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Abstract 13 

This work is devoted to precision agriculture and more precisely to the spatial monitoring 14 

of water status in viticulture. An empirical approach was introduced in 2008 based on the 15 

extrapolation across a domain (vineyard block, vineyard, region) of vine water status 16 

observations from a reference site using a simple statistical model, called SPIDER, and 17 

proved efficient in many studies. Once the extrapolation model is calibrated, this approach 18 

leads to a concentration of measurements for one site only (reference site) while providing 19 

an estimate of the grapevine water status at a larger spatial scale. It is a promising hybrid 20 

approach based both on regular (but targeted) measurements and on modelling. However, 21 

so far only empirical guidelines for its practical use have been provided. Moreover, the 22 

limits of validity (spatial, temporal, etc.) of such an approach are not known. 23 

This work intends to use a mechanistic model based on grapevine water balance 24 

modelling to study to what extent a simulated water status can be spatially extrapolated at 25 

the field scale. The water balance model was calibrated on two datasets (different cultivars 26 

and weather data) and used to analyse the performances of SPIDER. The results 27 

confirmed the relevance of the empirical approach (SPIDER) based on water status spatial 28 

extrapolation with a low error level on the two datasets studied. The use of the water 29 

balance model also helped define the validity domain of SPIDER: it confirmed the 30 

importance of having dominantly dry conditions and revealed the possibility of recovering 31 

good prediction quality after strong rainfall or irrigation. This study globally demonstrates 32 

the relevance of spatial extrapolation of the vine water status from a reference site with a 33 
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linear regression model and provides new insights on the properties of the predictions for 34 

application in viticulture either at the within-field level or at larger scale. 35 

 36 

1. Introduction 37 

Several studies have shown that changes in grapevine water status (Ψ) have a direct 38 

effect on grape composition and quality by influencing vegetative growth, fruit growth, 39 

yield, canopy microclimate, and fruit metabolism (see among others, Tregoat et al., 2002; 40 

Dry and Loveys, 1998; Van Leeuwen and Seguin, 1994; Ojeda et al., 2002; Brillante et al., 41 

2018). Characterizing the spatial variability of Ψ is then a key issue for terroir study 42 

(Seguin, 1983; Van Leeuwen et al., 2009). The spatial monitoring of Ψ therefore provides 43 

important information for managing and/or assessing grape quality (Van Leeuwen et al., 44 

2009; Rezaei and Reynolds, 2010). In a review paper, Acevedo-Opazo et al. (2008) 45 

discussed the importance of methods for spatial monitoring of vine water status. 46 

Furthermore, the same authors proposed an empirical spatial model (Eq. 1) to predict the 47 

vine water status (estimated with the water potential Ψ) across a given domain (vineyard 48 

block, vineyard, region, etc.). 49 

Ψ�s, t� = �	. Ψ���� , �� [Eq.1] 50 

The principle of the model is to extrapolate a reference Ψ value Ψ (sref,t) measured at a 51 

reference site sref and time t. The extrapolation is based on a linear relationship defined by 52 

the coefficients as whose values are specific to site s. The model provides an estimate 53 

Ψ(s,t) of Ψ values at any site s where a coefficient as is available. This spatial model has 54 

been successfully tested at the within-field level (Acevedo-Opazo et al., 2010) and at a 55 

vineyard level constituted of several blocks (Taylor et al., 2010). More recently, the model 56 

has been successfully tested at the whole denomination scale by Baralon et al. (2012). At 57 

this scale, the approach was called SPIDER (SPatial extrapolation of the vIne water status 58 

at the whole DEnomination scale from a Reference site). Although empirical, The SPIDER 59 

approach may present several practical advantages: i) it relies solely on direct Ψ 60 

measurements (i.e. leaf water potential), which can be performed by vine growers. 61 

Therefore, the calibration of the model can be implemented within a conventional 62 

monitoring of Ψ. The method does not require spatial estimates of other variables related 63 

to soil or other environmental factors that may be difficult and expensive to measure; ii) the 64 

model can also be calibrated from measurements that have already been taken. 65 



Therefore, it makes it possible to use existing databases of Ψ (historical databases), 66 

provided that the data are geo-located; and iii) the principle of the method allows to 67 

consider asynchronous measurements when labor is the limiting factor, provided that the 68 

measurement of Ψ is systematically done on the reference site.  69 

Despite these practical advantages, the results obtained have highlighted a number of 70 

limitations of SPIDER that the empirical approach allows to observe but does not allow to 71 

quantify objectively. Two main limitations have been identified (Baralon et al., 2012); the 72 

first one refers to the climatic context of the year used to calibrate the model. Indeed, 73 

