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Introduction

Hyperspectral imaging (HSI) refers to a technique that can provide both spatial and spectral information by integrating two classical optical sensing technologies of imaging and spectroscopy into one system [START_REF] Ferrari | Handling large datasets of hyperspectral images: reducing data size without loss of useful information[END_REF]. It was mainly applied on remote sensing in the early 70's. In recent years, it started blooming in many different disciplines, e.g., pharmaceutical research [START_REF] Gendrin | Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review[END_REF], food science [START_REF] Xu | An Overview on Nondestructive Spectroscopic Techniques for Lipid and Lipid Oxidation Analysis in Fish and Fish Products[END_REF][START_REF] Gowen | Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[END_REF]) and agriculture [START_REF] Ravikanth | Classification of contaminants from wheat using near-infrared hyperspectral imaging[END_REF]. HSI technique acquires spectral data at each pixel of an image forming a three-dimensional array of data with two spatial dimensions and one spectral dimension. As a result, it allows not only to identify and/or quantify the chemical components of the analyzed sample, but also to map their spatial distribution. According to Beer-Lambert law, the concentration of an absorber is directly proportional to the sample absorbance, which is the basis of using spectroscopic signal. Nevertheless, the computed absorbance could be a bad approximation of the Beer-Lambert law absorbance when dealing with the turbid samples containing scattering centers. Highly scattering materials account for additive and multiplicative effects, producing non-linearity in the absorbance-concentration relationship. When this phenomenon dominates the spectra formation, the chemically related absorbance can be severely overlapped by the physically related information [START_REF] Gobrecht | Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials[END_REF]. In order to reduce scattering effects, [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF] proposed to combine polarized light with near infrared (NIR) spectroscopy using the principle of polarization subtraction. The polarized light spectroscopy method was introduced to reduce the effects of multi-scattering on the measured signal based on the wave theory of light [START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF]. Polarized hyperspectral imaging system was proposed by [START_REF] Vasefi | Polarization-sensitive hyperspectral imaging in vivo: a multimode dermoscope for skin analysis[END_REF] as a new multimode dermoscope to accurately determine the spatial distribution of melanin and hemoglobin oxygenation in a skin lesion. As reported, this system separated the contribution of superficial melanin in order to quantify the deep melanin relative concentration so that oxy-and deoxy-hemoglobin distribution can be accurately assessed. Cross-polarization HSI in line scanning configuration was developed to remove glare from the acquired hyperspectral reflectance images of various agricultural products: aubergine, Granny Smith apple, and Royal Gala apple [START_REF] Nguyen-Do-Trong | Cross-polarised VNIR hyperspectral reflectance imaging system for agrifood products[END_REF]. Their results showed that crosspolarization enabled to improve the quality of the acquired hyperspectral reflectance images through reducing the unwanted variability due to specular reflection and improving the signal to noise ratios in the data to a factor from 1.1 to 3 times depending on the wavelength regions.

More recently, [START_REF] Nkengne | SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation[END_REF] tested a polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin and oxygen saturation. Except from the aforementioned researches, the potential of polarized-HSI system has not been fully explored in agriculture.

HSI has gained tremendous importance in agriculture with different applications, such as plant disease [START_REF] Bock | Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging[END_REF][START_REF] Mahlein | Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases[END_REF], stress detection and yield estimation [START_REF] Zarco-Tejada | Fluorescence, temperature and narrowband indices acquired from a UAV platform for water stress detection using a microhyperspectral imager and a thermal camera[END_REF][START_REF] Serrano | Remote sensing of biomass and yield of winter wheat under different nitrogen supplies[END_REF] and leaf nitrogen content [START_REF] Vigneau | Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat[END_REF].

When applied on the fresh plant leaves, HSI was mainly used to estimate nitrogen and chlorophyll content, and detect different diseases [START_REF] Jay | Estimating leaf chlorophyll content in sugar beet canopies using millimeter-to centimeter-scale reflectance imagery[END_REF][START_REF] Yu | Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant[END_REF]. For chlorophyll content prediction, reflectance variables in the red edge region were much better indicators than most other indices [START_REF] Xiaobo | In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging[END_REF]. The position of red edge defined as maximum slope in the vegetation reflectance spectra between the red and near infrared regions is considered as one of the best estimators for chlorophyll content because it is less sensitive to disturbing factors. Some published spectral indices provided relatively poor performance in predicting leaf chlorophyll content when applied across a wide range of species and plant functional types [START_REF] Xue | Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance[END_REF]. With respect to plant disease detection, Di Gennaro et al. ( 2016) attempted to discriminate healthy leaves from grapevine leaf stripe disease (Phaeomoniella chlamydospora) contaminated leaves with an unmanned aerial vehicles (UAVs) used to acquire very high spatial resolution data of vineyards fields.

