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 9 

Abstract 10 

This study aims to investigate the potential of an original polarized hyperspectral imaging 11 

(HSI) setup in the spectral domain of 400-1000 nm for sunflower leaves in real-world. 12 

Dataset 1 includes hypercubes of sunflower leaves in two varieties with different life growth 13 

stages, while Dataset 2 is comprised of healthy and contaminated sunflower leaves suffering 14 

from powdery mildew (PM) and/or septoria leaf spot (SLS). Cross polarised (��	), parallel 15 

polarised (�||) reflectance signals, ���	(�||+��	) and ��� (�||-��	) spectra were obtained and 16 

used to develop partial least squares-discriminant analysis (PLS-DA) models. Surface 17 

information played an important role in separating two varieties of leaves due to the fact that 18 

the best model performance was achieved by using ��� mean spectra, while both surface and 19 

subsurface were equally important in classifying leaves between two major growth stages 20 

because model of ���  mean spectra outperformed other models. The best classification 21 
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model for disease detection was achieved by using pixel ��	  spectra with the correct 22 

classification rate (CCR) of 0.963 for both cross validation and prediction, meaning that 23 

subsurface spectral features were the most important to detect infected leaves. The resulting 24 

classification maps were also displayed to visualize the distribution of the infected regions on 25 

the leaf samples. The overall results obtained in this research showed that the developed 26 

polarized-HSI system coupled with multivariate analysis has considerable promise in 27 

agricultural real-world applications. 28 

Key words: Hyperspectral imaging; Polarized light spectroscopy; Visible and near infrared; 29 

Sunflower leaf; PLSR.  30 

 31 

Introduction 32 

Hyperspectral imaging (HSI) refers to a technique that can provide both spatial and 33 

spectral information by integrating two classical optical sensing technologies of imaging and 34 

spectroscopy into one system (Ferrari et al. 2013). It was mainly applied on remote sensing in 35 

the early 70's. In recent years, it started blooming in many different disciplines, e.g., 36 

pharmaceutical research (Gendrin et al. 2008), food science (Xu et al. 2015, Gowen et al. 37 

2007) and agriculture (Ravikanth et al. 2015). HSI technique acquires spectral data at each 38 

pixel of an image forming a three-dimensional array of data with two spatial dimensions and 39 

one spectral dimension. As a result, it allows not only to identify and/or quantify the chemical 40 

components of the analyzed sample, but also to map their spatial distribution. According to 41 

Beer-Lambert law, the concentration of an absorber is directly proportional to the sample 42 

absorbance, which is the basis of using spectroscopic signal. Nevertheless, the computed 43 

absorbance could be a bad approximation of the Beer-Lambert law absorbance when dealing 44 

with the turbid samples containing scattering centers. Highly scattering materials account for 45 

additive and multiplicative effects, producing non-linearity in the absorbance-concentration 46 
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relationship. When this phenomenon dominates the spectra formation, the chemically related 47 

absorbance can be severely overlapped by the physically related information (Gobrecht et al. 48 

2015). In order to reduce scattering effects, Bendoula et al. (2015) proposed to combine 49 

polarized light with near infrared (NIR) spectroscopy using the principle of polarization 50 

subtraction. The polarized light spectroscopy method was introduced to reduce the effects of 51 

multi-scattering on the measured signal based on the wave theory of light (Backman et al. 52 

1999). Polarized hyperspectral imaging system was proposed by Vasefi et al. (2014) as a new 53 

multimode dermoscope to accurately determine the spatial distribution of melanin and 54 

hemoglobin oxygenation in a skin lesion. As reported, this system separated the contribution 55 

of superficial melanin in order to quantify the deep melanin relative concentration so that 56 

oxy- and deoxy-hemoglobin distribution can be accurately assessed. Cross-polarization HSI 57 

in line scanning configuration was developed to remove glare from the acquired 58 

hyperspectral reflectance images of various agricultural products: aubergine, Granny Smith 59 

apple, and Royal Gala apple (Nguyen-Do-Trong et al. 2016). Their results showed that cross-60 

polarization enabled to improve the quality of the acquired hyperspectral reflectance images 61 

through reducing the unwanted variability due to specular reflection and improving the signal 62 

to noise ratios in the data to a factor from 1.1 to 3 times depending on the wavelength regions. 63 

More recently, Nkengne et al. (2018) tested a polarized hyperspectral imaging system for 64 

repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin and 65 

oxygen saturation. Except from the aforementioned researches, the potential of polarized-HSI 66 

system has not been fully explored in agriculture.   67 

HSI has gained tremendous importance in agriculture with different applications, such as 68 

plant disease (Bock et al. 2010, Mahlein et al. 2012), stress detection and yield estimation 69 

(Zarco-Tejada et al. 2012, Serrano et al. 2000) and leaf nitrogen content (Vigneau et al. 2011). 70 

When applied on the fresh plant leaves, HSI was mainly used to estimate nitrogen and 71 
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chlorophyll content, and detect different diseases (Jay et al. 2017, Yu et al. 2014). For 72 

chlorophyll content prediction, reflectance variables in the red edge region were much better 73 

indicators than most other indices (Xiaobo et al. 2011). The position of red edge defined as 74 

maximum slope in the vegetation reflectance spectra between the red and near infrared 75 

regions is considered as one of the best estimators for chlorophyll content because it is less 76 

sensitive to disturbing factors. Some published spectral indices provided relatively poor 77 

performance in predicting leaf chlorophyll content when applied across a wide range of 78 

species and plant functional types (Xue and Yang 2009). With respect to plant disease 79 

detection, Di Gennaro et al. (2016) attempted to discriminate healthy leaves from grapevine 80 

leaf stripe disease (Phaeomoniella chlamydospora) contaminated leaves with an unmanned 81 

aerial vehicles (UAVs) used to acquire very high spatial resolution data of vineyards fields. 82 