Baralon et al. (2012) stressed that the database used to calibrate the model must 74 

necessarily include data with a large magnitude of water restriction which requires a 75 

sufficiently long summer period without any rainfall to reach high Ψ values over the domain 76 

under consideration. The second limitation relates to conditions concerning the soil, 77 

climate and cultural practices that the study area must present so that the linear 78 

relationship associating Ψ from the reference site to Ψ of any site remains relevant (i.e. 79 

constant) over the time. For example, Taylor et al. (2010) showed that Ψ extrapolation 80 

appeared to be feasible between fields despite different soil types if the general soil 81 

moisture regimes were similar. Indeed, the linear relationships considered in the model did 82 

break down when the soil moisture regimes or when rainfall amounts were variable 83 

between the reference site and the site of prediction. Similarly, the linear relationship with 84 

the reference site may be altered by irrigation (Baralon et al., 2012). 85 

Because SPIDER is based on a data-based learning approach, it provides a limited formal 86 

framework to explore these limitations. More specifically, it does not allow to study the 87 

effect of a differentiated water input (i.e. rainfall, irrigation) on the quality of the estimates 88 

produced by extrapolation from a reference site. For example, it is impossible to know if 89 

there is a critical precipitation level beyond which extrapolation can no longer be applied, 90 

in the same way it is difficult to know if the linear relationship is definitively lost for the 91 

season after a rainfall event or if it is again possible to apply the model after a sufficiently 92 

long dry period. Recent work (Gaudin et al., 2017) has shown that a mechanistic approach 93 

based on a Water Balance Model (WBM) can contribute to understanding within-field 94 

variations of the vine water status. These results suggest that such a modelling approach 95 

might be used to study the spatial extrapolation problem by simulating the water status 96 Ψ	����, �� for several sites within the same field and by analysing how these simulated 97 

dynamics relate to the one corresponding to a reference site. The main objective of this 98 

paper is thus to use a vineyard dataset and a Water Balance Model to perform these 99 

analyses and to provide a new angle for studying the validity of SPIDER and its limitations.  100 



 101 

The paper is organised in three parts: i) the first will present the calibration of the WBM 102 

with historical data and its validation, ii) the second will present implementation of the 103 

WBM to validate the SPIDER approach based on extrapolation of simulated Ψ values from 104 

a reference site and then iii) the last part will use WBM properties to better understand the 105 

validity of SPIDER especially in the case of water supply either by rainfall or irrigation.  106 

 107 

2. Material and Methods 108 

 109 

2.1. Dataset of predawn water potential observations in a Mediterranean vineyard: 110 

Shiraz2004 and Mourvèdre2005 111 

Over the last 20 years, year 2004 and to a lesser extent 2005, were identified as the best 112 

summer periods for this work. Indeed, in both these years, Languedoc experienced very 113 

long periods of dry conditions interrupted by significant rainfall events. Predawn leaf water 114 

potential data were collected in 2004 for one variety (Shiraz) and in 2005 for the other 115 

variety (Mourvèdre) by Acevedo-Opazo et al. (2010) in vineyards of Pech Rouge (INRA 116 

Gruissan, 43°08’47” N, 03°07’19” E). The 1.2 ha Shiraz vineyard was planted in 1990 (Fig. 117 

1). The 1.7 ha Mourvèdre vineyard was also planted in 1990. Both are included in the la 118 

Clape terroir which is classified as a designation of origin by the French authority. The 119 

northern limits of this terroir follow the lower course of the river Aude and the southern 120 

limits follow a former riverbed of the same river. The corresponding geological terrain is 121 

Cretaceous limestone, mainly constituted of thick Orbitolina deposits (Lespinasse, 1982). 122 

Over time, this geological material has given rise to heterogeneity in the pedological 123 

material. 124 

Predawn leaf water potential measurements were carried out between 3 and 5 a.m. on 125 

vines located on 49 sites of the fields (Acevedo-Opazo et al., 2010). These sites were 126 

defined following a regular grid as presented in Fig. 1. Measurements were made with a 127 

pressure chamber (Scholander et al., 1965) at six dates either in 2004 or in 2005. The 128 

pressure chamber was a Plant Water Status Console, Model 3000 (Soil moisture 129 

Equipment Corp., Santa Barbara, California). One date-site data corresponds to the 130 

average of three measurements on three representative vines at one site. In order to 131 

perform measurements over the 49 sites in a short period of time, the following 132 

organization was used: Three technicians and researchers collected the leaves and 133 