Even though their resulted showed that normalized difference vegetation index (NDVI) values were useful in discrimination, they claimed that such a method was only reliable if no other factors affected leaf chlorophyll content. Indeed, as different biotic and abiotic stresses may affect leaf chlorophyll content (e.g., nitrogen stress, pests, etc.), the NDVI is not able to discriminate a specific disease from other stresses. For spectral analysis, fresh leaf tissue creates more problems than dried, ground tissue. The cell structure of fresh plant material scatters light as it passes through multiple air and water interfaces with different refractive indices. These phenomena are likely to obscure the subtle absorption features caused by bending and stretching of chemical bonds.

In this context, we proposed a new modality that combines light polarization with hyperspectral imaging to illuminate sunflower leaves with both parallel and perpendicular polarization images of the remitted light recorded. The objective of this study was to assess the potential of different combination of images to characterize different leaf properties, i.e. variety, growth stage and presence/absence of diseases. This polarized-HSI system was tested on two datasets of hyperspectral images of sunflower leaves collected on in vivo plants.

Materials and methods

Dataset 1: variety and growth stage discrimination

Leaves of sunflower (France) were collected for experiment. All investigated plants were grown in greenhouses of Irstea, France. The grow chamber is composed of multispectral lighting controlled by the Herbro automaton (GreenHouseKeeper entreprise). Herbro PLC measures the temperature and humidity every 30 seconds, and takes care of watering the sunflower plants every 48 hours. In terms of lighting, the Herbro PLC manages the light spectrum emitted by the four lamps in a time interval. The lamps are equipped with 5 channels corresponding to 5 wavelengths (450 nm, 560 nm, 660 nm, 730 nm and 6000 ° k).

In this work, two different genotypes labelled as B and R were used. For B variety, plants of 8, 7 and 6 weeks old were recorded as B1, B2, B3, while R variety plants of 8, 7, 6, 5 and 4 weeks old were labelled as R1, R2, R3, R4 and R5. Three leaves were collected at the upper, middle and lower parts of each plant. On each leaf, four regions of interest (ROIs) were selected and cut: one close to petiole, one close to tip, two in the blade region located at each side of the midrib. As a result, 8 × 3 × 4 = 96 images were acquired in the first measurement and parts of these were used as the calibration set for variety and growth stage discrimination. To form a test set, one more leaf were collected at the middle of each plant and four ROIs were also selected according to the aforementioned criterion, which makes 8 × 1 × 4 = 32 hypercubes in the second measurement. For the purpose of classifying plant variety, calibration set was obtained by B1-3 and R1-3 images in the first measurement excluding R4 and R5 images in order to avoid imbalanced class distribution. Test set 1 includes only B1-3 and R1-3 images in the second measurement and Test set 2 includes all the R4 and R5 images from the first and second measurements. As a result, there are 6 × 3 × 4 = 72 observations for the calibration set, 6 × 1 × 4 = 24 for the Test set 1 and 2 × 4 × 4 = 32 for the Test set 2. With respect to identify growing stage, it was noticed that B1-3 and R1-3 have similar height, around 100 cm, while R4-5 were much shorter, around 80 cm. Therefore, B1-3 and R1-3 were recognized as the same class: Old, while R4 and R5 as the other class: Young. To make a balanced dataset, only R1-5 from the first measurement were used as calibration set and R1-5 from the second measurement generated Test set 1, while all the B1-3 formed Test set 2, which makes 5 × 3 × 4 = 60 observations for the calibration set, 5 × 1 × 4 = 20 for the Test set 1 and 3 × 4 × 4 = 48 for the Test set 2. The data partition details are summarized in Table 1.

Dataset 2: disease detection

Powdery mildew (PM) is a fungal disease that affects a wide range of plants but is an emerging disease in sunflowers. Contaminated sunflower leaves exhibited symptoms of white to grey powdery patches. Severely infected areas lose luster, curls, turn yellow and may dry up. Septoria leaf spot (SLS) is another disease affecting sunflower leaves with black necrosis and yellow spots, that can be observed at all stages of plant growth. Black or brown streaks are usually noticed in a typical SLS affected plant. In this work, 20 contaminated regions were found and cut from leaves in the B and R varieties during different growth stage from 4-8 weeks. Yellow or brown spots were found both on the healthy and diseased leaves. In order to discriminate yellow area from the infected and healthy areas, pixels from yellow area were also extracted and form a Yellow category. To test the developed polarized-HSI system, 1875 pixel spectra of healthy leaf, 625 of yellow spot, 1188 of PM and 695 SLS were extracted, among which 67% were randomly selected as calibration set and the remaining as the test set.