Even though their resulted showed that normalized difference vegetation index (NDVI) 83 

values were useful in discrimination, they claimed that such a method was only reliable if no 84 

other factors affected leaf chlorophyll content. Indeed, as different biotic and abiotic stresses 85 

may affect leaf chlorophyll content (e.g., nitrogen stress, pests, etc.), the NDVI is not able to 86 

discriminate a specific disease from other stresses. For spectral analysis, fresh leaf tissue 87 

creates more problems than dried, ground tissue. The cell structure of fresh plant material 88 

scatters light as it passes through multiple air and water interfaces with different refractive 89 

indices. These phenomena are likely to obscure the subtle absorption features caused by 90 

bending and stretching of chemical bonds.  91 

   In this context, we proposed a new modality that combines light polarization with 92 

hyperspectral imaging to illuminate sunflower leaves with both parallel and perpendicular 93 

polarization images of the remitted light recorded. The objective of this study was to assess 94 

the potential of different combination of images to characterize different leaf properties, i.e. 95 
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variety, growth stage and presence/absence of diseases. This polarized-HSI system was tested 96 

on two datasets of hyperspectral images of sunflower leaves collected on in vivo plants.  97 

 98 

Materials and methods 99 

2.1 Dataset 1: variety and growth stage discrimination 100 

Leaves of sunflower (France) were collected for experiment. All investigated plants were 101 

grown in greenhouses of Irstea, France. The grow chamber is composed of multispectral 102 

lighting controlled by the Herbro automaton (GreenHouseKeeper entreprise). Herbro PLC 103 

measures the temperature and humidity every 30 seconds, and takes care of watering the 104 

sunflower plants every 48 hours. In terms of lighting, the Herbro PLC manages the light 105 

spectrum emitted by the four lamps in a time interval. The lamps are equipped with 5 106 

channels corresponding to 5 wavelengths (450 nm, 560 nm, 660 nm, 730 nm and 6000 ° k). 107 

    In this work, two different genotypes labelled as B and R were used. For B variety, plants 108 

of 8, 7 and 6 weeks old were recorded as B1, B2, B3, while R variety plants of 8, 7, 6, 5 and 109 

4 weeks old were labelled as R1, R2, R3, R4 and R5. Three leaves were collected at the upper, 110 

middle and lower parts of each plant. On each leaf, four regions of interest (ROIs) were 111 

selected and cut: one close to petiole, one close to tip, two in the blade region located at each 112 

side of the midrib. As a result, 8 × 3 × 4 = 96  images were acquired in the first 113 

measurement and parts of these were used as the calibration set for variety and growth stage 114 

discrimination. To form a test set, one more leaf were collected at the middle of each plant 115 

and four ROIs were also selected according to the aforementioned criterion, which makes 116 

8 × 1 × 4 = 32 hypercubes in the second measurement. For the purpose of classifying plant 117 

variety, calibration set was obtained by B1-3 and R1-3 images in the first measurement 118 

excluding R4 and R5 images in order to avoid imbalanced class distribution. Test set 1 119 
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includes only B1-3 and R1-3 images in the second measurement and Test set 2 includes all 120 

the R4 and R5 images from the first and second measurements. As a result, there are 6 × 3 ×121 

4 = 72 observations for the calibration set, 6 × 1 × 4 = 24 for the Test set 1 and 2 × 4 ×122 

4 = 32 for the Test set 2. With respect to identify growing stage, it was noticed that B1-3 and 123 

R1-3 have similar height, around 100 cm, while R4-5 were much shorter, around 80 cm. 124 

Therefore, B1-3 and R1-3 were recognized as the same class: Old, while R4 and R5 as the 125 

other class: Young. To make a balanced dataset, only R1-5 from the first measurement were 126 

used as calibration set and  R1-5 from the second measurement generated Test set 1, while all 127 

the B1-3 formed Test set 2, which makes 5 × 3 × 4 = 60 observations for the calibration set, 128 

5 × 1 × 4 = 20 for the Test set 1 and 3 × 4 × 4 = 48 for the Test set 2. The data partition 129 

details are summarized in Table 1.  130 

2.2 Dataset 2: disease detection 131 

Powdery mildew (PM) is a fungal disease that affects a wide range of plants but is an 132 

emerging disease in sunflowers. Contaminated sunflower leaves exhibited symptoms of white 133 

to grey powdery patches. Severely infected areas lose luster, curls, turn yellow and may dry 134 

up. Septoria leaf spot (SLS) is another disease affecting sunflower leaves with black necrosis 135 

and yellow spots, that can be observed at all stages of plant growth. Black or brown streaks 136 

are usually noticed in a typical SLS affected plant. In this work, 20 contaminated regions 137 

were found and cut from leaves in the B and R varieties during different growth stage from 4-138 