brought them to a researcher (the same person for Shiraz and Mourvèdre fields) in charge 134 

of measurements on the console. 135 

Climatic data (Fig. 2) were monitored by the Pech Rouge weather station located 100 m 136 

away from the Shiraz field (500 m away from the Mourvèdre field). These climatic data 137 

were used to record rainfall events and to compute the reference evapotranspiration (ET0) 138 

according to Allen et al. (1998) 139 

 140 

2.2. The Spider approach for extrapolating the water status dynamics from reference 141 

sites  142 

 143 

The SPIDER model was presented in Eq. 1. It was implemented on data collected in 2004 144 

and 2005. Its principle is based on the (random) choice of a reference site (sre). Available 145 

Ψ data were used to calibrate a linear model linking the Ψ values of the reference site to Ψ 146 

values of different sites in the domain. Once calibrated, as shown in Fig. 2, SPIDER can 147 

be used to extrapolate any measurements taken at the reference site to each site in the 148 

domain for which calibration was performed. This extrapolation uses a collection of 149 

coefficients (as1, as2, as3, ..., asi) specific to each site of the domain (s1, s2, s3, ..., si). 150 

 151 

2.3 The Water Balance Model (WBM) approach for simulating Ψ dynamics  152 

 153 

2.3.1 Vineyard water balance model 154 

Water balance simulation models applied to vineyards (Lebon et al., 2003; Celette et al., 155 

2010) are used in many studies and particularly in Mediterranean conditions: i) to provide 156 

a diagnosis tool on vineyard water stress (Pellegrino et al., 2006), ii) to analyse the effect 157 

of intercropping between vine rows (Celette et al., 2010; Ripoche et al., 2010) or iii) to 158 

study irrigation needs (Gaudin and Gary, 2012; Roux et al., 2014). The main model output 159 

is the dynamics of a normalized water stress index based on soil water content and called 160 

Fraction of Transpirable Soil Water (FTSW). The principle of this approach is to compute 161 

the daily change in soil water content from different water fluxes that occur inside the soil 162 

volume accessible to vine roots. Adopting the modelling hypotheses used in Gaudin and 163 

Gary (2012), the resulting update of daily FTSW, noted FTSWt, can be written as: 164 

����� = min �1, max �0, �����!" + "$$%& �'� − )� − *� − �����   [Eq.2] 165 

In this model, the main daily water fluxes are: Pt (rain), Qt (runoff), Et (evaporation from 166 

bare soil) and Tt (vineyard transpiration). In Gaudin and Gary (2012), Qt is computed using 167 



the NRCS Curve Number method (NRCS, 2004), Et using the FAO method (Allen et al., 168 

1998) and Tt as proposed by Lebon et al. (2003). The parameter TTSW is the Total 169 

Transpirable Soil Water content.  170 

The link between the FTSW modelling approach and measurements of the vine water 171 

status based on predawn leaf water potential has been done by Lebon et al. (2003) and 172 

Pellegrino et al. (2005) who proposed an empirical relationship which appeared robust for 173 

several Mediterranean vineyard fields (Eq. 3). 174 

Ψ ≈ Ψ,$%&������ = max -−1.5, "/ .  012 �,$%&3 �4, with � = 1.0572, 7 = 5.3452 [Eq.3] 175 

Using Eq.2 and Eq.3 it is possible to simulate the dynamics of FTSW continuously and 176 

derive an estimation Ψ	����� of water potential Ψ at time t. By limiting the simulation period 177 

to the stage of vine growth corresponding to full canopy development, only a few model 178 

inputs are required to implement Eq. 3. These inputs are presented in Table 1.  179 

 180 

2.3.2. Calibration of the model on Shiraz2004 and Mourvèdre2005   181 

In order to apply the WBM on the 49 sites of the two fields (Shiraz2004 and 182 

Mourvèdre2005), values for model parameters and input variables are requested. Weather 183 

variables (Pt, ET0t) have been measured or derived from records from the weather station 184 

but other model inputs (TTSW, CN, kcb, REW,TEW, Ψ	���0� ) have to be estimated using 185 

calibration from Ψ measurements. The following calibration procedure was considered: 186 

 187 

Step 1: Definition of a set of plausible values for 4 unknown inputs (all except 188 

TTSW). The values selected for this work are presented in Table 2. The values in 189 