Polarized-HSI setup

Spectral images of the prepared leaf samples were acquired in the reflectance mode by using a laboratory-based line scanning hyperspectral imaging system coupled with light polarization. The developed polarized-HSI system was composed of a light source, an illumination optical setup, a translation rail, and a detection system. A Xenon arc lamp (300W, Newport 6508, Newport Corporation, California, USA) was mounted in lamp housing with an F/1 aspheric condenser (Newport 67005, Newport Corporation, California, USA). The optical illumination system was composed of a linear grid polarizer (Thorlabs WP12L-UB, Thorlabs, INC., Newton, USA), a plano-convex cylindrical lens (THORLABS LJ1810L2, Thorlabs, INC., Newton, USA) and a dielectric mirror (Thorlabs BB2-E02, Thorlabs, INC., Newton, USA) to shape the incident beam as a vertical line (typically 10 cm x 4 cm) on the sample. The sample was placed on a translation rail, synchronized with the acquisition software which can record images when sample was scanned under the hyperspectral camera (NEO Hyspex VNIR-1600 with 30 cm-objective, Norsk Elektro Optikk AS, Skedsmokorest, Norway). A part of the light backscattered by the sample reached a second linear grid polarizer (Thorlabs WP25M-UB, Thorlabs, INC., Newton, USA), also known as analyzer, mounted in a rotation mount in front of the hyperspectral camera. The rotation of this polarizer allowed choosing the polarization state of the acquired signal: either parallel to the incident polarization or perpendicular to it. Spectral data were acquired in the 400-1000 nm wavelength range at 3.6 nm intervals.

Reflectance calibration

Due to the imperfections of some components (e.g., light source, lens, spectrograph, and camera) and different measurement environments, the acquired raw hyperspectral images generally contain noises and artifacts. Many factors, such as non-uniform illumination, pixel-to-pixel sensitivity variations of the detector, and dust on the lens, will contribute to different image artifacts, leading to the raw images not being suitable for quantitative analysis.

Therefore, proper calibration procedure is necessary. For each sample, two hypercubes were acquired with the parallel and cross polarization modes where analyzer was set parallel ( || ) and perpendicular (

) with respect to the polarization of the illumination light, respectively. A diffuse reflectance white standard (Spectralon®, SRS-50-010, Labsphere, about reflectance 50%) was used to standardize spectra from non-uniformities with two images, || and . Two images of dark current were also recorded and indicated as || and for parallel and cross polarization modes, respectively. Reflectance calibration was performed by comparing the acquired images according to the following formulas adapted from [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF]:

|| = || -|| || + " -( || + ) (1) = - || + " -( || + ) (2)

Spectral computations

According to [START_REF] Gobrecht | Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials[END_REF], the backscattered reflectance ( ) is comprised of the calibrated parallel ( || ) and cross images ( ), and therefore can be obtained by:

= || + (3)
At the same time, it should be noticed that the backscattered reflectance ( ) is the sum of the multi-scattered ( % ) and the weakly scattered ( ) parts of light:

= % + (4)
Due to multiple scattering events, the linearly polarized incident light loses its initial polarization state and oscillates randomly in all the planes. However, photons that have undergone weakly scattering event retain their initial polarization status. Therefore, multiscattered light is isotropically depolarized and half of its intensity passes through the analyzer when oriented parallel to the polarizer and the other half when oriented perpendicular, while weakly scattered light retains initial polarization state and only passes through the analyzer when oriented parallel to the polarizer. As a result,

= 1 2 % (5) || = 1 2 % + (6)
Based on the aforementioned relations, the weakly scattered ( ) reflectance can be obtained from light polarization subtraction:

= || - (7) 
The detailed theoretical background and inference process can be found in [START_REF] Gobrecht | Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials[END_REF]. Technically, the backscattered reflectance ( ) which has been included for comparison in this work is similar as reflectance from the regular (or traditional) hyperspectral imaging. The rationale behind this can be found in Appendix A. Therefore, spectra will be used to represent the performance of traditional HSI. It should be noted that no spectral pre-processing methods were used in this work.

Digital microscopic images

Microscopic images can present visually differences among different leaves on a microscale. The acquired information from microscopic images will help interpret spectral profiles and can be linked to model performances. Therefore, a digital microscope (Olympus BX43) was used to acquire microscopic images of B1, B3, R1 and R5. The images were acquired with Transmitted Koehler Illuminator and x10 microscope objective. Leaf samples were first cut from the central of each leaf, scanned by polarized-HSI, and placed on the regular glass slide on which a drop of water was placed. It was ensured that leaf specimen was flat and contact well with the glass slide. Excess water was removed with the paper towel.

