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Abstract

This study aims to investigate the potential of an original polarized hyperspectral imaging
(HSI) setup in the spectral domain of 400-1000 nm for sunflower leaves in real-world.
Dataset 1 includes hypercubes of sunflower leaves in two varieties with different life growth
stages, while Dataset 2 is comprised of healthy and contaminated sunflower leaves suffering
from powdery mildew (PM) and/or septoria leaf spot (SLS). Cross polaseq parallel
polarised ) reflectance signal®gs (R)+R. ) andRss (R)-R. ) spectra were obtained and

used to develop partial least squares-discriminant analysis (PLS-DA) models. Surface
information played an important role in separating two varieties of leaves due to the fact that
the best model performance was achieved by ugingnean spectra, while both surface and
subsurface were equally important in classifying leaves between two major growth stages

because model aQ®zs mean spectra outperformed other models. The best classification
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model for disease detection was achieved by usingl ®, spectra with the correct

classification rate (CCR) of 0.963 for both crosdidation and prediction, meaning that
subsurface spectral features were the most imgaagetect infected leaves. The resulting
classification maps were also displayed to visedlie distribution of the infected regions on
the leaf samples. The overall results obtainedhias tesearch showed that the developed
polarized-HSI system coupled with multivariate gs& has considerable promise in

agricultural real-world applications.

Key words: Hyperspectral imaging; Polarized light spectroscofigible and near infrared,;

Sunflower leaf; PLSR.

| ntroduction

Hyperspectral imaging (HSI) refers to a technigbat tcan provide both spatial and
spectral information by integrating two classicptical sensing technologies of imaging and
spectroscopy into one system (Ferrari et al. 2018)as mainly applied on remote sensing in
the early 70's. In recent years, it started blogmin many different disciplines, e.g.,
pharmaceutical research (Gendrin et al. 2008), fmwdnce (Xu et al. 2015, Gowen et al.
2007) and agriculture (Ravikanth et al. 2015). H&sihnique acquires spectral data at each
pixel of an image forming a three-dimensional amwégata with two spatial dimensions and
one spectral dimension. As a result, it allowsamdy to identify and/or quantify the chemical
components of the analyzed sample, but also to thmeip spatial distribution. According to
Beer-Lambert law, the concentration of an absombatirectly proportional to the sample
absorbance, which is the basis of using spectrascignal. Nevertheless, the computed
absorbance could be a bad approximation of the-Bambert law absorbance when dealing
with the turbid samples containing scattering centelighly scattering materials account for

additive and multiplicative effects, producing nlorearity in the absorbance-concentration
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relationship. When this phenomenon dominates tkeetsp formation, the chemically related
absorbance can be severely overlapped by the pitlysielated information (Gobrecht et al.
2015). In order to reduce scattering effects, Beral@t al. (2015) proposed to combine
polarized light with near infrared (NIR) spectropgousing the principle of polarization
subtraction. The polarized light spectroscopy metivas introduced to reduce the effects of
multi-scattering on the measured signal based enwidive theory of light (Backman et al.
1999). Polarized hyperspectral imaging system wapgsed by Vasefi et al. (2014) as a new
multimode dermoscope to accurately determine thatiadpdistribution of melanin and
hemoglobin oxygenation in a skin lesion. As repiyrthis system separated the contribution
of superficial melanin in order to quantify the demelanin relative concentration so that
oxy- and deoxy-hemoglobin distribution can be aately assessed. Cross-polarization HSI
in line scanning configuration was developed to oeen glare from the acquired
hyperspectral reflectance images of various agdticall products: aubergine, Granny Smith
apple, and Royal Gala apple (Nguyen-Do-Trong e2@L6). Their results showed that cross-
polarization enabled to improve the quality of #egjuired hyperspectral reflectance images
through reducing the unwanted variability due tecsgar reflection and improving the signal
to noise ratios in the data to a factor from 1.8 tanes depending on the wavelength regions.
More recently, Nkengne et al. (2018) tested a jE#dr hyperspectral imaging system for
repeatable and reproducible in vivo skin quantifara of melanin, total hemoglobin and
oxygen saturation. Except from the aforementiomsgarches, the potential of polarized-HSI

system has not been fully explored in agriculture.

HSI has gained tremendous importance in agriculvitle different applications, such as
plant disease (Bock et al. 2010, Mahlein et al.2}0%tress detection and yield estimation
(Zarco-Tejada et al. 2012, Serrano et al. 2000)leaichitrogen content (Vigneau et al. 2011).

