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Abstract

Headwater streams (HSs) are generally naturally prone to flow intermittence. These

intermittent rivers and ephemeral streams have recently seen a marked increase in

interest, especially to assess the impact of drying on aquatic ecosystems. The two

objectives of this work are (a) to identify the main drivers of flow intermittence

dynamics in HS and (b) to reconstruct local daily drying dynamics. Discrete flow

states—“flowing” versus “drying”—are modelled as functions of covariates that

include information on climate, hydrology, groundwater, and basin descriptors. Three

classifiers to estimate flow states using covariates are tested on four contrasted

regions in France: (a) a linear classifier with regularization (LASSO for least absolute

shrinkage and selection operator) and two non‐linear non‐parametric classifiers, (b)

a one‐hidden‐layer feedforward artificial neural network (ANN) classifier, and (c) a

random forest (RF) classifier. The three classifiers are compared with a benchmark

classifier (BC) that simply estimates dominant flow state for each month based on

observations (without using covariates). The performance assessment over the period

2012–2016 carried out by cross‐validation shows that the three classifiers for flow

state based on covariates outperformed the BC. This demonstrates the predictive

power of the covariates. ANN is the classifier that globally achieves the best

performance to predict the daily drying dynamics whereas both RF and LASSO tend

to underestimate the proportion of drying states. The covariates are ranked in terms

of relevance for each classifier. The monthly proportion of drying states provided by

the discrete observation network has a major importance for the three classifiers

ANN, LASSO, and RF. This may reflect the proclivity of a site to flow intermittence.

ANN gives higher importance to climatic and hydrological covariates and its

non‐linearity allows a greater degree of freedom.
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1 | INTRODUCTION

Headwater streams (HSs) are generally defined as the uppermost

streams in a watershed and represent a large part of hydrographical

networks (Leopold, Wolman, & Miller, 1964; Nadeau & Rains, 2007).

HS can be fed by groundwater, precipitation, and run‐off from small

drainage areas. They contribute to the good functioning of rivers (sed-

iment flux, inputs of particulate organic matter and nutrients), provide

primordial ecosystem services (biogeochemical cycling, sources of

aquatic organisms, aquatic habitat, thermal refuge; Finn, Bonada,

Mùrria, & Hughes, 2011; Larned, Datry, Arscott, & Tockner, 2010;

Meyer et al., 2007), and constitute reference areas to be preserved

(Lowe & Likens, 2005).

Due to their upstream position in the network, their size, and their

high reactivity to natural or human disturbances, HS are generally nat-

urally prone to flow intermittence (Datry, Larned, & Tockner, 2014;

Fritz et al., 2013). Intermittent rivers and ephemeral streams (IRES)

are defined by periodic flow cessation and may experience partial or

complete dry up at some location in time and space (Datry, Fritz, &

Leigh, 2016; Larned et al., 2010; Leigh et al., 2016). They range from

ephemeral streams that flow a few days after rainfall to intermittent

rivers that recede to isolated pools (Datry et al., 2018). IRES have seen

a marked increase in interest stimulated by the challenges of water

management facing the global change context (Acuña et al., 2014;

Datry et al., 2016) and by the need to improve existing knowledge

on aquatic ecosystems in IRES (Larned et al., 2010; Leigh & Datry,

2017; Sarremejane et al., 2017; Stubbington, England, Wood, &

Sefton, 2017).

Recent studies underline the importance to better characterize the

hydrological functioning of IRES (Acuña, Hunter, & Ruhí, 2017;

Boulton, 2014; Leigh & Datry, 2017). To study the impact of flow

intermittence on the composition and persistence of aquatic species,

freshwater biologists use quantitative metrics (e.g., to characterize

the drying duration, magnitude, frequency, timing, and rate of change)

determined from continuous flow series (Bunn, Thoms, Hamilton, &

Capon, 2006; Datry et al., 2014; Kennard et al., 2010; Vadher, Millett,

Stubbington, & Wood, 2018). However, the understanding of the

spatio‐temporal variability of IRES and their localization within the

river network is challenging. In addition, considering only continuous

gauging stations could lead to an underestimation of the proportion

of IRES and of their regional extent (De Girolamo, Lo Porto,

Pappagallo, & Gallart, 2015; Eng, Wolock, & Dettinger, 2016; Snelder

et al., 2013).