Texture analysis of the microscopic images was conducted by applying entropy filter in this work.

Unsupervised multivariate analysis

Principal components analysis (PCA) is one of the most widely used unsupervised multivariate analysis techniques for hyperspectral image analysis. Normally, it is used as an exploratory technique, because it enables the reduction of the many spectral dimensions to a smaller number of principal component (PC) scores which capture the maximum variation in the data. In this work, PCA was performed on Dataset 2 to investigate the image of the infected sunflower leaf. The upper and lower surfaces of the leaf were both used, each surface was scanned in two sequence to obtain parallel and cross images. Two images in the same mode (either parallel or cross) from upper and lower surfaces were first unfolded and then concatenated to form a single augmented matrix. PCA was applied on this augmented matrix. 

Discriminant analysis and model performance evaluation

CCR = * + * , × 100% (8)
where * + is the number of correctly classified samples and * , is the total number of samples.

The optimal number of latent variables (LVs) was determined by classification error of cross validation with 10-fold venetian blinds. In addition, classification map was also generated to evaluate the performance of developed classification models. The tested hypercube was unfolded such that the three-dimensional information was rearranged in two-dimensional matrix where each row represents the spectrum from each pixel and each column refers to a certain wavelength variable. The obtained model was applied on this two-dimensional matrix to classify each pixel into one category. The obtained prediction matrix was transformed to produce a classification map where each pixel was assigned to a predicted category. than R variety, and young leaf has higher intensity than the older leaves. This is partly because young leaves have lower photosynthetic capacity compared to the matured leaves (Ölçer et al. 2001).

Results and discussion

Spectral feature analysis

The mean reflectance spectra of cross, parallel, and were computed from each calibration and test set of Dataset 1 and are exhibited in Fig. 2. The mean spectra of B and R variety are shown in Fig. 2a and Fig. 2b for calibration set and Test set 1, respectively. It is first noticed that all the cross, parallel and have similar spectral characteristics of the "green plants" [START_REF] Wu | Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[END_REF][START_REF] Zhao | Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease[END_REF]). The reflectance is minimum in the blue (around 450 nm) and red (around 670 nm) spectral domains and shows a peak in the green (around 550 nm) wavelength region, indicating that leaves absorb red and blue light and reflect green light. It then demonstrates a sharp edge from 670 nm to 740 nm (the so-called "red edge") before reaching a plateau in the NIR region [START_REF] Filella | The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[END_REF]. When

focusing on the spectral difference between the two varieties, it is observed that B variety has slightly higher reflectance in the green region, higher absorption in the red and blue regions, lower reflectance after 740 nm in the calibration set (Fig. 2a). However, consistent differences were not found in the Test set 1 (Fig. 2b). spectra also show a major absorption peak around 670 nm (red), a minor absorption peak at 530 nm (blue) and reflectance peak at 550 nm (green). However, the global reflectance values of have been largely reduced compared to , || and . This is expected because with only a small portion of the signal is selected: the weakly scattered one. Multi-scattered light vibrates in all planes and half of its intensity passes through the analyzer when oriented parallel to polarizer and the other half when oriented perpendicular, yet weakly scattered light retains its initial polarization state and therefore only passes through the analyzer when positioned parallel to polarizer, as described in Section 2.5. In this sense, images obtained when the analyzer was oriented perpendicular to polarizer shows the enhanced information from deeper layers due to the rejection of superficial reflectance and preferentially selecting deeper penetrating light, while the images preserve only the surface information after polarization subtraction. When compared to , || or spectra, the spectra exhibit greater differences between the two varieties and more consistency between the calibration and Test set 1, with the B variety showing slightly higher reflectance values both in the green and red regions.

With respect to spectral difference between young and old plant leaves (Fig. 2 (c) and (d)), it can be noticed that cross reflectance of young leaves is lower than that of old ones in the spectral domain of 400 to 700 nm both for calibration and Test set 1. This reflectance difference is reduced for parallel and spectra. On the other hand, spectra demonstrate an opposite trend with young leaves having higher reflectance in this spectral range. The difference in the spectra is more pronounced compared to the other spectra types, indicating that a marked difference between surface features of young and old leaves due to the combined effect of color and physical structure as observed in the microscopic images in Fig. 1.