When applied on the fresh plant leaves, HSI wasnipaised to estimate nitrogen and
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chlorophyll content, and detect different diseabksy et al. 2017, Yu et al. 2014). For
chlorophyll content prediction, reflectance varebin the red edge region were much better
indicators than most other indices (Xiaobo et 8lLD). The position of red edge defined as
maximum slope in the vegetation reflectance spebétaveen the red and near infrared
regions is considered as one of the best estimédorshlorophyll content because it is less
sensitive to disturbing factors. Some publishedcspk indices provided relatively poor
performance in predicting leaf chlorophyll contemben applied across a wide range of
species and plant functional types (Xue and Yan@9ROWith respect to plant disease
detection, Di Gennaro et al. (2016) attempted sorithinate healthy leaves from grapevine
leaf stripe diseasePhiaecomoniella chlamydospora) contaminated leaves with an unmanned
aerial vehicles (UAVs) used to acquire very higatgp resolution data of vineyards fields.
Even though their resulted showed that normalizéferdnce vegetation index (NDVI)
values were useful in discrimination, they claintledt such a method was only reliable if no
other factors affected leaf chlorophyll contendded, as different biotic and abiotic stresses
may affect leaf chlorophyll content (e.g., nitrogeress, pests, etc.), the NDVI is not able to
discriminate a specific disease from other stresBes spectral analysis, fresh leaf tissue
creates more problems than dried, ground tissue.CEfl structure of fresh plant material
scatters light as it passes through multiple ad aater interfaces with different refractive
indices. These phenomena are likely to obscuresthxtle absorption features caused by

bending and stretching of chemical bonds.

In this context, we proposed a new modality thatnbines light polarization with
hyperspectral imaging to illuminate sunflower lesweith both parallel and perpendicular
polarization images of the remitted light record&te objective of this study was to assess

the potential of different combination of imagesctwaracterize different leaf properties, i.e.
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variety, growth stage and presence/absence ofsdise@his polarized-HSI system was tested

on two datasets of hyperspectral images of sunflé®aves collected oim vivo plants.

M aterials and methods

2.1 Dataset 1: variety and growth stage discrimination

Leaves of sunflower (France) were collected foreexpent. All investigated plants were
grown in greenhouses of Irstea, France. The groamtler is composed of multispectral
lighting controlled by the Herbro automaton (GreenbeKeeper entreprise). Herbro PLC
measures the temperature and humidity every 30ndsc@nd takes care of watering the
sunflower plants every 48 hours. In terms of ligbtithe Herbro PLC manages the light
spectrum emitted by the four lamps in a time irdérvhe lamps are equipped with 5

channels corresponding to 5 wavelengths (450 n@i\ns® 660 nm, 730 nm and 6000 ° k).

In this work, two different genotypes labeli@si B and R were used. For B variety, plants
of 8, 7 and 6 weeks old were recorded as B1, B2vwBide R variety plants of 8, 7, 6, 5 and
4 weeks old were labelled as R1, R2, R3, R4 andlRfee leaves were collected at the upper,
middle and lower parts of each plant. On each l&afr regions of interest (ROIs) were
selected and cut: one close to petiole, one closip,ttwo in the blade region located at each
side of the midrib. As a resulg x 3 x4 =96 images were acquired in the first
measurement and parts of these were used as theatiah set for variety and growth stage
discrimination. To form a test set, one more leafavcollected at the middle of each plant
and four ROIs were also selected according to fbeementioned criterion, which makes
8 X 1 x 4 = 32 hypercubes in the second measurement. For thesigf classifying plant
variety, calibration set was obtained by B1-3 antt3Rimages in the first measurement

excluding R4 and R5 images in order to avoid imheda class distribution. Test set 1
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includes only B1-3 and R1-3 images in the secondsmement and Test set 2 includes all
the R4 and R5 images from the first and second unea®nts. As a result, there @&r& 3 X

4 = 72 observations for the calibration sétx 1 x 4 = 24 for the Test set 1 aritix 4 x

4 = 32 for the Test set 2. With respect to identify gnogvstage, it was noticed that B1-3 and
R1-3 have similar height, around 100 cm, while Rd#re much shorter, around 80 cm.
Therefore, B1-3 and R1-3 were recognized as theesdass: Old, while R4 and R5 as the
other class: Young. To make a balanced dataset,RM5 from the first measurement were
used as calibration set and R1-5 from the secarabarement generated Test set 1, while all
the B1-3 formed Test set 2, which makes 3 x 4 = 60 observations for the calibration set,
5x 1 x4 = 20 for the Test set 1 arRix 4 x 4 = 48 for the Test set 2. The data partition

details are summarized in Table 1.

2.2 Dataset 2: disease detection

Powdery mildew (PM) is a fungal disease that affextwide range of plants but is an
emerging disease in sunflowers. Contaminated swefiteaves exhibited symptoms of white
to grey powdery patches. Severely infected areses llaster, curls, turn yellow and may dry
up. Septoria leaf spot (SLS) is another diseastifiy sunflower leaves with black necrosis
and yellow spots, that can be observed at all stafg@lant growth. Black or brown streaks
are usually noticed in a typical SLS affected pldntthis work, 20 contaminated regions
were found and cut from leaves in the B and R viaseduring different growth stage from 4-
8 weeks. Yellow or brown spots were found bothlenhealthy and diseased leaves. In order
to discriminate yellow area from the infected aedlthy areas, pixels from yellow area were
also extracted and form a Yellow category. To tlestdeveloped polarized-HSI system, 1875
pixel spectra of healthy leaf, 625 of yellow spbt88 of PM and 695 SLS were extracted,

among which 67% were randomly selected as caldmmatét and the remaining as the test set.
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2.3 Polarized-HSl setup

