cluster generation and SepV al = 0.1

dim RI NbClust Silhouette Dunn
µ σ µ σ µ σ µ σ

2 0.946 0.036 5 0 0.321 5.1e−4 0.131 2e−3

3 0.937 0.046 5 0 0.033 8.4e−5 1.2e−2 1e−7

4 0.952 0.058 5 0 -0.074 7.8e−4 5.7e−3 1e−7

5 0.913 0.099 4.8 0.4 -0.085 4.5e−4 4.7e−3 1e−7

6 0.837 0.093 4.7 0.8 -0,113 3.1e−4 6.7e−4 1e−7

7 0.768 0.083 4.9 0.75 -0,143 2.3e−5 6.0e−4 1e−7

8 0.649 0.072 4.7 0.85 -0,169 5.1e−6 6.4e−4 1e−7

9 0.497 0.081 4.5 1.5 -0.215 1.0e−6 6.3e−4 1e−7

10 0.408 0.094 4.3 1.7 -0.237 7.4e−6 6.3e−4 1e−7

value for SepV al = 0.4 and dimension 10 is −0.093. This difficult case highlights the good
performance of the proposal. The performances obtained when running Recon-DBSCAN
by tuning each parameter 8 times (83 trials) are comparable for the 2D-data (RI = 0.948,
σ = 0.028) with SepV al = 0.1 but are degraded for dimension 3 data, RI = 0.576. The
same phenomenon is observed for higher values of SepV al such as 0.3. In this case, the
results are (RI = 0.998, σ = 0.005) for dimension 2, the RI is 0.834 for dimension 3 but it
drops to 0.470 for dimension 4. These highly variable configurations are poorly managed by
Recon-DBSCAN.

6. Conclusion

A new algorithm is proposed in this paper based on the hierarchical merging of mutual
nearest neighbors. The single link distance generalizes the mutual neighboring to groups. A
sub-cluster is characterized by the mean distance between neighbors. This value averaged
over all the sub-clusters characterizes the partition. Unfortunately, it cannot serve as a
stopping criterion because it is monotonically increasing.

The algorithm comprises two main steps. The first one is driven by a similarity index
based on the three distances involved in the merging: the two inner ones and the single
link distance between the two groups. It is self-controlled: a high threshold is used in order
to yield a skeleton of the structure without doing any unexpected merging. In the second
step some heuristics are proposed to go further. Besides neighborhood, density is taken into
account: the merging index is no longer symmetrical but higher size group-oriented.

Three conditions are required for a merging. C1 is a threshold on the distance homo-
geneity, C2 is also based on the mutual neighborhood and C3 on the local neighborhood
for density differentiation including noise filtering. The threshold used in C1 is iteratively
decreased during the process. It is not a user parameter. C2 is computed from the ho-
mogeneity index and the number of mutual neighbors within a local neighborhood. The
threshold is not a user parameter: it is dynamically set according to the total number of
neighbors. Finally the unique user parameter is the threshold for C3.
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Many of these concepts are shared by other algorithms. Nevertheless, Munec differs from
them in several ways. The density concept is the basis of many algorithms, some old ones
such as the k-means, or other recently published ones such as DensityPeaks. Three main
differences are worth noting. Munec does not start the search for density peaks from points
but from sub-clusters identified in the first step of the algorithm by mutual neighboring.
The second difference stems from the iterative decrease of the homogeneity index threshold:
this allows the progressive consolidation of the structure. The last difference is the use of
additional constraints, C2 and C3, to avoid merging when the peak is not unique or not
clearly defined.

Single link distance is known to be relevant but very sensitive to noise. In the proposal,
it is used for selecting candidates for merging. Then the final decision is made after a careful
inspection of the local context using C2 and C3. These conditions combine distance and
neighborhood. They are based on known methods such as Chameleon or SCDOT but Munec
uses a dynamic definition of the local neighborhood, which does not require any parameter,
namely a hypersphere with a radius twice the single link distance.

Several parameters are required for Munec to prevent unexpected merging. Most of them
were empirically defined and integrated as constants to make the algorithm user-friendly.
Finally, a single parameter u is left to the non-expert user to drive the algorithm. Whatever
its value, no unexpected merging is done. This parameter defines the partition granularity
by controlling the level of density differentiation: the higher its value the stronger the
constraints on the merging and the higher the number of clusters.

The study shows that the algorithm yields stable results with only a few distinct par-
titions to be analyzed or characterized, for the useful range of u. Three typical values
were used in this work: {0.02, 0.06, 0.1}, 0.06 being the default value. Their impact is es-
pecially noticeable when the separation degree between clusters is low because of noise or
partial overlap. Compared to alternative methods Munec proved to be extremely effective
to match a ground truth target. Moreover, with the same input configuration, u, datasets
of various densities, arbitrary shape and including a large amount of noise can be managed.
This generic setting, validated using a wide range of experiments, is an interesting asset
of the proposal. The next advance could be based on a post-processing stage that would
complement the local view proposed in this paper by a partition-scale coherence analysis.

Another perspective is to deal with very large data bases. The first step is to extend
the current algorithm to manage a huge number of observations. Various techniques can
be envisaged. Some of them optimize the algorithm by using a kd-tree implementation or
a neighborhood graph. Others divide the data via strata [20], run the algorithm on each
subset and combine the results. Munec is currently part of a datamining package used by
different startup companies hosted by the LAB’O, a business incubator located in Orléans
(France). As an example, PSASS provides a distance expertise to analyze records for sleep
apnoea diagnosis. This platform allows practitioners to save 80% of their time. The remote
analysis is done by a human expert. To make the service scalable an automatic system is
under design. The inputs are several attributes selected from spolysomnographic records
using signal processing and feature selection techniques. Munec was used to identify the
underlying structure in records. Natural clusters were detected as different values of u
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provided the same number of groups. The partition is the basis of an interpretable and
efficient decision tree that is currently in test under the expert control.
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