Citizen science creates opportunities to overcome the lack of

hydrological data and may contribute to densify the flow‐state

observation network (Buytaert et al., 2014; Datry, Pella, Leigh,

Bonada, & Hugueny, 2016; Turner & Richter, 2011; van Meerveld,

Vis, & Seibert, 2017). In France, new sources of observational data

are available thanks to the Observatoire National des Etiages Network

(ONDE; https: //onde.eaufrance.fr; Nowak & Durozoi, 2012). This

unique network in Europe by its coverage, the number of monitored

sites and the regularity of the observations, provides frequent discrete

field observations (at least five inspections per year) of flow
intermittence on more than 3,300 sites throughout France that are

located mostly in headwater areas.

However, discrete observations of intermittence with irregular

and at most weekly frequency cannot provide information on the

persistence of dry conditions at daily temporal resolution. Thus, con-

tinuous time series of flow states are needed. Beaufort, Lamouroux,

Pella, Datry, and Sauquet (2018) succeeded to relate ONDE observa-

tions to continuous hydrological and groundwater level data for

predicting the daily probability of drying at the regional scale and

obtained robust predictions over France. However, as predictions

are aggregated over large areas, this approach does not allow to dif-

ferentiate the temporal variability of “drying” state for neighbouring

streams. Spatial variability of flow intermittence may be high and

the understanding of local drying dynamic is crucial. Hence, the main

objective of this work is to extend this previous study. Specifically,

we aim at (a) identifying the main drivers of the flow intermittence

dynamics in HS and (b) reconstructing the daily drying dynamics of

HS at the local scale. To achieve these objectives, discrete flow

states—“flowing” versus “drying”—from the ONDE observations are

modelled as functions of covariates having continuous time series

that include information on climate, hydrology, groundwater level,

and basin descriptors.

The paper is organized in six parts. Section 2 describes the general

modelling framework developed to predict flow states. Section 3

introduces the study area and the data, and Section 4 presents the

performance assessment protocol. Results are presented in Section 5

and discussed in Section 6 before drawing general conclusions in

Section 7.
2 | STATISTICAL FRAMEWORK FOR
MODELLING DAILY DRYING DYNAMICS

Drying dynamics can be reconstructed from a classifier that relates

flow states to covariates. More specifically, the classifier is calibrated

in order to, for each day, estimate the probability of the drying state

given a set of covariates, described in Sections 3.2 to 3.5 and

summarized in Table 1, which are meant to introduce information on

climate, groundwater level, hydrology, and basin descriptors. The flow

state predicted at each ONDE site at a given day relies on the informa-

tion provided by local and regional covariates observed at various

dates by other ONDE sites in a same region. Due to the limitation of

the observation period, the predictions are restricted to the period

between the 1st May and the 30th September of each year (see

Section 3.2).

Four classifiers are considered: (a) a benchmark classifier (BC),

which does not use any covariates but is entirely based on the his-

torical proportions of observed flow state; (b) the so‐called LASSO

(least absolute shrinkage and selection operator) classifier, which is

a linear classifier; (c) an artificial neural network (ANN) classifier,

which is potentially non‐linear but encompasses a linear classifier

as a special case; (d) a random forest (RF) classifier, which can also

be non‐linear but with a different strategy than ANN. Each classifier

http://onde.eaufrance.fr


TABLE 1 List of covariates

Type Covariate Description Frequency Spatial aggregation

Climate

R0 Rainfall accumulation over the day of observation (dayObs) Day Aggregating values for catchment site

R1 Rainfall accumulation over the day before dayObs Day Aggregating values for catchment site

R10 Rainfall accumulation over the 10 days before dayObs Day Aggregating values for catchment site

R20 Rainfall accumulation over the 20 days before dayObs Day Aggregating values for catchment site