Spectral images of the prepared leaf samples wagairad in the reflectance mode by
using a laboratory-based line scanning hypersgdettraging system coupled with light
polarization. The developed polarized-HSI systens wamposed of a light source, an
illumination optical setup, a translation rail, anddetection systemd Xenon arc lamp
(300W, Newport 6508, Newport Corporation, CalifesniUSA) was mounted in lamp
housing with an F/1 aspheric condenser (NewporD6/0lewport Corporation, California,
USA). The optical illumination system was composdda linear grid polarizer (Thorlabs
WP12L-UB, Thorlabs, INC., Newton, USA), a plano-ger cylindrical lens (THORLABS
LJ1810L2, Thorlabs, INC., Newton, USA) and a digiecmirror (Thorlabs BB2-E02,
Thorlabs, INC., Newton, USA) to shape the incidee@m as a vertical line (typically 10 cm
X 4 cm) on the sample. The sample was placed oanalation rail, synchronized with the
acquisition software which can record images whempe was scanned under the
hyperspectral camera (NEO Hyspex VNIR-1600 witlcBBobjective, Norsk Elektro Optikk
AS, Skedsmokorest, Norway). A part of the light ksxattered by the sample reached a
second linear grid polarizer (Thorlabs WP25M-UB,offfabs, INC., Newton, USA), also
known as analyzer, mounted in a rotation mountramtf of the hyperspectral cameithe
rotation of this polarizer allowed choosing thegrsation state of the acquired signal: either
parallel to the incident polarization or perpenthcuo it. Spectral data were acquired in the

400-1000 nm wavelength range at 3.6 nm intervals.

2.4. Reflectance calibration

Due to the imperfections of some components, (&gt source, lens, spectrograph, and
camera) and different measurement environmentsatiogiired raw hyperspectral images

generally contain noises and artifacts. Many factsuch as non-uniform illumination, pixel-
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to-pixel sensitivity variations of the detectordagiust on the lens, will contribute to different
image artifacts, leading to the raw images not dpesnitable for quantitative analysis.
Therefore, proper calibration procedure is necgs$ar each sample, two hypercubes were
acquired with the parallel and cross polarizatiades where analyzer was set paraligl ()
and perpendicular I(__ ) with respect to the polarization of the illumirat light,
respectively. A diffuse reflectance white standé8pectralon®,SRS-50-010 Labsphere,
about reflectance 50%) was used to standardizetrapfom non-uniformities with two

images/,, ... andl;, . Two images of dark current were also recordediaditated as
||whtte white

Lo @nd I, . for parallel and cross polarization modes, respelti Reflectance

calibration was performed by comparing the acquiredges according to the following

formulas adapted from Bendowdgal. (2015):

I“raw B I||dark
R”corrected = I I I I (1)
( llwhice T J-White) —( llaare T J-aark)

IJ-raw B IJ-dark (2)

Lcorrected = ( )
I”white + IJ-white (I”dark + IJ-dark)

2.5 Spectral computations

According to Gobrechet al. (2015), the backscattered reflectafBgs) is comprised of

the calibrated paralleR{j) and cross image®( ), and therefore can be obtained by:
Rgs = R|| +R, (3)

At the same time, it should be noticed that thekbeattered reflectand®ys) is the sum of

the multi-scatteredR,s) and the weakly scatterel) parts of light:

Rps = Rys + Rgs 4)



184 Due to multiple scattering events, the linearly apiged incident light loses its initial
185 polarization state and oscillates randomly in ak fplanes. However, photons that have
186 undergone weakly scattering event retain theiiaihjpolarization status. Therefore, multi-
187  scattered light is isotropically depolarized antf baits intensity passes through the analyzer
188  when oriented parallel to the polarizer and theeptialf when oriented perpendicular, while
189  weakly scattered light retains initial polarizatistate and only passes through the analyzer

190  when oriented parallel to the polarizer. As a resul

1

R, = ERMS ()
1
R” = ERMS + RSS (6)

191 Based on the aforementioned relations, the wealditered Rss) reflectance can be obtained

192  from light polarization subtraction:
RSS = R” - RJ_ (7)

193  The detailed theoretical background and inferenoegss can be found in Gobreehtal.
194  (2015). Technically, the backscattered reflectancRz{) which has been included for
195 comparison in this work is similar as reflectana®nf the regular (or traditional)
196  hyperspectral imaging. The rationale behind this loa found in Appendix A. ThereforRgs
197 spectra will be used to represent the performamdeaditional HSI. It should be noted that

198  no spectral pre-processing methods were usedsmwibiik.

199 2.6 Digital microscopic images

200 Microscopic images can present visually differenaaong different leaves on a
201  microscale. The acquired information from microscamages will help interpret spectral

202  profiles and can be linked to model performancé=ré&fore a digital microscope (Olympus
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BX43) was used to acquire microscopic images of B3, R1 and R5. The images were
acquired with Transmitted Koehler Illluminator antOxmicroscope objective. Leaf samples
were first cut from the central of each leaf, sahiby polarized-HSI, and placed on the
regular glass slide on which a drop of water wasqdl. It was ensured that leaf specimen
was flat and contact well with the glass slide. &swater was removed with the paper towel.
Texture analysis of the microscopic images was gotedl by applying entropy filter in this

work.