Classification modelling of variety discrimination

PLS-DA was applied to build classification models to classify B and R varieties and the results are shown in Table 2. As shown, there is a higher prediction accuracy in Test 2 than Test 1. Comparing model performances, it can be seen that the model developed with spectra outperformed the others, while cross spectra resulted in the worst model performance based on the two test datasets. In detail, the PLS-DA model yielded CCR of 0.750 for Test set 1 and 0.906 for Test set 2, while the CCR of the PLS-DA model were 0.667 and 0.844 for Test set 1 and 2, respectively. This result suggests that the major spectral difference between B and R variety is mostly due to the superficial reflectance of leaves rather than subsurface information. and PLS-DA models were selected due to their better performances and then applied on each pixel of the images to produce prediction maps. To approximate how the selected leaves would appear to humans, their RGB pseudo-color images were produced by the combined images at three wavelengths located at red (670 nm), green (550 nm), and blue (460 nm) wavelengths. The pseudo-color images are displayed in the Fig. 3 and the corresponding prediction maps built from and spectra are shown in Fig. 4a andb, respectively. As shown, no obvious difference between R and B varieties can be observed by visual inspection of the pseudo-color images. R5 seems to present a different vein structure compared to the rest of leaves, which agrees with the microscopic images in Fig. 1. On top of each prediction map, the predicted class for this ROI was achieved by applying the model on its mean spectrum. As seen, among these 8 observations, 7 are correctly classified by using both and PLS-DA models. It should be noted that all PLS-DA models were built with mean spectra and, to create the prediction maps, were applied to the pixel spectra.

Therefore, it is reasonable that there are many incorrect predictions for pixels within one sample. The accuracy of pixel-wise prediction might be improved by spectral pre-processing methods, such as smoothing. For the B variety, a larger portion of pixels were predicted as B instead of R variety. In addition, R4 and R5 prediction maps present mostly yellow pixels (predicted as R), which supports the result from the Table 1 that prediction performance for Test set 2 is better.

Classification modelling of age discrimination

PLS-DA modelling was also used to classify leaves into two growth stages (Old and Young) and the results are exhibited in Table 3. Compared to variety discrimination, it is more accurate to distinguish between these two leaf age stages. Interestingly, the worst performance was observed on the model of with CCR of 0.750 for Test 1 and 0.854 for Test 2, while the best performance was achieved by using spectra with high CCR of 1.000 for Test 1 and 0.970 for Test 2, implying that only surface information is not sufficient to accomplish this task. At the same time, it can be noted that the cross model overall performs better than parallel, especially for the Test 1 where cross achieves CCR of 1.000 while parallel has CCR of 0.800. Contrarily, higher CCR (equivalent to 1.000) is found in the Test 2 by using parallel spectra, while it is 0.917 for cross. These results indicate that deep information captured by cross spectra are crucial in discriminating between leaves of two growth stages. However, superficial information captured by parallel spectra also play a part in explaining the difference between two growth stages, especially when B variety leaves are included (Test 2). As a consequence, when using the combined information from subsurface and surface of leaf, spectra (the sum of multi-scatter and weakly scattered light) produces the best performance in classification.

Likewise, the best two models (cross and ) were employed to generate classification maps of the 8 aforementioned observations and respectively displayed in Fig. 4c andd. As observed, all the 8 observations are correctly classified by applying both PLS-DA models on the mean spectra. Better performance of is confirmed by prediction maps: R1-3 images have large areas wrongly predicted as Young class using the cross model. It is also noted that vein structure is highlighted in the prediction maps via predicting vein pixels as the Old class.

Dataset 2: disease detection

Spectral feature analysis

Mean spectra of each class from healthy and contaminated leaves are shown in Fig. 5a and b for calibration and test sets, respectively. There are obvious reflectance value differences between different types. Compared to healthy leaves, cross, parallel and spectra of yellow spot demonstrate higher reflectance in the visible spectral range with a broad reflectance peak observed around 550 to 600 nm and narrow absorption peak at 670 nm. The PM infected leaves share similar spectral shape as healthy leaves, but with higher reflectance which is probably due to the white color of pustules. The SLS infected leaves have distinctive spectral difference with the rest of spectra: the green peak around 550 nm is barely observed and the sharp shoulder of red edge is lost. With respect to spectra, yellow and SLS infected leaves show no resolved absorption peaks, while healthy and PM infected leaves demonstrate absorption peak at 670 nm.