8 weeks. Yellow or brown spots were found both on the healthy and diseased leaves. In order 139 

to discriminate yellow area from the infected and healthy areas, pixels from yellow area were 140 

also extracted and form a Yellow category. To test the developed polarized-HSI system, 1875 141 

pixel spectra of healthy leaf, 625 of yellow spot, 1188 of PM and 695 SLS were extracted, 142 

among which 67% were randomly selected as calibration set and the remaining as the test set.  143 
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2.3 Polarized-HSI setup 144 

Spectral images of the prepared leaf samples were acquired in the reflectance mode by 145 

using a laboratory-based line scanning hyperspectral imaging system coupled with light 146 

polarization. The developed polarized-HSI system was composed of a light source, an 147 

illumination optical setup, a translation rail, and a detection system. A Xenon arc lamp 148 

(300W, Newport 6508, Newport Corporation, California, USA) was mounted in lamp 149 

housing with an F/1 aspheric condenser (Newport 67005, Newport Corporation, California, 150 

USA). The optical illumination system was composed of a linear grid polarizer (Thorlabs 151 

WP12L-UB, Thorlabs, INC., Newton, USA), a plano-convex cylindrical lens (THORLABS 152 

LJ1810L2, Thorlabs, INC., Newton, USA) and a dielectric mirror (Thorlabs BB2-E02, 153 

Thorlabs, INC., Newton, USA) to shape the incident beam as a vertical line (typically 10 cm 154 

x 4 cm) on the sample. The sample was placed on a translation rail, synchronized with the 155 

acquisition software which can record images when sample was scanned under the 156 

hyperspectral camera (NEO Hyspex VNIR-1600 with 30 cm-objective, Norsk Elektro Optikk 157 

AS, Skedsmokorest, Norway). A part of the light backscattered by the sample reached a 158 

second linear grid polarizer (Thorlabs WP25M-UB, Thorlabs, INC., Newton, USA), also 159 

known as analyzer, mounted in a rotation mount in front of the hyperspectral camera. The 160 

rotation of this polarizer allowed choosing the polarization state of the acquired signal: either 161 

parallel to the incident polarization or perpendicular to it. Spectral data were acquired in the 162 

400-1000 nm wavelength range at 3.6 nm intervals.  163 

2.4. Reflectance calibration 164 

   Due to the imperfections of some components (e.g., light source, lens, spectrograph, and 165 

camera) and different measurement environments, the acquired raw hyperspectral images 166 

generally contain noises and artifacts. Many factors, such as non-uniform illumination, pixel-167 
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to-pixel sensitivity variations of the detector, and dust on the lens, will contribute to different 168 

image artifacts, leading to the raw images not being suitable for quantitative analysis. 169 

Therefore, proper calibration procedure is necessary. For each sample, two hypercubes were 170 

acquired with the parallel and cross polarization modes where analyzer was set parallel (�||���) 171 

and perpendicular (����� ) with respect to the polarization of the illumination light, 172 

respectively. A diffuse reflectance white standard (Spectralon®, SRS-50-010, Labsphere, 173 

about reflectance 50%) was used to standardize spectra from non-uniformities with two 174 

images, �||����� and	�������. Two images of dark current were also recorded and indicated as 175 

�||����  and	������ for parallel and cross polarization modes, respectively. Reflectance 176 

calibration was performed by comparing the acquired images according to the following 177 

formulas adapted from Bendoula et al. (2015): 178 

�||��������� = �||��� − �||���� �||����� + �������" − (�||���� + ������)																															(1) 
����������� = ����� − ������ �||����� + �������" − (�||���� + ������)																															(2) 

2.5 Spectral computations 179 

According to Gobrecht et al. (2015), the backscattered reflectance (���) is comprised of 180 

the calibrated parallel (�||) and cross images (��	), and therefore can be obtained by:  181 

��� = �|| + ��																																																																																														(3) 
At the same time, it should be noticed that the backscattered reflectance (���) is the sum of 182 

the multi-scattered (�%�) and the weakly scattered (���) parts of light: 183 

��� = �%� + ���																																																																																										(4) 
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Due to multiple scattering events, the linearly polarized incident light loses its initial 184 

polarization state and oscillates randomly in all the planes. However, photons that have 185 

undergone weakly scattering event retain their initial polarization status. Therefore, multi-186 

scattered light is isotropically depolarized and half of its intensity passes through the analyzer 187 

when oriented parallel to the polarizer and the other half when oriented perpendicular, while 188 

weakly scattered light retains initial polarization state and only passes through the analyzer 189 

when oriented parallel to the polarizer. As a result, 190 

�� = 12�%�																																																																																								(5) 
�|| = 12�%� + ���																																																																													(6) 

Based on the aforementioned relations, the weakly scattered (���) reflectance can be obtained 191 

from light polarization subtraction: 192 

��� = �|| − ��																																																																																		(7) 
The detailed theoretical background and inference process can be found in Gobrecht et al. 193 

(2015). Technically, the backscattered reflectance (���) which has been included for 194 

comparison in this work is similar as reflectance from the regular (or traditional) 195 

hyperspectral imaging. The rationale behind this can be found in Appendix A. Therefore, ��� 196 

spectra will be used to represent the performance of traditional HSI. It should be noted that 197 

no spectral pre-processing methods were used in this work.  198 

2.6 Digital microscopic images 199 

   Microscopic images can present visually differences among different leaves on a 200 

microscale. The acquired information from microscopic images will help interpret spectral 201 

profiles and can be linked to model performances. Therefore, a digital microscope (Olympus 202 
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BX43) was used to acquire microscopic images of B1, B3, R1 and R5. The images were 203 

acquired with Transmitted Koehler Illuminator and x10 microscope objective. Leaf samples 204 

were first cut from the central of each leaf, scanned by polarized-HSI, and placed on the 205 

regular glass slide on which a drop of water was placed. It was ensured that leaf specimen 206 

was flat and contact well with the glass slide. Excess water was removed with the paper towel. 207 