2.7 Unsupervised multivariate analysis

Principal components analysis (PCA) is one of thestmwidely used unsupervised
multivariate analysis techniques for hyperspedireglge analysis. Normally, it is used as an
exploratory technique, because it enables the tesuof the many spectral dimensions to a
smaller number of principal component (PC) scorblwcapture the maximum variation in
the data. In this work, PCA was performed on Dat&séo investigate the image of the
infected sunflower leaf. The upper and lower swefof the leaf were both used, each
surface was scanned in two sequence to obtainlglaailad cross images. Two images in the
same mode (either parallel or cross) from upperlaner surfaces were first unfolded and
then concatenated to form a single augmented m&@A was applied on this augmented

matrix.

2.8 Discriminant analysis and model perfor mance evaluation

Discriminant models were constructed by usiraytipl least squares-discriminant
analysis (PLS-DA) between th& matrix containing the spectra for calibration, athe
correspondingd matrix containing the belonging identity for eadhss. It should be noted

that Dataset 1 uses mean spectrum of each ROI Whilaset 2 uses pixel spectrum to form
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X matrix. The performance of each developed modet waaluated by the correct
classification rate (CCR), which is expressed atioorto the following equation (Teye et al.
2013):

Ny
CCR = — x 100% (8)
N,

whereN; is the number of correctly classified samples dnd the total number of samples.
The optimal number of latent variables (L\Wsjs determined by classification error of cross
validation with 10-fold venetian blind$n addition, classification map was also generated
evaluate the performance of developed classifinattiodels. The tested hypercube was
unfolded such that the three-dimensional infornmatieas rearranged in two-dimensional
matrix where each row represents the spectrum &aah pixel and each column refers to a
certain wavelength variable. The obtained model agdied on this two-dimensional matrix
to classify each pixel into one category. The otatdiprediction matrix was transformed to

produce a classification map where each pixel wagyaed to a predicted category.

Results and discussion

3.1 Dataset 1: variety and growth stage discrimination

3.1.1 Microscopic image

Fig. 1la shows the microscopic images of B1, BB,and R5. Visually, B1 has a darker
shade of green than R1, indicating the color diffiee between B and R varieties. While the
young leaf (R5) has a lighter shade of green tharotd leaf (R1), the difference between B3
and B1 is less obvious. The entropy filter can cleseibtle variations in the local gray level
distribution and therefore it was used to extragture information at green channel as shown
in Fig. 1b. As shown, the intricate leaf veins @u#ar bundles) running across the surface of

the leaf are highlighted by the entropy filter. Wedlistribution patterns differ markedly
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between R5 and the rest of images (B1, B3 and Bltl)leaves (B1, B3 and R1) have well-
structured vein distribution, while young leaf (Rf#s not developed a fully functioning vein
system. Fig. 1c displays the histogram distributbintensity values in the green plane. All
histograms present a bimodal property with one gerkhe cells with chloroplasts and the
other for vein. It is observed that the B varieqs hower intensity for the peak of chloroplasts
than R variety, and young leaf has higher intendign the older leaves. This is partly
because young leaves have lower photosyntheticcitgpeompared to the matured leaves

(Olger et al. 2001).

3.1.2 Spectral feature analysis

The mean reflectance spectra of cross, pard@jelandRss were computed from each
calibration and test set of Dataset 1 and are éghiln Fig. 2. The mean spectra of B and R
variety are shown in Fig. 2a and Fig. 2b for calitin set and Test set 1, respectively. It is
first noticed that all the cross, parallel akgl have similar spectral characteristics of the
“green plants” (Wu et al. 2008, Zhao et al. 20I&)e reflectance is minimum in the blue
(around 450 nm) and red (around 670 nm) spectnadagits and shows a peak in the green
(around 550 nm) wavelength region, indicating tlestves absorb red and blue light and
reflect green light. It then demonstrates a shdgedrom 670 nm to 740 nm (the so-called
“red edge”) before reaching a plateau in the NIgae (Filella and Penuelas 1994). When
focusing on the spectral difference between thevareeties, it is observed that B variety has
slightly higher reflectance in the green regiomhleir absorption in the red and blue regions,
lower reflectance after 740 nm in the calibratiost ¢Fig. 2a). However, consistent
differences were not found in the Test set 1 (RAb). Rgs spectra also show a major
absorption peak around 670 nm (red), a minor alisorpeak at 530 nm (blue) and
reflectance peak at 550 nm (green). However, thbajlreflectance values 8fs have been

largely reduced compared R , R, and Rg;. This is expected because witfy only a small
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portion of the signal is selected: the weakly sratl one. Multi-scattered light vibrates in all
planes and half of its intensity passes throughattadyzer when oriented parallel to polarizer
and the other half when oriented perpendicular,wedikly scattered light retains its initial
polarization state and therefore only passes tlirdiag analyzer when positioned parallel to
polarizer, as described in Section 2.5. In thissedh, images obtained when the analyzer
was oriented perpendicular to polarizer shows titearced information from deeper layers
due to the rejection of superficial reflectance gneferentially selecting deeper penetrating
light, while the Rgs images preserve only the surface information aftetarization
subtraction. When compared 8 , R or Rgs spectra, theRss spectra exhibit greater
differences between the two varieties and moreistarey between the calibration and Test
set 1, with the B variety showing slightly higheflectance values both in the green and red

regions.