Table 2 were selected from expert knowledge. They correspond to quite 190 

representative values for the vineyards in the south of France and take into account 191 

the diversity of cases which it is possible to meet in this region. 192 

 193 

Step 2: Estimation of kcb/TTSW for each site of each field {Shiraz2004, 194 

 Mourvèdre2005} using the following approach as proposed by Gaudin et al. 195 

(2017): 196 

• Selecting measurements in dry conditions: dates {05/08, 18/08, 23/08} for 197 

Shiraz2004 and {23/06, 06/07, 19/07, 05/08} for Mourvèdre2005. 198 

• Estimating the ratio kcb/TTSW using the coefficient of the linear regression 199 

between  Ψ:/	��� and cumulated ET0 on the selected dry period. 200 

 201 



Step3: Optimisation of parameters {kcb,REW,TEW,CN, Ψ	���0�}: 202 

• For each site i=1..49 of each field {Shiraz2004, Mourvèdre2005} 203 

• For each of the 3*3*3*7=189 combination values defined in Table 2   204 

o Computation of TTSW using kcb/TTSW values as estimated in Step 2 205 

and current kcb value, 206 

o Computation of  Ψ	����� for each parameter combination using the 207 

WBM 208 

o Computation of the mean absolute error (MAE) between simulations 209 

and observations. The precise expression of ;<*� for nobs 210 

observations taken at times ��":/	, … , �>?@A:/	 � was obtained by comparing 211 

measurements Ψ�:/	,B = Ψ�:/	��B:/	� and model predictions Ψ�	��,B =212 

Ψ�	����B:/	� on a site “i” as indicated in Eq.4 : 213 

MAEF = ">?@A  ∑ HΨFIJK,L − Ψ�	��,BH>?@ABM"   [Eq.4] 214 

• Selection of the set of parameters corresponding to the lowest MAE 215 

 216 

Using this procedure, it was possible to obtain for each site “i” in each field: i) a continuous 217 

simulation of Ψ�	����� during the measurement period, ii) a quantification of the calibration 218 

error (here the Mean Absolute Error), iii) the set of optimized model parameters.  219 

 220 

2.4. Methods for analysing the SPIDER approach using the Water Balance Model 221 

 222 

2.4.1. Assessment of calibration performances of the WBM 223 

In order to analyse the calibration performances of the WBM applied on the 49 sites of the 224 

two dataset Shiraz2004 and Mourvèdre2005, Ψ	����� was computed for each site. The 225 

associated Mean Absolute Error of Calibration was then estimated using Eq. 4. For each 226 

field the distribution over all sites of the obtained MAE was then analysed. 227 

 228 

2.4.2. Choice of the reference sites 229 

SPIDER requires the choice of a reference site in order to predict, for any site “i”, the value 230 

of the potential Ψ�:/	��B� from the value observed on a reference site Ψ��:/	��B�. It has been 231 

shown in previous studies that SPIDER prediction performances were not very sensitive to 232 

the choice of the reference site (Acevedo et al., 2010; Baralon et al., 2012). It is however 233 

crucial for applying the WBM that the reference site is well adjusted by model simulations. 234 



In order to take this constraint into account, for each field, the reference site was chosen 235 

by taking the site with best WBM calibration error among the best sites of reference for 236 

SPIDER. By applying this procedure to each field, site 29 and site 26 were selected as 237 

reference sites respectively for Shiraz and Mourvèdre. 238 

 239 

2.4.3. Validating the global performances of SPIDER using WBM simulations 240 

The performance of SPIDER is measured by the prediction error. This latter as well as the 241 

linear model are defined on a small number of available observations and may therefore 242 

be biased by the limited number of measurements. 243 

Using the WBM, the linear regression between the continuous dynamics of a reference 244 

site   Ψ��	����� and the associated dynamics of a target site Ψ�	�����  can be computed: 245 

ΨN�	����� = ��	��. Ψ��	�����. It is therefore possible to test the prediction error of this model for 246 

each day within the measurement period. This prediction error can be seen as a 247 

generalization of the SPIDER prediction error as it also uses a linear regression model 248 

between Ψ values based on the use of a single reference site. This prediction is also more 249 

robust compared to the one based only on measurements in the sense that the number of 250 

samples is much higher (simulations are carried out every day in the measurement 251 

period). The SPIDER approach may be considered validated if the prediction errors 252 

obtained using continuous predictions of the WBM are low for most sites. In the rest of the 253 

document, the use of the data derived by the WBM to simulate the SPIDER approach as 254 

described in this section will be referred to as: WBM based regression. 255 

 256 

2.4.4 Theoretical analysis of SPIDER performances using the WBM in dry conditions 257 

SPIDER limitations were investigated using the WBM approach. From Gaudin et al. 258 