Texture analysis of the microscopic images was conducted by applying entropy filter in this 208 

work.  209 

2.7 Unsupervised multivariate analysis 210 

Principal components analysis (PCA) is one of the most widely used unsupervised 211 

multivariate analysis techniques for hyperspectral image analysis. Normally, it is used as an 212 

exploratory technique, because it enables the reduction of the many spectral dimensions to a 213 

smaller number of principal component (PC) scores which capture the maximum variation in 214 

the data. In this work, PCA was performed on Dataset 2 to investigate the image of the 215 

infected sunflower leaf. The upper and lower surfaces of the leaf were both used, each 216 

surface was scanned in two sequence to obtain parallel and cross images. Two images in the 217 

same mode (either parallel or cross) from upper and lower surfaces were first unfolded and 218 

then concatenated to form a single augmented matrix. PCA was applied on this augmented 219 

matrix.  220 

2.8 Discriminant analysis and model performance evaluation 221 

    Discriminant models were constructed by using partial least squares-discriminant 222 

analysis (PLS-DA) between the &  matrix containing the spectra for calibration, and the 223 

corresponding ' matrix containing the belonging identity for each class. It should be noted 224 

that Dataset 1 uses mean spectrum of each ROI while Dataset 2 uses pixel spectrum to form 225 
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&  matrix. The performance of each developed model was evaluated by the correct 226 

classification rate (CCR), which is expressed according to the following equation (Teye et al. 227 

2013): 228 

CCR = *+*, × 100%																																																																																																								(8) 
where *+ is the number of correctly classified samples and *, is the total number of samples. 229 

The optimal number of latent variables (LVs) was determined by classification error of cross 230 

validation with 10-fold venetian blinds. In addition, classification map was also generated to 231 

evaluate the performance of developed classification models. The tested hypercube was 232 

unfolded such that the three-dimensional information was rearranged in two-dimensional 233 

matrix where each row represents the spectrum from each pixel and each column refers to a 234 

certain wavelength variable. The obtained model was applied on this two-dimensional matrix 235 

to classify each pixel into one category. The obtained prediction matrix was transformed to 236 

produce a classification map where each pixel was assigned to a predicted category.  237 

Results and discussion 238 

3.1 Dataset 1: variety and growth stage discrimination 239 

3.1.1 Microscopic image 240 

    Fig. 1a shows the microscopic images of B1, B3, R1 and R5. Visually, B1 has a darker 241 

shade of green than R1, indicating the color difference between B and R varieties. While the 242 

young leaf (R5) has a lighter shade of green than the old leaf (R1), the difference between B3 243 

and B1 is less obvious. The entropy filter can detect subtle variations in the local gray level 244 

distribution and therefore it was used to extract texture information at green channel as shown 245 

in Fig. 1b. As shown, the intricate leaf veins (vascular bundles) running across the surface of 246 

the leaf are highlighted by the entropy filter. Vein distribution patterns differ markedly 247 
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between R5 and the rest of images (B1, B3 and R1). Old leaves (B1, B3 and R1) have well-248 

structured vein distribution, while young leaf (R5) has not developed a fully functioning vein 249 

system. Fig. 1c displays the histogram distribution of intensity values in the green plane. All 250 

histograms present a bimodal property with one peak for the cells with chloroplasts and the 251 

other for vein. It is observed that the B variety has lower intensity for the peak of chloroplasts 252 

than R variety, and young leaf has higher intensity than the older leaves. This is partly 253 

because young leaves have lower photosynthetic capacity compared to the matured leaves 254 

(Ölçer et al. 2001).  255 

3.1.2 Spectral feature analysis 256 

The mean reflectance spectra of cross, parallel,	���  and ���  were computed from each 257 

calibration and test set of Dataset 1 and are exhibited in Fig. 2. The mean spectra of B and R 258 

variety are shown in Fig. 2a and Fig. 2b for calibration set and Test set 1, respectively. It is 259 

first noticed that all the cross, parallel and ��� have similar spectral characteristics of the 260 

“green plants” (Wu et al. 2008, Zhao et al. 2016). The reflectance is minimum in the blue 261 

(around 450 nm) and red (around 670 nm) spectral domains and shows a peak in the green 262 

(around 550 nm) wavelength region, indicating that leaves absorb red and blue light and 263 

reflect green light. It then demonstrates a sharp edge from 670 nm to 740 nm (the so-called 264 