R30 Rainfall accumulation over the 30 days before dayObs Day Aggregating values for catchment site

T0 Air temperature over the day of observation (dayObs) Day Aggregating values for catchment site

T1 Air temperature over the day before dayObs Day Aggregating values for catchment site

T10 Air temperature average over the 10 days before dayObs Day Aggregating values for catchment site

T20 Air temperature average over the 20 days before dayObs Day Aggregating values for catchment site

T30 Air temperature average over the 30 days before dayObs Day Aggregating values for catchment site

PET0 Evapotranspiration over the day of observation (dayObs) Day Aggregating values for catchment site

PET1 Evapotranspiration over the day before dayObs Day Aggregating values for catchment site

PET10 Evapotranspiration accumulation over the 10 days

before dayObs

Day Aggregating values for catchment site

PET20 Evapotranspiration accumulation over the 20 days

before dayObs

Day Aggregating values for catchment site

PET30 Evapotranspiration accumulation over the 30 days

before dayObs

Day Aggregating values for catchment site

AI Aridity index Annual Aggregating values for catchment site

WR Winter rainfall accumulation (December to March) Annual Aggregating values for catchment site

Hydrology

FQ0 Mean non‐exceedance frequency of discharge at dayObs Day Based on HER‐HR combination

FQ5 Mean non‐exceedance frequency of discharge average

over the 5 days before dayObs

Day Based on HER‐HR combination

FQ10 Mean non‐exceedance frequency of discharge average

over the 10 days before dayObs

Day Based on HER‐HR combination

Groundwater level

FGw0 Mean non‐exceedance frequency of groundwater level

at dayObs

Day Based on HER

FGw5 Mean non‐exceedance frequency of groundwater level

average over the 5 days before dayObs

Day Based on HER

FGw10 Mean non‐exceedance frequency of groundwater level

average over the 10 days before dayObs

Day Based on HER

ONDE sites characteristics

Alti Mean altitude of the catchment (m) Constant Based on catchment

Area Drainage area (km2). Constant Based on catchment

Slope Mean hill slope of the catchment (m.km−1). Constant Based on catchment

MPD Monthly proportion of days with dry states observed

between 2012 and 2016 (%)

Month Based on ONDE data

Note. B‐Catchment: Based on catchment; B‐HER: Based on HER; B‐HER‐HR: Based on HER‐HR; B‐ONDE: Based on ONDE data; HER: hydro‐ecoregion;
ONDE: Observatoire National des Etiages.
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relies on a function f to estimate the flow state at day “d” at each

location (ox),

FlowState d; oxð Þ ¼ f g1 d; oxð Þ;…; gn d; oxð Þð Þ; (1)

where g1 to gn are the covariates depending on time including

hydro‐climatic covariates and “x” represents the location of the site.

Calibrating classifiers independently at each site is not possible

because there are too few ONDE observations (32 observations

per sites on average between 2012 and 2016). The suggested

approach as well as the related assumptions for calibrating f is com-

monly adopted in regionalization in hydrology (e.g., the index flood

method for flood frequency analysis; Dalrymple, 1960). By transfer-

ring information from different sites located in the same
hydrologically homogeneous region, the sample size is increased

and more robust estimates of the parameters are obtained. This

implies that all the ONDE sites share the same classifier with the

same set of parameters and that the drivers of flow intermittence

are the same. Nevertheless, drying dynamics differ from site to site

due to local factors. Thus, a calibration at the regional scale is con-

sidered to derive the model fR valid for all ONDE sites ox located

in the same region R,

FlowState d; oxð Þ ¼ fR g1 d; oxð Þ;…; gn d; oxð Þ; e1 oxð Þ;…; em oxð Þð Þ; (2)

where e1 to em are covariates that characterize the location of the

site ox.
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A performance analysis, focusing on four contrasted regions in