(2017), it is known that under dry conditions the plant water potential decreased linearly in 259 

relation to the cumulated ET0. Moreover, the slope of this relation can be expressed using 260 

model parameters: it is equal to the ratio of kcb (basal crop coefficient) to TTSW (Total 261 

Transpirable Soil Water). 262 

It is therefore possible to understand how simulated Ψ dynamics at different sites in a 263 

same field are related during a dry period. More precisely, regarding a dry period starting 264 

at time t0, Eq. 5 summarises changes in plant water potential for a reference site “ref” and 265 

a target site “i”. 266 

Ψ�	����O + �� = Ψ�	����O� +  BP@,Q$$%&Q ∑ *�O����	M�RΨ��	����O + �� = Ψ��	����O� +  BP@,STU$$%&STU ∑ *�O����	M�R
 [Eq.5] 267 



These equations will be combined to study the relationship between spatialized simulated 268 

water potentials in dry conditions.  269 

 270 

3. Results and Discussion  271 

 272 

3.1. Calibration of WBM on historical Ψ data 273 

 274 

The cumulated density of calibration error of WBM is presented in Fig. 4. The error, 275 

defined as the Mean Absolute Error between observations and simulations and expressed 276 

in MPa, ranges from 0.03 MPa to 0.22 MPa and from 0.04 MPa to 0.25 MPa for 277 

Mourvèdre2005 and Shiraz2004 respectively. 80% of the sites have an error lower than 278 

0.15 MPa for Mourvèdre2005 and lower than 0.18 MPa for Shiraz2004. For each field, two 279 

sites were highlighted in red in Fig. 4: sites 37 and 32 for Shiraz and sites 23 and 25 for 280 

Mourvèdre. These sites were chosen to encompass the large range of calibration errors 281 

from MAE =0.05 MPa (site 37 and 23) to MAE = 0.15 MPa (sites 32 and 25). They are 282 

used in Fig. 5 to illustrate the evolution dynamics of the estimated plant water potential 283 

estimated from the WBM in contrasting situations (in terms of error) for the two fields. Fig. 284 

5 shows a low error level of 0.05 MPa obtained on site 37 (Shiraz2004) and 23 (Mourvèdre 285 

2005). Very well adjusted curves on almost all measurements are associated to this low 286 

error level. A moderate error level of 0.15 MPa is obtained on site 32 (Shiraz2004) and 25 287 

(Mouvèdre2005). For such sites, the model does not adjust properly to all measurement 288 

dates. Higher deviations between outputs of the model and observed values are noticed at 289 

the beginning of the measurement period for site 32 (Shiraz2004) while over and under 290 

estimations are observed over the whole experimentation period for site 25 291 

(Mourvèdre2005). 292 

As seen in Fig. 4, the calibration is globally better on Mourvèdre2005 than on Shiraz2004, 293 

and overall these error levels are considered acceptable to use the model for the spatial 294 

extrapolation problem. 295 

 296 

3.2. Validation of the SPIDER model on historical Ψ data 297 

 298 

Fig. 6 shows a comparison between errors observed with SPIDER and WBM based 299 

regression. For Mourvèdre2005, the prediction error using the WBM-based regression is 300 

low (<0.15 MPa for 90% of sites) and close to error values obtained with SPIDER. For 301 

Shiraz2004, 80% of the sites have a prediction error lower than 0.15 MPa. (Note that the 302 



remaining 20% are also characterized by higher calibration errors: the model does not 303 

adjust at its best and the WBM-based regression results are thus less significant on these 304 

sites.) 305 

Overall, the prediction error of the WBM-based regression appears low for both fields. This 306 

means that the knowledge of the simulated  Ψ dynamics on a reference site allows to 307 

predict with relatively high precision the simulated Ψ dynamics on a target site using the 308 

simple linear regression model  Ψ V �	���� � = ��	��. Ψ��	�����. This result strengthens the 309 

validity of SPIDER: indeed, it shows that the linear regression model based on several  310 

measurements (SPIDER) is also valid when considering simulated Ψ dynamics at any day 311 

within the measurement period. This is one significant result of the present paper. 312 

 313 

Fig. 7 allows to analyse the results obtained with linear predictions from an observed or 314 

simulated reference site more precisely. It shows the simulated Ψ dynamics for two sites: 315 

sites 37 (Shiraz2004) and 23 (Mourvèdre2005). Both sites present a low calibration error 316 

(see Fig. 4) and a low prediction error using the WBM-based regression (0.11 MPa for site 317 