With respect to spectral difference between yourdy@d plant leaves (Fig. 2 (c) and (d)),
it can be noticed that cross reflectance of yowayés is lower than that of old ones in the
spectral domain of 400 to 700 nm both for calilmmatand Test set 1. This reflectance
difference is reduced for parallel aRgs spectra. On the other haritlg spectra demonstrate
an opposite trend with young leaves having higledlectance in this spectral range. The
difference in theRgs spectra is more pronounced compared to the othectra types,
indicating that a marked difference between surfaetures of young and old leaves due to
the combined effect of color and physical structaseobserved in the microscopic images in

Fig.1.

3.1.3 Classification modelling of variety discrimination

PLS-DA was applied to build classification modedsctassify B and R varieties and the

results are shown in Table 2. As shown, therehgher prediction accuracy in Test 2 than



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

Test 1. Comparing model performances, it can be test the model developed wi
spectra outperformed the others, while cross speesulted in the worst model performance
based on the two test datasets. In detail RtgePLS-DA model yielded CCR of 0.750 for
Test set 1 and 0.906 for Test set 2, while the ©@CtReR,; PLS-DA model were 0.667 and
0.844 for Test set 1 and 2, respectively. Thisltesiggests that the major spectral difference
between B and R variety is mostly due to the siugalfreflectance of leaves rather than

subsurface information.

Rps andRgs PLS-DA models were selected due to their bettafopmances and then
applied on each pixel of the images to produceiptied maps. To approximate how the
selected leaves would appear to humans, their R&&Bdw-color images were produced by
the combined s images at three wavelengths located at red (670 gmeen (550 nm), and
blue (460 nm) wavelengths. The pseudo-color imagesdisplayed in the Fig. 3 and the
corresponding prediction maps built fratps andRgs spectra are shown in Fig. 4a and b,
respectively. As shown, no obvious difference betwR and B varieties can be observed by
visual inspection of the pseudo-color images. Rirseto present a different vein structure
compared to the rest of leaves, which agrees Wwehnicroscopic images in Fig. 1. On top of
each prediction map, the predicted class for tid$ Was achieved by applying the model on
its mean spectrum. As seen, among these 8 obsmrsafli are correctly classified by using
both Rzs andRss PLS-DA models. It should be noted that all PLS-D¥%dels were built
with mean spectra and, to create the predictionsmejere applied to the pixel spectra.
Therefore, it is reasonable that there are mangriact predictions for pixels within one
sample.The accuracy of pixel-wise prediction might be ioy®d by spectral pre-processing
methods, such as smoothikr the B variety, a larger portion of pixels weredicted as B

instead of R variety. In addition, R4 and R5 préadit maps present mostly yellow pixels
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(predicted as R), which supports the result fromm Table 1 that prediction performance for

Test set 2 is better.

3.1.4 Classification modelling of age discrimination

PLS-DA modelling was also used to classify leava® itwo growth stages (Old and
Young) and the results are exhibited in Table 3m@ared to variety discrimination, it is
more accurate to distinguish between these two dg@f stages. Interestingly, the worst
performance was observed on the modetgfwith CCR of 0.750 for Test 1 and 0.854 for
Test 2, while the best performance was achievedidiygRzs spectra with high CCR of
1.000 for Test 1 and 0.970 for Test 2, implyingtthaly surface information is not sufficient
to accomplish this task. At the same time, it cannoted that the cross model overall
performs better than parallel, especially for trestTl where cross achieves CCR of 1.000
while parallel has CCR of 0.800. Contrarily, higiR (equivalent to 1.000) is found in the
Test 2 by using parallel spectra, while it is 0.947 cross. These results indicate that deep
information captured by cross spectra are crucialiscriminating between leaves of two
growth stages. However, superficial informationtoagd by parallel spectra also play a part
in explaining the difference between two growtlgst especially when B variety leaves are
included (Test 2). As a consequence, when usingdhgbined information from subsurface
and surface of leaRgs spectra (the sum of multi-scatter and weakly scadt light) produces

the best performance in classification.

Likewise, the best two models (cross dd) were employed to generate classification
maps of the 8 aforementioned observations and casely displayed in Fig. 4c and d. As
observed, all the 8 observations are correctlysdiasl by applying both PLS-DA models on

the mean spectra. Better performanc®gfis confirmed by prediction maps: R1-3 images
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have large areas wrongly predicted as Young clssg ihe cross model. It is also noted that

vein structure is highlighted in the prediction maja predicting vein pixels as the Old class.