France, is carried out over the 6‐year period 2012–2017 to assess

their ability to simulate the daily drying dynamics at ONDE sites and

to compare the accuracy of classifiers. In a second step, the influence

of covariates in each classifier was examined and main environmental

drivers of flow intermittence are identified.
2.1 | Benchmark classifier

BC is a simple classifier without any covariates that predicts, at a

given site, the flow state that is the most frequently observed histor-

ically for the month considered. When there is a tie, drying is pre-

dicted. Cross‐validation is implemented as follows. To predict the

daily flow state of an ONDE site “o” at the month “M” of the year

“Y,” we select all the flow states observed at this site o at months

M during the reference period of observation excluding the year Y

(2012–2016\Y).
2.2 | LASSO classifier

The LASSO (Tibshirani, 1996) classifier estimates the drying state

probability as a linear function of the covariates transformed with a

sigmoid function to constrain the range to [0,1]. LASSO includes a

regularization mechanism that may lead to a sparse model in which

the coefficients of less relevant covariates are driven to zero

(Bishop, 2006). The amount of regularization is determined through

cross‐validation (R package “elasticnet”; Zou & Hastie, 2018). To

classify into either flowing or drying states, an optimal threshold is

set after a second cross‐validation procedure using the amount of

regularization determined previously and leading to the best F‐score

(see Section 4.4; Equation 9). The relevance of each covariate is

inspected directly through the magnitude of the associated coefficient

estimated by the LASSO classifier. The LASSO method was recently

considered in a hydrological application with other linear and non‐

linear regression techniques to predict synthetic design hydrographs

for ungauged catchments (Brunner et al., 2018).
2.3 | ANN classifier

ANNs—feed‐forward neural networks with one hidden layer—

estimate the drying state probability as a potentially non‐linear func-

tion of covariates. This is a non‐parametric approach that combines

the contribution of the neurons in the hidden layer to build an

approximation. The number of neurons is related to the number of

coefficients and hence the complexity of the classifier. As for

LASSO, a sigmoid function is applied to constrain the range of the

ANN output to [0,1] (see the implementation in the R package

“nnet”; Venables & Ripley, 2002). We include a direct connection

between inputs and outputs so that the case with zero hidden units

corresponds to a linear relationship. Weight decay regularization,

also known as ridge regression, is considered to control overfitting

by decreasing less relevant coefficients. Both the number of hidden
units and the amount of weight decay are selected with a first

cross‐validation procedure (Bishop, 2006). As for the LASSO classi-

fier, an optimal threshold is set with a second cross‐validation

procedure using the number of hidden units and the amount of

weight decay determined previously and leading to the best F‐score.

The LASSO classifier can be thought of as a particular case of the

ANN with no hidden units although the regularization mechanisms

are different.

To quantify the relevance of the different covariates, the

connection weight approach (Olden & Jackson, 2002; Olden, Joy, &

Death, 2004) is employed,

WV ¼ ∑nhu
h¼1AV;hBh; (3)

where WV (−) is the relevance of covariate V, AV,h (−) are the ANN

coefficients connecting hidden unit h to covariate V, Bh (−) are the

ANN coefficients connecting hidden unit h to the output, and nhu

is the number of hidden units. ANNs have been widely used as

black box tools for modelling the rainfall‐runoff transform (see

(ASCE, 2000a, 2000b) for a review and (Abdollahi, Raeisi,

Khalilianpour, Ahmadi, & Kisi, 2017) for a recent application to an

intermittent river).

2.4 | RF classifier

An RF combines decision trees obtained by resampling the calibration

set (Breiman, 2001). Each tree is a structure made of binary nodes

associated to binary rules of the type V ≤ s versus V > s where V is

one of the covariates and s is a bound. When reaching a terminal

node, a majority vote is taken amongst the observations belonging

to the node. A single decision tree tends to yield nonrobust estimation

(very dependent on the selected calibration set) and the process of

combining the trees in a forest circumvents this issue. We use the

implementation in the R package “randomForest” (Liaw & Wiener,

2002). The covariates relevance is given directly by the randomForest

package, which determines how much the mean square errors in pre-

diction increases when that covariate is randomly permuted within the

tree. RF models have been recently used to predict the spatial distri-

bution of intermittent and perennial rivers at the basin scale

(González‐Ferreras & Barquín, 2017) and at the national scale (Snelder

et al., 2013).
3 | STUDY AREA AND DATA AVAILABLE

3.1 | Study area

France is located in a temperate zone characterized by a variety of cli-

mates due to the influences of the Atlantic Ocean, the Mediterranean

Sea, and mountain areas. The study area is composed of four hydro‐

ecoregions (HERs) located in continental France (Figure 1). The HERs

correspond to a typology based on geology, topography, and climate

and accounting for stream size. They have been developed for river



FIGURE 1 Location of the 3,300
Observatoire National des Etiages (ONDE)
sites and partition of France into hydro‐
ecoregions (HERs)