37 and 0.03 MPa for site 23). The regression line (in grey) is therefore in both cases an 318 

accurate way to predict Ψ�	����� (grey circles) from Ψ��	�����. It can be noted in Fig. 7 that 319 

while the linear model is a good approximation of the link between Ψ dynamics, this 320 

relationship may present some complex features: for site 23 (Mourvèdre2005), non-321 

linearity is observed for low Ψ values. For site 37 (Shiraz2004) the relationship between Ψ 322 

values is mostly piecewise linear. Different correlations seem to apply at different periods 323 

with the same slope but different intercepts. These properties will be further analysed in 324 

the following section.  325 

 326 

3.3. Theoretical analysis of SPIDER performances in dry conditions 327 

The previous results have shown that the WBM approach was able to validate the SPIDER 328 

results on the two-year data set. This section aims at using the WBM in order to gain more 329 

insights into the SPIDER conditions of application. To this aim both dry and wet conditions 330 

were considered. 331 

 332 

3.3.1. Dry conditions: piecewise linearity 333 

From Eq.5 and using the simple trick that �W + 7 = 3X . �YW + Z� + 7 − 3[X  (for any c ≠ 0), the 334 

following relationship (Eq.6) between simulated Ψ values can be obtained under dry 335 

conditions: 336 



Ψ�	����O + �� = \BP@,Q .$$%&STU BP@,STU.$$%&Q ] Ψ��	����O + �� + Ψ�	����O� − \BP@,Q .$$%&STU BP@,STU.$$%&Q ] Ψ��	����O�  [Eq.6] 337 

Eq. 6 can be written as follows: 338 

Ψ�	����O + �� = ��̂ 33� ⋅ Ψ��	����O + �� + 7�̂ 33�,�R   [Eq.7] 339 

with `��̂ 33� = \BP@,Q .$$%&STU BP@,STU.$$%&Q ]7�̂ 33�,�R =  Ψ�	����O� − ��̂ 33�. Ψ��	����O� 340 

Eq.7 shows that every dry period starting at t=t0 results, for t>t0 and under dry conditions, 341 

in a linear relation between Ψ�	����� and Ψ��	�����. The slope of this relation ��̂ 33�
 is 342 

defined using basal crop coefficients and TTSW of each site and does not depend on the 343 

water status at t=t0, unlike the intercept 7�̂ 33�,�R. This property explains the piecewise 344 

linearity that can be seen in Fig.7a: there are clearly two periods of piecewise linearity in 345 

this simulation. 346 

 347 

3.3.2. Persistent dry conditions: stable linearity 348 

When dry conditions last a long time under high evaporative demand (high ET0), the model 349 

can be simplified. In such cases, the water potential reaches very low values and it is 350 

possible to neglect the influence of the intercept in the relationships between Ψ  dynamics 351 

(Eq. 8). 352 

Ψ�	����O + �� = Ψ�	����O� +  BP@,Q$$%&Q ∑ *�a��� ≈ BP@,Q$$%&Q ∑ *�a����	M�R�	M�RΨ��	����O + �� = Ψ��	����O� +  BP@,STU$$%&STU ∑ *�a����	M�R ≈ BP@,STU$$%&STU ∑ *�a����	M�R
 [Eq.8] 353 

In these specific conditions, this implies that Ψ�	����O + �� ≈ ��̂ 33�. Ψ��	����O + ��. The linear 354 

relation is therefore mainly characterized by only basal crop coefficients and TTSW of 355 

each site, which is likely to be stable over several years. 356 

 357 

3.3.3. Link between the regression coefficient and model parameters 358 

Based on the previous section, ��̂ 33�  is known to drive the relationship between 359 

simulated  Ψ dynamics during persistent dry conditions. In Fig. 8, a comparison between 360 ��̂ 33�  and the regression coefficient ��	��  of the predictive model using simulations 361 

(defined  by  Ψ V �	���� � = ��	��. Ψ��	�����) is performed to evaluate if ��̂ 33� can be a good 362 

estimate of ��	�� even if the whole period does not correspond to dry conditions.  363 

Both coefficients have been computed for each site in each field (��̂ 33�  was computed 364 

from the calibrated model parameters,��	��  by linear regression on simulations). 365 



Remember that 49 sites are available in each field. The site of reference being removed, 366 

this approach results in a comparison of 48 values for each field. 367 ��̂ 33�
 appears to be a good approximation of ��	�� for both data sets Shiraz2004 and 368 