3.2 Dataset 2: disease detection

3.2.1 Spectral feature analysis

Mean spectra of each class from healthy and contted leaves are shown in Fig. 5a and
b for calibration and test sets, respectively. €hame obvious reflectance value differences
between different types. Compared to healthy leacesss, parallel an@lzs spectra of
yellow spot demonstrate higher reflectance in thwble spectral range with a broad
reflectance peak observed around 550 to 600 nrmamdw absorption peak at 670 nm. The
PM infected leaves share similar spectral shagesakhy leaves, but with higher reflectance
which is probably due to the white color of pussul€he SLS infected leaves have distinctive
spectral difference with the rest of spectra: treeeg peak around 550 nm is barely observed
and the sharp shoulder of red edge is lost. Witpeet toRss spectra, yellow and SLS
infected leaves show no resolved absorption peakge healthy and PM infected leaves

demonstrate absorption peak at 670 nm.

3.2.2 Unsupervised PCA exploration

The upper and lower surfaces of a contaminated Veafe scanned and PCA was
performed on the cross aRds hypercubes as shown in Fig. 6. Likewise, the RGBugo-
color images were created by the combined cros®Rgnuinages at three wavelengths of red
(670 nm), green (550 nm), and blue (460 nm) andbéek in Fig. 6a. It should be noted that
only the pseudo-color image of the backscatteréidctance Rgs) hypercube will appear
similar to their natural color in the real worldhtrcross, parallel akgs hypercubes. As can
be seen, there’s some SLS infected dark spots dpyaton the upper surface of cross

hypercube, while these spots are less visuallyrebdeat the corresponding locations of the
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lower surface. In addition to SLS contaminationo tmajor PM infected areas covered with
whitish powdery mycelial growth can be well obsehan the upper surface. Interestingly,
PM and SLS contaminated regions are overlapped sothe part of SLS infected area
covered by PM (SLS+PMR,s images display superficial texture informatiortloé selected

leaf. PM spots can be also seen on the upper sudidt;; image, while SLS specks could
not be found. It can be seen from Fig. 6a thatufhyger and lower surfaces of a leaf differ in

color and texture as confirmed by cross &ggimages.

Fig. 6b shows the first three score images andrngadf cross imageShe first three PCs
have explained more than 99% of variarR€. 1 loading implies this PC describes the major
spectral difference caused by red-edge with mogatige loading at 680 nm and most
positive one at 750 nm. Loading values below 720anennegative and above positive. Based
on Fig. 5, it can be seen that healthy and PM tafkteaves exhibit a sharp increase after 680
nm, while SLS infected spectrum increases slowtyadidition, SLS cross spectrum have
higher reflectance values than healthy leaf spactvelow 720 nm, and become lower when
above 720 nm due to a much smaller rate of incré&asebined with loading values and the
mean cross spectra from Fig. 5, it is not diffidoltspeculate that SLS spots are supposed to
present very negative values on the PC1 score sn#dgeexpected, SLS infected regions are
shown on the upper surface of leaves and theirtitota correspond well with the RGB
pseudo-color images. In addition, it is noticed tBBS infected regions overlapped with PM
regions are also revealed. More importantly, SLS8tsmre also displayed on the lower
surface though many of these spots cannot be lysdatected in the pseudo-color image,
indicating that cross spectra reveal subsurfacernmdtion from deep layers. It is also
observed the shape of the major SLS area on theflehidrib on the upper surface is the
same as that on the lower surface. It can alsambeluded that SLS first occurs on the upper

surface due to bigger infected areas observedeRP@1 score image of upper surface. PC 2
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mainly presents the spectral difference between @ic®vered and covered by PM regions.
As shown in Fig. 5, PM cross spectrum is overghbr than SLS spectrum, the biggest two
differences are located around 550 and 720 nm.|@&ng values are all negative with two
valleys evidenced at 550 and 720 nm. Therefore, Gh&vered region should have high
positive values, while influenced by the top PMioegshould be negative. It is noted that
PC2 score images show the visible SLS infectecbresgon both upper and lower surfaces.
Nevertheless, PC3 is more complicated due to diffiecharacteristic properties shown on
score images. PC3 loading plot has the oppositeesas the PC2 loading, while PC3 loading
has both positive and negative values. The uppdac of PC3 highlights the whitish
powdery mycelial structure in negative values. Wt features highlighted in very positive
value on both upper and lower surfaces are notgktfarward to interpret. To further
confirm the aforementioned interpretation, thredh@llue equals to -0.5 was used to segment
all the SLS infected area on cross PC1 score in(si@gekpc,), threshold value of 0.25 to
identify the uncovered SLS infected area on PC2estoage ¥Maskg, s), and threshold value
of -0.1 to detect all the whitish powdery mycektlucture on PC3 score imagdaskpcs).
Mask of SLS infected region covered by PM (SLS+PMpuld have both ‘1’ iMaskpc,
andMaskpc3, While mask of PM infected region is supposeddweh’l’ in Maskpc; but ‘0’

in Maskpc;. All the created masks can be seen in Fig. 7.CaoslR;s mean spectra are also
shown in Fig. 7. The shapes of SLS and PM speg&traahdRgs) are similar to those from
the mean of calibration set in Fig. 5. When SL®adtéd region is covered by PM, the mean

spectra (SLS+PM) are in the middle between SLSRiMdpectra.