“red edge”) before reaching a plateau in the NIR region (Filella and Penuelas 1994). When 265 

focusing on the spectral difference between the two varieties, it is observed that B variety has 266 

slightly higher reflectance in the green region, higher absorption in the red and blue regions, 267 

lower reflectance after 740 nm in the calibration set (Fig. 2a). However, consistent 268 

differences were not found in the Test set 1 (Fig. 2b). ���  spectra also show a major 269 

absorption peak around 670 nm (red), a minor absorption peak at 530 nm (blue) and 270 

reflectance peak at 550 nm (green). However, the global reflectance values of ��� have been 271 

largely reduced compared to ��	, �|| and 	���. This is expected because with ��� only a small 272 
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portion of the signal is selected: the weakly scattered one. Multi-scattered light vibrates in all 273 

planes and half of its intensity passes through the analyzer when oriented parallel to polarizer 274 

and the other half when oriented perpendicular, yet weakly scattered light retains its initial 275 

polarization state and therefore only passes through the analyzer when positioned parallel to 276 

polarizer, as described in Section 2.5. In this sense, ��	 images obtained when the analyzer 277 

was oriented perpendicular to polarizer shows the enhanced information from deeper layers 278 

due to the rejection of superficial reflectance and preferentially selecting deeper penetrating 279 

light, while the ���  images preserve only the surface information after polarization 280 

subtraction. When compared to ��	 , �||  or ���  spectra, the ���  spectra exhibit greater 281 

differences between the two varieties and more consistency between the calibration and Test 282 

set 1, with the B variety showing slightly higher reflectance values both in the green and red 283 

regions.  284 

With respect to spectral difference between young and old plant leaves (Fig. 2 (c) and (d)), 285 

it can be noticed that cross reflectance of young leaves is lower than that of old ones in the 286 

spectral domain of 400 to 700 nm both for calibration and Test set 1. This reflectance 287 

difference is reduced for parallel and ��� spectra. On the other hand, ��� spectra demonstrate 288 

an opposite trend with young leaves having higher reflectance in this spectral range. The 289 

difference in the ���  spectra is more pronounced compared to the other spectra types, 290 

indicating that a marked difference between surface features of young and old leaves due to 291 

the combined effect of color and physical structure as observed in the microscopic images in 292 

Fig.1.  293 

3.1.3 Classification modelling of variety discrimination 294 

PLS-DA was applied to build classification models to classify B and R varieties and the 295 

results are shown in Table 2. As shown, there is a higher prediction accuracy in Test 2 than 296 
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Test 1. Comparing model performances, it can be seen that the model developed with ��� 297 

spectra outperformed the others, while cross spectra resulted in the worst model performance 298 

based on the two test datasets. In detail, the ��� PLS-DA model yielded CCR of 0.750 for 299 

Test set 1 and 0.906 for Test set 2, while the CCR of the ��	 PLS-DA model were 0.667 and 300 

0.844 for Test set 1 and 2, respectively. This result suggests that the major spectral difference 301 

between B and R variety is mostly due to the superficial reflectance of leaves rather than 302 

subsurface information.  303 

���  and ���  PLS-DA models were selected due to their better performances and then 304 

applied on each pixel of the images to produce prediction maps. To approximate how the 305 

selected leaves would appear to humans, their RGB pseudo-color images were produced by 306 

the combined ��� images at three wavelengths located at red (670 nm), green (550 nm), and 307 

blue (460 nm) wavelengths. The pseudo-color images are displayed in the Fig. 3 and the 308 

corresponding prediction maps built from ��� and ��� spectra are shown in Fig. 4a and b, 309 

respectively. As shown, no obvious difference between R and B varieties can be observed by 310 

visual inspection of the pseudo-color images. R5 seems to present a different vein structure 311 

compared to the rest of leaves, which agrees with the microscopic images in Fig. 1. On top of 312 

each prediction map, the predicted class for this ROI was achieved by applying the model on 313 

its mean spectrum. As seen, among these 8 observations, 7 are correctly classified by using 314 

both ��� and ��� PLS-DA models. It should be noted that all PLS-DA models were built 315 

with mean spectra and, to create the prediction maps, were applied to the pixel spectra. 316 

Therefore, it is reasonable that there are many incorrect predictions for pixels within one 317 

sample. The accuracy of pixel-wise prediction might be improved by spectral pre-processing 318 

methods, such as smoothing. For the B variety, a larger portion of pixels were predicted as B 319 

instead of R variety. In addition, R4 and R5 prediction maps present mostly yellow pixels 320 
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(predicted as R), which supports the result from the Table 1 that prediction performance for 321 

Test set 2 is better.  322 

3.1.4 Classification modelling of age discrimination 323 

PLS-DA modelling was also used to classify leaves into two growth stages (Old and 324 

Young) and the results are exhibited in Table 3. Compared to variety discrimination, it is 325 

more accurate to distinguish between these two leaf age stages. Interestingly, the worst 326 

performance was observed on the model of ��� with CCR of 0.750 for Test 1 and 0.854 for 327 

Test 2, while the best performance was achieved by using ��� spectra with high CCR of 328 

1.000 for Test 1 and 0.970 for Test 2, implying that only surface information is not sufficient 329 

to accomplish this task. At the same time, it can be noted that the cross model overall 330 

performs better than parallel, especially for the Test 1 where cross achieves CCR of 1.000 331 

while parallel has CCR of 0.800. Contrarily, higher CCR (equivalent to 1.000) is found in the 332 