Mourvèdre2005 even if the weather conditions were not persistently dry (Fig. 8). On 369 

condition that kcb and TTSW are stable over several years (which happens if the vine 370 

grower does not significantly change any management practices in the vineyard) and that 371 

climatic conditions are globally the same (dominantly dry), this implies that the linear 372 

relationship between simulated Ψ values should be globally stable over the years and 373 

related to model parameters kcb and TTSW. 374 

 375 

3.4. Impact of rainfall events on prediction quality in historical Ψ data 376 

 377 

The WBM approach allows to better study the limitation of SPIDER especially during and 378 

after a rainfall event or in case of irrigation. It should be noted that studying these 379 

situations is difficult with an empirical approach such as SPIDER since it would require 380 

performing a large number of measurements over limited periods of time. The 381 

implementation of an approach based on a validated WBM (under the conditions of the 382 

study) allows a more detailed study. 383 

This analysis was made numerically on the two datasets using the methodology presented 384 

in Fig. 9 by focusing on the ratio of simulation Ψ  dynamics for every t in the measurement 385 

period 
bQAQc���bSTUAQc��� and on the regression coefficient ��	�� derived from the WBM based 386 

regression   ( Ψ V �	���� � = ��	��. Ψ��	�����). The normalized distance di(t) between this ratio of 387 

simulated  and the regression coefficient was computed for each site i as is Eq.9: 388 

Z���� =  "3QAQc . \bQAQc���bSTUAQc��� − ��	��]  [Eq.9] 389 

Finally, in order to aggregate the results for all sites, quantiles {10%,90%} of the di(t) 390 

distribution were computed. They are studied as a function of time to see how the local 391 

linearity between Ψ  dynamics is broken by rainfall or irrigation events. Indeed, the periods 392 

where the linear approximation works well (resp. poorly) correspond to low (resp. high) 393 

di(t) values. Another point of interest is to look for recovery periods after a rainfall or 394 

irrigation event after which Ψ  dynamics are again linearly correlated. 395 

 396 

The assessment of the robustness of the linear approximation between Ψ dynamics is 397 

presented in Fig. 10. The prediction using a linear regression model has been shown to be 398 



globally acceptable in Fig. 6, but it can be seen in Fig. 10 that rainfall alters the linearity of 399 

the relationship locally and that the interference is linked to the amount of rainfall. The 400 

impact of rainfall events is however not uniform even for a same amount of water: the 401 

heaviest rainfalls (for example the 20 mm rainfall on Shiraz2004) may not change the 402 

relationship for some sites while altering it for others. On the other hand, many small 403 

rainfall events (those <5 mm) do not change the quality of the linear prediction, probably 404 

because the corresponding incoming water is evaporated very quickly. However, the main 405 

property stressed by Fig. 10 is the presence of a recovery time before regaining the 406 

previous quality of the linear model approximation, including after the heaviest rainfalls: the 407 

prediction using the linear model becomes accurate again after a certain time (see, for 408 

example, the 20 mm rainfall on Shiraz2004 and the decreasing of the error after this 409 

event). 410 

This result is particularly significant and provides practical information for using an 411 

empirical approach like SPIDER. It shows that SPIDER could still be applied even after 412 

rainfall events or irrigation. After such events, there is transitory period during which any 413 

extrapolation of water status values observed on the site of reference would lead to biased 414 

estimations. However, SPIDER becomes relevant again after a certain period of time. For 415 

these experimentations, a period of 5 days would have been sufficient for most sites after 416 

a small rainfall event (<15mm) while a period of 15 days would have been required for 417 

heavier rainfall (>15mm). Naturally, further experiments will be necessary to validate this 418 

recommendation for its use on a larger scale.  419 

 420 

4. Conclusion 421 

 422 

This paper analyses why the vine water status, as characterized by predawn water 423 

potential values, can be extrapolated from measurements on a single reference site using 424 

a linear regression model known as the SPIDER approach. To perform this analysis, a 425 

water balance model running on a daily basis was used to provide daily estimates of 426 

predawn water potential values. The model was calibrated and used on two datasets 427 

(different vineyards, different years) with 49 sites of predawn leaf water potential 428 

measurements.  429 

 430 

The use of the water balance model confirmed that predawn water potential values at any 431 

site can be estimated from observations performed on a reference site using a linear 432 

regression model linking the two dynamics with a low error level. For persistent dry 433 



conditions occurring frequently in Mediterranean vineyards, the ratio of simulated predawn 434 

water potential values was shown to be simply linked to model parameters (basal crop 435 

coefficient and Total Transpirable Soil Water) indicating that the linear relationship between 436 

simulated water potential dynamics is stable over several years provided persistent dry 437 

conditions are dominant. Finally, the robustness of the relationship to rainfall or irrigation 438 

events was analysed using the water balance model. This demonstrated that the 439 

relationship between the simulated water potential dynamics is less predictive around a 440 

rainfall event but that its quality is recovered after a period of time if no other rain event 441 

occurs. This study demonstrates the relevance of spatial extrapolation of the vine water 442 

status from a reference site with a linear regression model with new insights on the 443 

properties of the predictions. This study confirms the interest of its application in viticulture 444 

either at the within-field level or at larger scale. 445 

 446 
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a) 

b) 