When it comes to PCA results B8f; hypercubes, PC1 score images highlight vein
structure in both upper and lower surfaces. As stensurface texture different between
the upper and lower surfaces: the upper surfacessenoother than the lower surface. PC2

and PC3 score images also show little differencevéen the contaminated and healthy
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region, yet the overall images are noisy due t@lpsubtractionFor a better comparison,
PCA scatter plots obtained froRq andRgs hypercubes are both shown in Fig. 8. It should
be noted that each dot from the plot corresponda poxel on the upper surface. Pixels
extracted from SLS infected, SLS infected regiorveted by PM (SLS+PM) and PM
infected masks are respectively highlighted in klanagenta and red colors. As indicated,
SLS and PM infected pixels form distinct clustensRy spectra whileRss spectra are unable
to obtain separable clusters, indicating that dagttrmation is vital for disease detection on

sunflower leaf.

3.2.3 Classification modelling of disease detection

Classification models were developed based on itted ppectra of the leaf upper surface
and their results are shown in Table 4. The besteinperformance is noticed by using cross
spectra with CCR of 0.963 both for cross validateord prediction, followed by usimg
spectra with CCR of 0.948 for cross validation #&n@l51 for prediction, respectiveliigs
spectra contribute to the worst model predictionitgo which probably due to the noisy
characteristics after pixel subtraction. It is alsmied that model built with parallel spectra
performs worse than that &f;¢ spectra. As described in the Section 2.5, crosetgm
equals to half of the multi-scattered light, andatial spectrum is the sum of half multi-
scattered and weakly-scattered light. As a consemgyfgs spectrum is the sum of multi-
scattered and weakly-scattered light, which mehasrifluence of weakly-scattered light is
reduced in th&gs spectrum compared to parallel spectrum. Skgemodel outperforms
parallel model, it can be indicated that subsurfaaéures are more important than superficial

information in detecting disease on sunflower lsave

19
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Classification maps were subsequently produceddiygucross model on the leaf upper
surface due to the best performance. RGB pseudw-oohges of 4 contaminated leaves are
generated on thRg, reflectance image and shownHim. 9. It should be noted that Leaf 1 is
the same leaf that was used in unsupervised PClration as shown in Fig. 6 and 7. PM
infected regions can be well observed as whiteheston each leaf, while SLS infected
region is only visually observed on Leaf 1 basedhenpseudo-color images. As can be seen,
slightly overestimation problem happens when it esno predicting SLS infected pixels:
SLS+PM pixels are mostly predicted as SLS classsamde nearby pixels without obvious
SLS symptom are wrongly predicted as SLS classs Thassification model succeeds in
predicting PM pixels in Leaf 2, 3 and 4 and thetighi powdery mycelial structures are well

presented. However, some pixels belong to veinsngelassified as PM class.

Conclusions

This work investigated the feasibility and usefgseof an original polarized light
hyperspectral imaging setup as a noninvasive tgalenfor sunflower leaf assessment. The
proposed polarized-HSI system has advantages cechpeth conventional HSI, enabling
collection and separation of backscattered reffeetanto subsurface and surface spectral
features. Specifically, cross polarization imagesents deep information due to the rejection
of superficial reflectance, while thigs spectrum, measuring weakly scattered light costain
mostly superficial information. Based on Datasetitlcan be concluded that superficial
information contributes more in discriminating betem B and R varieties. Both surface and
subsurface features are equally important in grastélge classification since the best model
was obtained from thRgzs spectra. With respect to the disease detectioDataset 2, the
classification model performance indicates thatssdiace information captured by cross
spectrum is the most desired feature in detectowgdery mildew and septoria leaf spot on

sunflower leaves. The combination of light polatiaa and hyperspectral imaging will
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facilitate the enhancement of the current applcegiin proximal remote sensing and many
other disciplines. Many real-world applications Ivide investigated by using this proposed

polarized-HSI in the future work.
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Table 1. Data partition for classification modelel®pment of Dataset 1.

Objective Calibration set Testset 1 Test set 2
Plant variety discriminatic B1-3 and R-3 FM B1-3 and R-3 SM R4-5 FM and SN
(6XxX3x%x4=72) (6 X1x4=24) (2x4x4=32)
Growth age discrimination R1-5 FM R1-5 SM B1-3 FM and SM
(5 %X 3 x4 =60) (5x1x4=20) (3 x4 x4 =48)

554  Note: FM: first measurement composed of B1-3, R1-518113x 3 locationx4 ROIs=96 images); SM: second measurement commidett3, R1-5 (8
555  plants<1 location<4 ROIs=32 images).
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Table2. Performance of PL-DA model to classify between two sunflower leafigtes
M ethods LV Calibration Crossvalidation Test 1 Test2
R, 10 0.94¢ 0.91¢ 0.661 0.84¢
R, 10 0.97:2 0.93( 0.70¢ 0.87¢
560
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Rgs 11 0.972 0.94: 0.70¢ 0.87¢

Rss 10 0.95¢ 0.91¢ 0.75( 0.90¢
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Table 3. Performance of PLS-DA model to classifineen two sunflower leaf growth stages.