Test 2 by using parallel spectra, while it is 0.917 for cross. These results indicate that deep 333 

information captured by cross spectra are crucial in discriminating between leaves of two 334 

growth stages. However, superficial information captured by parallel spectra also play a part 335 

in explaining the difference between two growth stages, especially when B variety leaves are 336 

included (Test 2). As a consequence, when using the combined information from subsurface 337 

and surface of leaf, ��� spectra (the sum of multi-scatter and weakly scattered light) produces 338 

the best performance in classification.  339 

Likewise, the best two models (cross and ���) were employed to generate classification 340 

maps of the 8 aforementioned observations and respectively displayed in Fig. 4c and d. As 341 

observed, all the 8 observations are correctly classified by applying both PLS-DA models on 342 

the mean spectra. Better performance of ��� is confirmed by prediction maps: R1-3 images 343 



16 

 

have large areas wrongly predicted as Young class using the cross model. It is also noted that 344 

vein structure is highlighted in the prediction maps via predicting vein pixels as the Old class.  345 

3.2 Dataset 2: disease detection 346 

3.2.1 Spectral feature analysis 347 

Mean spectra of each class from healthy and contaminated leaves are shown in Fig. 5a and 348 

b for calibration and test sets, respectively. There are obvious reflectance value differences 349 

between different types. Compared to healthy leaves, cross, parallel and ���  spectra of 350 

yellow spot demonstrate higher reflectance in the visible spectral range with a broad 351 

reflectance peak observed around 550 to 600 nm and narrow absorption peak at 670 nm. The 352 

PM infected leaves share similar spectral shape as healthy leaves, but with higher reflectance 353 

which is probably due to the white color of pustules. The SLS infected leaves have distinctive 354 

spectral difference with the rest of spectra: the green peak around 550 nm is barely observed 355 

and the sharp shoulder of red edge is lost. With respect to ���  spectra, yellow and SLS 356 

infected leaves show no resolved absorption peaks, while healthy and PM infected leaves 357 

demonstrate absorption peak at 670 nm.  358 

3.2.2 Unsupervised PCA exploration 359 

The upper and lower surfaces of a contaminated leaf were scanned and PCA was 360 

performed on the cross and ��� hypercubes as shown in Fig. 6. Likewise, the RGB pseudo-361 

color images were created by the combined cross and ��� images at three wavelengths of red 362 

(670 nm), green (550 nm), and blue (460 nm) and exhibited in Fig. 6a. It should be noted that 363 

only the pseudo-color image of the backscattered reflectance (���) hypercube will appear 364 

similar to their natural color in the real world, not cross, parallel or ��� hypercubes. As can 365 

be seen, there’s some SLS infected dark spots spread out on the upper surface of cross 366 

hypercube, while these spots are less visually observed at the corresponding locations of the 367 
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lower surface. In addition to SLS contamination, two major PM infected areas covered with 368 

whitish powdery mycelial growth can be well observed on the upper surface. Interestingly, 369 

PM and SLS contaminated regions are overlapped with some part of SLS infected area 370 

covered by PM (SLS+PM). ��� images display superficial texture information of the selected 371 

leaf. PM spots can be also seen on the upper surface of ��� image, while SLS specks could 372 

not be found. It can be seen from Fig. 6a that the upper and lower surfaces of a leaf differ in 373 

color and texture as confirmed by cross and ��� images.  374 

Fig. 6b shows the first three score images and loadings of cross images. The first three PCs 375 

have explained more than 99% of variance. PC 1 loading implies this PC describes the major 376 

spectral difference caused by red-edge with most negative loading at 680 nm and most 377 

positive one at 750 nm. Loading values below 720 nm are negative and above positive. Based 378 

on Fig. 5, it can be seen that healthy and PM infected leaves exhibit a sharp increase after 680 379 

nm, while SLS infected spectrum increases slowly. In addition, SLS cross spectrum have 380 

higher reflectance values than healthy leaf spectrum below 720 nm, and become lower when 381 

above 720 nm due to a much smaller rate of increase. Combined with loading values and the 382 

mean cross spectra from Fig. 5, it is not difficult to speculate that SLS spots are supposed to 383 

present very negative values on the PC1 score images. As expected, SLS infected regions are 384 

shown on the upper surface of leaves and their locations correspond well with the RGB 385 

pseudo-color images. In addition, it is noticed that SLS infected regions overlapped with PM 386 

regions are also revealed. More importantly, SLS spots are also displayed on the lower 387 

surface though many of these spots cannot be visually detected in the pseudo-color image, 388 

indicating that cross spectra reveal subsurface information from deep layers. It is also 389 

observed the shape of the major SLS area on the left of midrib on the upper surface is the 390 

same as that on the lower surface. It can also be concluded that SLS first occurs on the upper 391 

surface due to bigger infected areas observed on the PC1 score image of upper surface. PC 2 392 
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mainly presents the spectral difference between SLS uncovered and covered by PM regions. 393 

As shown in Fig. 5, PM cross spectrum is overall higher than SLS spectrum, the biggest two 394 

differences are located around 550 and 720 nm. PC2 loading values are all negative with two 395 

valleys evidenced at 550 and 720 nm. Therefore, SLS uncovered region should have high 396 

positive values, while influenced by the top PM region should be negative. It is noted that 397 

PC2 score images show the visible SLS infected regions on both upper and lower surfaces. 398 

Nevertheless, PC3 is more complicated due to different characteristic properties shown on 399 

score images. PC3 loading plot has the opposite shape as the PC2 loading, while PC3 loading 400 

has both positive and negative values. The upper surface of PC3 highlights the whitish 401 

powdery mycelial structure in negative values. Yet the features highlighted in very positive 402 

value on both upper and lower surfaces are not straightforward to interpret. To further 403 

confirm the aforementioned interpretation, threshold value equals to -0.5 was used to segment 404 

all the SLS infected area on cross PC1 score image (Mask23+), threshold value of 0.25 to 405 

identify the uncovered SLS infected area on PC2 score image (Mask454), and threshold value 406 

of -0.1 to detect all the whitish powdery mycelial structure on PC3 score image (Mask236). 407 