 

Fig. 1. Map of Shiraz (a) and Mourvèdre (b) fields and their 49 measurement sites 

(Pech Rouge,  INRA Gruissan, 43°08’47” N, 03°07’19” E). 



 

 

 

 

 

Fig. 2. Climatic data: Rainfall (grey bars) and Evapotranspiration (black dots) 

measured on the two fields Shiraz 2004 and Mourvèdre 2005 respectively between 

June-September 2004 and June-September 2005. Measurement dates of Predawn 

leaf water potential are indicated as vertical lines for each field. 

 



 

 

 

Fig. 3. The principle of the empirical approach SPIDER where the plant water potential 

(Ψ(sre,t)) measured at a reference site is linearly extrapolated to other locations (s1, s2, 

s3, …, si) of the field using site-specific coefficients (as1 ,as2 , as3,..., asi) to provide 

estimates of plant water status (Ψ(s1,t), Ψ(s2,t), Ψ(s3,t), …, Ψ(si,t) on unsampled 

locations at the same date t. 

 



 

 

Fig. 4. The cumulative distribution of calibration errors (Mean Absolute Errors) of the 

model on the 49 sites in the two fields (sites in red are subjected to more detailed 

analysis presented in Fig. 5, and sites in blue are reference sites) 

 



 

Fig. 5. Detailed analysis of the water balance model showing estimated and observed 

Ψ values for 2 sites of each field Shiraz2004 and Mourvèdre 2005. Sites were chosen 

to encompass the large range of calibration errors from MAE =0.05 MPa (site 37 and 

23) to MAE = 0.15 MPa (sites 32 and 25). 

 



 

 

Fig. 6. Cumulative distribution errors (Mean Absolute Errors of Prediction, MPa) for 

SPIDER and for the WBM based regression. Result obtained on field Shiraz2004 are 

presented on the left and those obtained on Mourvèdre2005 on the right (the two sites 

are more precisely analysed in Fig. 7). 

 



 

 

Fig. 7. The comparison of predictions obtained from a reference site with SPIDER and 

with the WBM-based regression for two sites. 

 



 

Fig. 8. The comparison of ����
�  (coefficient of the WBM based regression) and ��

�����
 

(derived from the  WBM parameters kcb and TTSW). 

 



 

 

 

Fig. 9. Methodology used to analyse the impact of rain events on the quality of linear 

predictive model Ψ��
������ 	 
�

��� . Ψ��
������. First the regression coefficients 
�

��� are 

computed, then an error is defined between the ratio of water potentials and the 

regression coefficient. This error is normalized in order to study its quantiles when 

aggregating the results on all 49 sites. The final results obtained for each field are 

presented in Fig. 10 and linked to climatic data. 

 



 

 

 

Fig. 10. Analysis of the temporal quality of the linear predictive model Ψ��
������ 	


�
���. Ψ��

������ using the quantiles of the normalized error ����� 	 	
�

��
��� �

��
������

����
������

� 
�
����. 

The median (in black) and quantiles (in grey) of the distribution of distances are plotted 

against time along with the distribution of rainfall.  

 



Table 1: Water Balance Model inputs when limiting simulation to the full canopy 

development stage 

 

Model Input  name Type of input Definition Unit 

Ψ����0� Initial state Vine water potential at simulation start MPa 

TTSW  Parameter Total Transpirable Soil Water mm 

kcb  Parameter Basal crop coefficient - 

CN  Parameter Curve Number for runoff module - 

(REW,TEW)  Parameter Readily and Total evaporable water (mm,mm) 

ET0t  input variable Daily reference evapotranspiration mm 

Pt  input variable Daily rain mm 

 



Table 2: domain definition of the set of tested values for four model parameters 

 

Parameter Tested values 

kcb  {0.45; 0.5; 0.55} 

(REW,TEW)  {(3,7); (5,12); (9,20)} 

CN  {70, 80, 90} 

 	�Ψ�����0.3�,Ψ�����0.4�,… ,Ψ�����0.9�� 

 

 