BEAUFORT ET AL. 5
management in accordance with the European Water Framework

Directive (Wasson, Chandesris, Pella, & Blanc, 2002). The HERs were

not specifically developed to discriminate river flow regimes.

However, they have demonstrated their relevance as homogeneous

regions in regionalization application (e.g., Cipriani, Toilliez & Sauquet,

2012; Sauquet & Catalogne, 2011) and are chosen as the regions over

which f R is calibrated (Equation 2).
TABLE 2 Characteristics of each selected HER to assess and compare th

HER 1

ONDE site 98

Intermittent ONDE site 79

Gauging station 26

Intermittent gauging station 11

Number of piezometers 15

Number of observations (ONDE) 3,906

Number of “drying” states (ONDE) 710 (18.2%)

Mean altitude (m) 67

Area (km2) 17,800

Precipitation (mm) 895

PET (mm) 715

AI (−) 1.25

Air temperature (°C) 12.2

Note. HER: hydro‐ecoregion; ONDE: Observatoire National des Etiages.
Four HERs are selected amongst the partition of France into 114

HERs based on the presence of several gauging stations monitoring

IRES (see Section 3.3). They have contrasted characteristics (Table 2)

and are representative of most HERs in France except for mountain-

ous regions. HER1 is distinguished by its hard, impermeable and

noncarbonated primary rocks, a landform of hills, and an oceanic cli-

mate. HER2 is a lowland region with an altitude of less than 200 m.
e classifiers performance calculated between 2012 and 2016

2 3 4

93 25 111

42 14 79

13 4 22

2 1 9

119 36 130

2,223 785 3,381

213 (9.6%) 113 (14.4%) 892 (26.4%)

105 324 132

27,300 5,000 17,600

765 1,137 676

616 711 1,051

1.24 1.60 0.64

11.0 11.5 14.5
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The subsoil is mainly composed of carbonated sedimentary rocks.

However, the upper layers of these rocks have varying surface charac-

teristics of permeability inducing differences in the density of the

drainage network. HER3 is an entity of accentuated relief, with het-

erogeneous basements dominated by massive limestones and

carbonate rocks, and a humid continental mountain climate. HER4,

with its plains and hills, is characterized by a Mediterranean climate

with an extended summer drought in comparison with other regions.

The geology is very heterogeneous, varying from the alluvial plain to

the granite massifs and massive limestone hills.
3.2 | ONDE dataset: A discrete national flow‐state
observations network

The ONDE network was set up in 2012 by the French Biodiversity

Agency (AFB, formerly ONEMA). Its aim is to constitute a perennial

network recording summer low‐flow levels that can be used to

anticipate and manage water crisis during severe drought events

(Nowak & Durozoi, 2012).

The ONDE network remains stable over time and distributed

throughout France with 3,300 sites regularly inspected (Figure 1).

ONDE sites are located on HS with a Strahler order strictly less than

five and balanced across HER to take the representativeness of the

hydrological contexts into account (Nowak & Durozoi, 2012). There

are two types of monitoring: an ongoing monitoring and an additional

monitoring. The ongoing monitoring provides a reliable baseline of

knowledge over time with at least one observation per month for each

ONDE site (around the 25th) between May and September. The addi-

tional monitoring has a frequency determined by local stakeholders

(maximum weekly observations) in case of severe low‐flow events

for both drought preparedness and drought mitigation. The average

number of ongoing and additional inspections at each ONDE site

between 2012 and 2017 reaches 5 and 1.5 per year, respectively, over

all ONDE sites.