Mask of SLS infected region covered by PM (SLS+PM) should have both ‘1’ in Mask23+ 408 

and Mask236, while mask of PM infected region is supposed to have ‘1’ in Mask236 but ‘0’ 409 

in Mask23+. All the created masks can be seen in Fig. 7. Cross and ��� mean spectra are also 410 

shown in Fig. 7. The shapes of SLS and PM spectra (��	 and ���) are similar to those from 411 

the mean of calibration set in Fig. 5. When SLS infected region is covered by PM, the mean 412 

spectra (SLS+PM) are in the middle between SLS and PM spectra.  413 

When it comes to PCA results of ���  hypercubes, PC1 score images highlight vein 414 

structure in both upper and lower surfaces. As seen, the surface texture is different between 415 

the upper and lower surfaces: the upper surface seems smoother than the lower surface. PC2 416 

and PC3 score images also show little difference between the contaminated and healthy 417 
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region, yet the overall images are noisy due to pixel subtraction. For a better comparison, 418 

PCA scatter plots obtained from ��	 and ��� hypercubes are both shown in Fig. 8. It should 419 

be noted that each dot from the plot corresponds to a pixel on the upper surface. Pixels 420 

extracted from SLS infected, SLS infected region covered by PM (SLS+PM) and PM 421 

infected masks are respectively highlighted in black, magenta and red colors. As indicated, 422 

SLS and PM infected pixels form distinct clusters on ��	 spectra while ��� spectra are unable 423 

to obtain separable clusters, indicating that depth information is vital for disease detection on 424 

sunflower leaf.  425 

 426 

3.2.3 Classification modelling of disease detection 427 

Classification models were developed based on the pixel spectra of the leaf upper surface 428 

and their results are shown in Table 4. The best model performance is noticed by using cross 429 

spectra with CCR of 0.963 both for cross validation and prediction, followed by using ��� 430 

spectra with CCR of 0.948 for cross validation and 0.951 for prediction, respectively. ��� 431 

spectra contribute to the worst model prediction ability, which probably due to the noisy 432 

characteristics after pixel subtraction. It is also noted that model built with parallel spectra 433 

performs worse than that of ���  spectra. As described in the Section 2.5, cross spectrum 434 

equals to half of the multi-scattered light, and parallel spectrum is the sum of half multi-435 

scattered and weakly-scattered light. As a consequence, ��� spectrum is the sum of multi-436 

scattered and weakly-scattered light, which means the influence of weakly-scattered light is 437 

reduced in the ��� spectrum compared to parallel spectrum. Since ���  model outperforms 438 

parallel model, it can be indicated that subsurface features are more important than superficial 439 

information in detecting disease on sunflower leaves. 440 
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Classification maps were subsequently produced by using cross model on the leaf upper 441 

surface due to the best performance. RGB pseudo-color images of 4 contaminated leaves are 442 

generated on the ��� reflectance image and shown in Fig. 9. It should be noted that Leaf 1 is 443 

the same leaf that was used in unsupervised PCA exploration as shown in Fig. 6 and 7. PM 444 

infected regions can be well observed as white patches on each leaf, while SLS infected 445 

region is only visually observed on Leaf 1 based on the pseudo-color images. As can be seen, 446 

slightly overestimation problem happens when it comes to predicting SLS infected pixels: 447 

SLS+PM pixels are mostly predicted as SLS class and some nearby pixels without obvious 448 

SLS symptom are wrongly predicted as SLS class. This classification model succeeds in 449 

predicting PM pixels in Leaf 2, 3 and 4 and the whitish powdery mycelial structures are well 450 

presented. However, some pixels belong to veins are misclassified as PM class.  451 

Conclusions 452 

This work investigated the feasibility and usefulness of an original polarized light 453 

hyperspectral imaging setup as a noninvasive technique for sunflower leaf assessment. The 454 

proposed polarized-HSI system has advantages compared with conventional HSI, enabling 455 

collection and separation of backscattered reflectance into subsurface and surface spectral 456 

features. Specifically, cross polarization image presents deep information due to the rejection 457 

of superficial reflectance, while the ��� spectrum, measuring weakly scattered light contains 458 

mostly superficial information. Based on Dataset 1, it can be concluded that superficial 459 

information contributes more in discriminating between B and R varieties. Both surface and 460 

subsurface features are equally important in growth stage classification since the best model 461 

was obtained from the ��� spectra. With respect to the disease detection on Dataset 2, the 462 

classification model performance indicates that subsurface information captured by cross 463 

spectrum is the most desired feature in detecting powdery mildew and septoria leaf spot on 464 

sunflower leaves. The combination of light polarization and hyperspectral imaging will 465 
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facilitate the enhancement of the current applications in proximal remote sensing and many 466 

other disciplines. Many real-world applications will be investigated by using this proposed 467 

polarized-HSI in the future work.   468 
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 553 

Note: FM: first measurement composed of B1-3, R1-5 (8 plants×3 locations×4 ROIs=96 images); SM: second measurement composed of B1-3, R1-5 (8 554 

plants×1 location×4 ROIs=32 images). 555 

 556 

  557 

Table 1. Data partition for classification model development of Dataset 1.  