Unsupervised PCA exploration

The upper and lower surfaces of a contaminated leaf were scanned and PCA was performed on the cross and hypercubes as shown in Fig. 6. Likewise, the RGB pseudocolor images were created by the combined cross and images at three wavelengths of red (670 nm), green (550 nm), and blue (460 nm) and exhibited in Fig. 6a. It should be noted that only the pseudo-color image of the backscattered reflectance ( ) hypercube will appear similar to their natural color in the real world, not cross, parallel or hypercubes. As can be seen, there's some SLS infected dark spots spread out on the upper surface of cross hypercube, while these spots are less visually observed at the corresponding locations of the lower surface. In addition to SLS contamination, two major PM infected areas covered with whitish powdery mycelial growth can be well observed on the upper surface. Interestingly, PM and SLS contaminated regions are overlapped with some part of SLS infected area covered by PM (SLS+PM). images display superficial texture information of the selected leaf. PM spots can be also seen on the upper surface of image, while SLS specks could not be found. It can be seen from Fig. 6a that the upper and lower surfaces of a leaf differ in color and texture as confirmed by cross and images.

Fig. 6b shows the first three score images and loadings of cross images. The first three PCs have explained more than 99% of variance. PC 1 loading implies this PC describes the major spectral difference caused by red-edge with most negative loading at 680 nm and most positive one at 750 nm. Loading values below 720 nm are negative and above positive. Based on Fig. 5, it can be seen that healthy and PM infected leaves exhibit a sharp increase after 680 nm, while SLS infected spectrum increases slowly. In addition, SLS cross spectrum have higher reflectance values than healthy leaf spectrum below 720 nm, and become lower when above 720 nm due to a much smaller rate of increase. Combined with loading values and the mean cross spectra from Fig. 5, it is not difficult to speculate that SLS spots are supposed to present very negative values on the PC1 score images. As expected, SLS infected regions are shown on the upper surface of leaves and their locations correspond well with the RGB pseudo-color images. In addition, it is noticed that SLS infected regions overlapped with PM regions are also revealed. More importantly, SLS spots are also displayed on the lower surface though many of these spots cannot be visually detected in the pseudo-color image, indicating that cross spectra reveal subsurface information from deep layers. It is also observed the shape of the major SLS area on the left of midrib on the upper surface is the same as that on the lower surface. It can also be concluded that SLS first occurs on the upper surface due to bigger infected areas observed on the PC1 score image of upper surface. PC 2 mainly presents the spectral difference between SLS uncovered and covered by PM regions.

As shown in Fig. 5, PM cross spectrum is overall higher than SLS spectrum, the biggest two differences are located around 550 and 720 nm. PC2 loading values are all negative with two valleys evidenced at 550 and 720 nm. 

Classification modelling of disease detection

Classification models were developed based on the pixel spectra of the leaf upper surface and their results are shown in Table 4. The best model performance is noticed by using cross spectra with CCR of 0.963 both for cross validation and prediction, followed by using spectra with CCR of 0.948 for cross validation and 0.951 for prediction, respectively.

spectra contribute to the worst model prediction ability, which probably due to the noisy characteristics after pixel subtraction. It is also noted that model built with parallel spectra performs worse than that of spectra. As described in the Section 2.5, cross spectrum equals to half of the multi-scattered light, and parallel spectrum is the sum of half multiscattered and weakly-scattered light. As a consequence, spectrum is the sum of multiscattered and weakly-scattered light, which means the influence of weakly-scattered light is reduced in the spectrum compared to parallel spectrum. Since model outperforms parallel model, it can be indicated that subsurface features are more important than superficial information in detecting disease on sunflower leaves.

Classification maps were subsequently produced by using cross model on the leaf upper surface due to the best performance. RGB pseudo-color images of 4 contaminated leaves are generated on the reflectance image and shown in Fig. 9. It should be noted that Leaf 1 is the same leaf that was used in unsupervised PCA exploration as shown in Fig. 6 and7. PM infected regions can be well observed as white patches on each leaf, while SLS infected region is only visually observed on Leaf 1 based on the pseudo-color images. As can be seen, slightly overestimation problem happens when it comes to predicting SLS infected pixels:

SLS+PM pixels are mostly predicted as SLS class and some nearby pixels without obvious SLS symptom are wrongly predicted as SLS class. This classification model succeeds in predicting PM pixels in Leaf 2, 3 and 4 and the whitish powdery mycelial structures are well presented. However, some pixels belong to veins are misclassified as PM class. 