M ethods LV Calibration Cross validation Test 1 Test2
R, 7 0.933 0.900 1.000 0.917
R 7 0.933 0.933 0.800 1.000
Rps 7 0.93¢ 0.93¢ 1.00( 0.97(
Rgg 8 0.93¢ 0.90(¢ 0.75(C 0.85¢

565
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Table 4. Performance of PLS-DA model to classifingen healthy leaf, yellow spots, SLS and PM irddgqtixels.

M ethods LV Calibration Cross validation Test
R, 6 0.963 0.963 0.963
R 6 0.913 0.921 0.930
Rps 6 0.948 0.948 0.951
Rss 7 0.665 0.656 0.656

567
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Fig. 1. Visualization of microscopic images of B3, R1 and R5 (a); their corresponding
texture images (b) and histograms (c) at greenraan

Fig. 2. Plot of mean spectra of two varietiesdalibrationset (a) and Test set 1 (b); of two
growth stages focalibrationset (c) and Test set 1 (d).

Fig. 3. RGB pseudo-color images of the ROI from34nd R1-5 categories.

Fig. 4. Prediction maps to classify between twaetsss by usingRzs (a) andRgs (b) spectra;
classify between two growth stages by using cro$(safidRgs (d) spectraOn top of each
prediction map, the label of each sample is plamedhe left side of the equal sign, the
predicted class on the mean spectrum is sit onrithe side of the equal sign. B class
includes B1-3, while R class includes R1-5; Oldsslancludes B1-3 and R1-3, while Young
class includes R4-5.

Fig. 5. Plot of mean spectra of heathy leaf, yelapots, PM and SLS infected pixels for
calibration (a) and test set (b).

Fig. 6. Visualization of RGB pseudo-color imagdesn SLS and PM infected sunflower leaf
(a); the obtained score images and loadings of B@&lucted on the hypercuberf (b)
andRgs (c). The explained variance by each PC is indicatederbracket on top of loading
plot.

Fig. 7. Obtained masks from thresholding PCA somiages and the plot of mean spectra of
SLS, SLS covered by PM (SLS+PM) and PM infectealgix

Fig. 8. PCA scatter plot obtained fratp andRg¢ spectra. Each dot corresponds to a pixel on
the upper surface of sunflower leaf. The explaigadance by each PC is indicated in the
bracket.

Fig. 9.Prediction map to classify SLS, PM, yellow spotd &ralthy leaf pixels by using
cross PLS-DA model.
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Fig. 1. Visualization of microscopic images of BB, R1 and R5 (a); their corresponding
texture images (b) and histograms at green chdajel
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Fig. 2. Plot of mean spectra of two varietiesdalibrationset (a) and Test set 1 (b); of two
growth stages foralibrationset (c) and Test set 1 (d).

30



2 Fig. 3. RGB pseudo-color images of the ROl from34nd R1-5 categories.
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Fig. 5. Plot of mean spectra of heathy leaf, yelapots, PM and SLS infected pixels for
calibration (a) and test set (b).

33



18

19
20
21
22

(a)

Rl - Upper surface

(b)

Upper surface - PC 1

Loading 1 (70%)

S50 600 650 ToO 7AQ
Wavelength (nm)

450 500

Upper surface - PC 1

Lower surface - PC 1

450 500 550 600 650 700 750
Wavelength (nm)

Fig. 6. Visualization of RGB pseudo-color imagesn SLS and PM infected sunflower leaf
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(a); the obtained score images and loadings of B@Aucted on the hypercuberf (b)
andRgs (c). The explained variance by each PC is indicatederbracket on top of loading

plot.
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Fig. 8. PCA scatter plot obtained fratp andRg spectra. Each dot corresponds to a pixel on
the upper surface of sunflower leaf. The explaigadance by each PC is indicated in the

bracket.
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Fig. 9 Prediction map to classify SLS, PM, yellow spatsl healthy leaf pixels by using

cross PLS-DA model.
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Appendix A

Light of arbitrary polarization can be representsdfour numbers known as the Stokes
parameterd, Q, U andV. | refers to the irradiance or the intensity of tiglt; the parameters
Q, U andV represent the extent of horizontal linear, 45 lilgar and circular polarization,
respectively [A1,A2].

In polarimetry, the Stokes vect@® of a light beam is constructed based on six flux
measurements obtained with different polarizatioralyzers in front of the detector as
follows:

I Iy + 1y

_10Q_ Iy —1Iy
S = = Al
U Lygse — 1450 A1

V IR_IL

Wherely =Ry, Iy = R, , Lisse, 1450, Iz @nd[jare the light intensities measured with
horizontal linear polarizer, a vertical linear patar, a +45° linear polarizer, -45° linear
polarizer, a right circular analyzer, and a leftcalar analyzer in front of detector,
respectively.

In traditional reflectance, we work with an arbiyrgolarization and we measured the first
elementl of the Stokes vector. And in accordance with treoty, this first element is equal

to the backscattered light which equal to the sdirhasizontal linear intensity and vertical

linear intensity.
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