Objective Calibration set Test set 1 Test set 2 

Plant variety discrimination B1-3 and R1-3 FM 
(6 × 3 × 4 = 72) 

B1-3 and R1-3 SM 
(6 × 1 × 4 = 24) 

R4-5 FM and SM 
(2 × 4 × 4 = 32) 

Growth age discrimination R1-5 FM 
(5 × 3 × 4 = 60) 

R1-5 SM 
(5 × 1 × 4 = 20) 

B1-3 FM and SM 
(3 × 4 × 4 = 48) 



24 

 

 558 

 559 

 560 

Table 2. Performance of PLS-DA model to classify between two sunflower leaf varieties. 

Methods LV Calibration Cross validation Test 1 Test2 

��	 10 0.944 0.914 0.667 0.844 

�|| 10 0.972 0.930 0.708 0.875 
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  562 

R74 11 0.972 0.943 0.708 0.875 

R44 10 0.958 0.914 0.750 0.906 
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 564 

  565 

Table 3. Performance of PLS-DA model to classify between two sunflower leaf growth stages. 

Methods LV Calibration Cross validation Test 1 Test2 

��	 7 0.933 0.900 1.000 0.917 

�|| 7 0.933 0.933 0.800 1.000 

R74 7 0.933 0.933 1.000 0.970 

R44 8 0.933 0.900 0.750 0.854 
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 566 

Table 4. Performance of PLS-DA model to classify between healthy leaf, yellow spots, SLS and PM infected pixels. 

Methods LV Calibration Cross validation Test 

��	 6 0.963 0.963 0.963 

�|| 6 0.913 0.921 0.930 

R74 6 0.948 0.948 0.951 

R44 7 0.665 0.656 0.656 

 567 
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and ��� (c). The explained variance by each PC is indicated in the bracket on top of loading 
plot. 

Fig. 7. Obtained masks from thresholding PCA score images and the plot of mean spectra of 
SLS, SLS covered by PM (SLS+PM) and PM infected pixels. 
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Fig. 1. Visualization of microscopic images of B1, B3, R1 and R5 (a); their corresponding 
texture images (b) and histograms at green channel (c). 
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Fig. 2. Plot of mean spectra of two varieties for calibration set (a) and Test set 1 (b); of two 
growth stages for calibration set (c) and Test set 1 (d). 
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 1 

Fig. 3. RGB pseudo-color images of the ROI from B1-3 and R1-5 categories.  2 
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 4 

Fig. 4. Prediction maps to classify between two varieties by using ��� (a) and ��� (b) spectra; 5 

classify between two growth stages by using ��	 (c) and ���  (d) spectra. On top of each 6 

prediction map, the label of each sample is placed on the left side of the equal sign, the 7 

predicted class on the mean spectrum is sit on the right side of the equal sign. B class 8 

includes B1-3, while R class includes R1-5; Old class includes B1-3 and R1-3, while Young 9 

class includes R4-5.  10 

 11 
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Fig. 5. Plot of mean spectra of heathy leaf, yellow spots, PM and SLS infected pixels for 15 

calibration (a) and test set (b). 16 
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 18 

Fig. 6. Visualization of RGB pseudo-color images from SLS and PM infected sunflower leaf 19 

(a); the obtained score images and loadings of PCA conducted on the hypercube of ��	 (b) 20 

and ��� (c). The explained variance by each PC is indicated in the bracket on top of loading 21 

plot. 22 
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 24 

Fig. 7. Obtained masks from thresholding PCA score images and the plot of mean spectra of 25 

SLS, SLS covered by PM (SLS+PM) and PM infected pixels. 26 
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 29 

Fig. 8. PCA scatter plot obtained from ��	and ��� spectra. Each dot corresponds to a pixel on 30 

the upper surface of sunflower leaf. The explained variance by each PC is indicated in the 31 

bracket.  32 
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 36 

Fig. 9. Prediction map to classify SLS, PM, yellow spots and healthy leaf pixels by using 37 

cross PLS-DA model. 38 
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Appendix A 42 

Light of arbitrary polarization can be represented by four numbers known as the Stokes 43 

parameters, I, Q, U and V. I refers to the irradiance or the intensity of the light; the parameters 44 

Q, U and V represent the extent of horizontal linear, 45 deg linear and circular polarization, 45 

respectively [A1,A2]. 46 

In polarimetry, the Stokes vector S of a light beam is constructed based on six flux 47 

measurements obtained with different polarization analyzers in front of the detector as 48 

follows: 49 

8 = 9�:;<= = 9 �> + �?�> − �?�@AB° − �DAB°�E − �F =       (A.1) 50 

Where �> = �|| , �? = ��	 , 	�@AB°, �DAB°,  �E  and �F are the light intensities measured with 51 

horizontal linear polarizer, a vertical linear polarizer, a +45° linear polarizer, -45° linear 52 

polarizer, a right circular analyzer, and a left circular analyzer in front of detector, 53 

respectively. 54 

 55 

In traditional reflectance, we work with an arbitrary polarization and we measured the first 56 

element I of the Stokes vector. And in accordance with the theory, this first element is equal 57 

to the backscattered light which equal to the sum of horizontal linear intensity and vertical 58 

linear intensity. 59 

 60 
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