Conclusions

  Discriminant models were constructed by using partial least squares-discriminant analysis (PLS-DA) between the & matrix containing the spectra for calibration, and the corresponding ' matrix containing the belonging identity for each class. It should be noted that Dataset 1 uses mean spectrum of each ROI while Dataset 2 uses pixel spectrum to form & matrix. The performance of each developed model was evaluated by the correct classification rate (CCR), which is expressed according to the following equation[START_REF] Teye | Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification[END_REF]):

  Fig.1ashows the microscopic images of B1, B3, R1 and R5. Visually, B1 has a darker

  Therefore, SLS uncovered region should have high positive values, while influenced by the top PM region should be negative. It is noted that PC2 score images show the visible SLS infected regions on both upper and lower surfaces. Nevertheless, PC3 is more complicated due to different characteristic properties shown on score images. PC3 loading plot has the opposite shape as the PC2 loading, while PC3 loading has both positive and negative values. The upper surface of PC3 highlights the whitish powdery mycelial structure in negative values. Yet the features highlighted in very positive value on both upper and lower surfaces are not straightforward to interpret. To further confirm the aforementioned interpretation, threshold value equals to -0.5 was used to segment all the SLS infected area on cross PC1 score image (Mask 23+ ), threshold value of 0.25 to identify the uncovered SLS infected area on PC2 score image (Mask 454 ), and threshold value of -0.1 to detect all the whitish powdery mycelial structure on PC3 score image (Mask 236 ). Mask of SLS infected region covered by PM (SLS+PM) should have both '1' in Mask 23+ and Mask 236 , while mask of PM infected region is supposed to have '1' in Mask 236 but '0' in Mask 23+ . All the created masks can be seen in Fig. 7. Cross and mean spectra are also shown in Fig. 7. The shapes of SLS and PM spectra ( and ) are similar to those from the mean of calibration set in Fig. 5. When SLS infected region is covered by PM, the mean spectra (SLS+PM) are in the middle between SLS and PM spectra. When it comes to PCA results of hypercubes, PC1 score images highlight vein structure in both upper and lower surfaces. As seen, the surface texture is different between the upper and lower surfaces: the upper surface seems smoother than the lower surface. PC2 and PC3 score images also show little difference between the contaminated and healthy region, yet the overall images are noisy due to pixel subtraction. For a better comparison, PCA scatter plots obtained from and hypercubes are both shown in Fig. 8. It should be noted that each dot from the plot corresponds to a pixel on the upper surface. Pixels extracted from SLS infected, SLS infected region covered by PM (SLS+PM) and PM infected masks are respectively highlighted in black, magenta and red colors. As indicated, SLS and PM infected pixels form distinct clusters on spectra while spectra are unable to obtain separable clusters, indicating that depth information is vital for disease detection on sunflower leaf.

  This work investigated the feasibility and usefulness of an original polarized light hyperspectral imaging setup as a noninvasive technique for sunflower leaf assessment. The proposed polarized-HSI system has advantages compared with conventional HSI, enabling collection and separation of backscattered reflectance into subsurface and surface spectral features. Specifically, cross polarization image presents deep information due to the rejection of superficial reflectance, while the spectrum, measuring weakly scattered light contains mostly superficial information. Based on Dataset 1, it can be concluded that superficial information contributes more in discriminating between B and R varieties. Both surface and subsurface features are equally important in growth stage classification since the best model was obtained from the spectra. With respect to the disease detection on Dataset 2, the classification model performance indicates that subsurface information captured by cross spectrum is the most desired feature in detecting powdery mildew and septoria leaf spot on sunflower leaves. The combination of light polarization and hyperspectral imaging will facilitate the enhancement of the current applications in proximal remote sensing and many other disciplines. Many real-world applications will be investigated by using this proposed polarized-HSI in the future work.Note: FM: first measurement composed of B1-3, R1-5 (8 plants×3 locations×4 ROIs=96 images); SM: second measurement composed of B1-3, R1-5 (8 plants×1 location×4 ROIs=32 images).
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 1 Fig. 1. Visualization of microscopic images of B1, B3, R1 and R5 (a); their corresponding texture images (b) and histograms (c) at green channel. Fig. 2. Plot of mean spectra of two varieties for calibration set (a) and Test set 1 (b); of two growth stages for calibration set (c) and Test set 1 (d).
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 3 Fig. 3. RGB pseudo-color images of the ROI from B1-3 and R1-5 categories.
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 4 Fig. 4. Prediction maps to classify between two varieties by using (a) and (b) spectra; classify between two growth stages by using cross (c) and (d) spectra. On top of each prediction map, the label of each sample is placed on the left side of the equal sign, the predicted class on the mean spectrum is sit on the right side of the equal sign. B class includes B1-3, while R class includes R1-5; Old class includes B1-3 and R1-3, while Young class includes R4-5.
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 5 Fig. 5. Plot of mean spectra of heathy leaf, yellow spots, PM and SLS infected pixels for calibration (a) and test set (b).
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 6 Fig. 6. Visualization of RGB pseudo-color images from SLS and PM infected sunflower leaf (a); the obtained score images and loadings of PCA conducted on the hypercube of (b) and (c). The explained variance by each PC is indicated in the bracket on top of loading plot.
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 7 Fig. 7. Obtained masks from thresholding PCA score images and the plot of mean spectra of SLS, SLS covered by PM (SLS+PM) and PM infected pixels.
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 8 Fig. 8. PCA scatter plot obtained from and spectra. Each dot corresponds to a pixel on the upper surface of sunflower leaf. The explained variance by each PC is indicated in the bracket.
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 9 Fig. 9. Prediction map to classify SLS, PM, yellow spots and healthy leaf pixels by using cross PLS-DA model.
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 2 Fig. 2. Plot of mean spectra of two varieties for calibration set (a) and Test set 1 (b); of two growth stages for calibration set (c) and Test set 1 (d).
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Fig. 4 .

 4 Fig. 4. Prediction maps to classify between two varieties by using (a) and (b) spectra; classify between two growth stages by using (c) and (d) spectra. On top of each prediction map, the label of each sample is placed on the left side of the equal sign, the predicted class on the mean spectrum is sit on the right side of the equal sign. B class includes B1-3, while R class includes R1-5; Old class includes B1-3 and R1-3, while Young class includes R4-5.
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 5 Fig. 5. Plot of mean spectra of heathy leaf, yellow spots, PM and SLS infected pixels for calibration (a) and test set (b).
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 6 Fig. 6. Visualization of RGB pseudo-color images from SLS and PM infected sunflower leaf (a); the obtained score images and loadings of PCA conducted on the hypercube of (b) and (c). The explained variance by each PC is indicated in the bracket on top of loading plot.
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 7 Fig. 7. Obtained masks from thresholding PCA score images and the plot of mean spectra of SLS, SLS covered by PM (SLS+PM) and PM infected pixels.
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 8 Fig. 8. PCA scatter plot obtained from and spectra. Each dot corresponds to a pixel on the upper surface of sunflower leaf. The explained variance by each PC is indicated in the bracket.

  

Table 1 .

 1 Data partition for classification model development of Dataset 1.

	Objective	Calibration set	Test set 1	Test set 2
	Plant variety discrimination	B1-3 and R1-3 FM	B1-3 and R1-3 SM	R4-5 FM and SM
		(6 × 3 × 4 = 72)	(6 × 1 × 4 = 24)	(2 × 4 × 4 = 32)
	Growth age discrimination	R1-5 FM	R1-5 SM	B1-3 FM and SM
		(5 × 3 × 4 = 60)	(5 × 1 × 4 = 20)	(3 × 4 × 4 = 48)

Table 2 .

 2 Performance of PLS-DA model to classify between two sunflower leaf varieties.

	Methods	LV	Calibration	Cross validation	Test 1	Test2
		10	0.944	0.914	0.667	0.844
	||	10	0.972	0.930	0.708	0.875

Table 3 .

 3 Performance of PLS-DA model to classify between two sunflower leaf growth stages.

	Methods	LV	Calibration	Cross validation	Test 1	Test2
		7	0.933	0.900	1.000	0.917
	||	7	0.933	0.933	0.800	1.000
	R 74	7	0.933	0.933	1.000	0.970
	R 44	8	0.933	0.900	0.750	0.854

Table 4 .

 4 Performance of PLS-DA model to classify between healthy leaf, yellow spots, SLS and PM infected pixels.

	Methods	LV	Calibration	Cross validation	Test
		6	0.963	0.963	0.963
	||	6	0.913	0.921	0.930
	R 74	6	0.948	0.948	0.951
	R 44	7	0.665	0.656	0.656
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Appendix A

Light of arbitrary polarization can be represented by four numbers known as the Stokes parameters, I, Q, U and V. I refers to the irradiance or the intensity of the light; the parameters Q, U and V represent the extent of horizontal linear, 45 deg linear and circular polarization, respectively [A1,A2].

In polarimetry, the Stokes vector S of a light beam is constructed based on six flux measurements obtained with different polarization analyzers in front of the detector as follows:

Where > = || , ? = , @AB°, DAB°, E and F are the light intensities measured with horizontal linear polarizer, a vertical linear polarizer, a +45° linear polarizer, -45° linear polarizer, a right circular analyzer, and a left circular analyzer in front of detector, respectively.

In traditional reflectance, we work with an arbitrary polarization and we measured the first element I of the Stokes vector. And in accordance with the theory, this first element is equal to the backscattered light which equal to the sum of horizontal linear intensity and vertical linear intensity.