One of the flow states is assigned at each observation amongst

“visible flow,” “no visible flow,” and “dried out.” In this work, we pool

flow states into two classes: flowing when there is visible flow across

the channel (visible flow) and drying when the channel is entirely

devoid of surface water (dried out) or when there is still water in the

river bed but without visible flow (disconnected pools, lentic systems;

no visible flow). Beaufort et al. (2018) showed the complementary

qualities of the ONDE network, more homogeneously distributed in

France and the already existing French river flow monitoring network

HYDRO (http://www.hydro.eaufrance.fr).

One covariate, derived from ONDE observations, is calculated to

reconstruct the daily drying dynamics at each ONDE site: the monthly

proportion of observations with drying states (%) observed between

2012 and 2016 (MPD). The ONDE sites were projected on the river

network RHT (Theoretical Hydrographic Network; Pella, Lejot,

Lamouroux, & Snelder, 2012) and the drainage area (Area), the altitude

(Alti), and the stream slope (Slope) were estimated and used as

covariates to characterize ONDE sites.
3.3 | Explanatory discharge dataset

ONDE sites are ungauged but gauging stations located in the same

HER could potentially inform about the hydrological state of rivers

at a regional scale. Time series of daily discharge were extracted from

the French River discharge monitoring network (HYDRO, http://www.

hydro.eaufrance.fr/). This network is composed of 1,600 gauging sta-

tions distributed across France for which flow data are available

between 2011 and 2017. According to the hydrometric services in

charge of the selected gauging stations, high quality of measurements

is ensured and observed discharges were either not altered or only

slightly altered by human actions.

Hydrological variables derived from gauging stations located in the

same HER as the ONDE site, are also considered as covariates. To

ensure homogeneity, only gauging stations with the same river flow

regime as the ONDE site were kept. The river flow regime (HR) is

taken from the classification for France suggested by Sauquet, Gott-

schalk, and Krasovskaia (2008) and each HER is partitioned into subre-

gions defined by the river flow regimes. For the four selected HERs, a

total number of three, six, one, and eight HER‐HR combinations are

outlined in HER1, HER2, HER3, and HER4, respectively. The HER1

and HER2 are mainly composed of pluvial river flow regimes and the

HER3 and HER4 are composed of a mix of pluvial river flow regimes,

transition river flow regimes, and Mediterranean river flow regimes.

Due to scale effect, discharge time series from different gauging sta-

tions cannot be combined directly and a post‐processing is required.

The first step consists in selecting all gauging stations located in a

given HER‐HR combination. The total number of gauging stations

per HER‐HR combination is at least five. In a second step, the flow

duration curve is determined for each selected gauging station and

three covariates are computed: the average nonexceedance frequency

of the observed discharge at gauging stations (a) at the dayObs (FQ0),

(b) over the 5 days before dayObs (FQ5), and (c) over the 10 days

before dayObs (FQ10). The preprocessing methodology is illustrated

in the appendix (Figure A1).

Each stream where a HYDRO gauging station is located is defined

as IRES or perennial streams. The identification of intermittent gaug-

ing stations was carried out with the aim of (a) selecting the four HERs

where model performance is assessed (see section 3.1) and (b)

validating against continuous time series of flow states (see section

4.3). Several definitions of IRES can be found in the literature (Eng

et al., 2016; Huxter & van Meerveld, 2012; Reynolds, Shafroth, &

LeRoy Poff, 2015). In this study, we consider stations as intermittent

when five consecutive days with discharge less than 1 l/s is observed

during the observation period.
3.4 | Explanatory groundwater level dataset

Daily groundwater levels are provided by the ADES database (http://

www.ades.eaufrance.fr) at sites involved in groundwater/surface

water exchanges (Brugeron, Allier, & Klinka, 2012). This dataset is

composed by 750 piezometers with daily groundwater level data

http://www.hydro.eaufrance.fr/
http://www.hydro.eaufrance.fr/
http://www.hydro.eaufrance.fr/
http://www.ades.eaufrance.fr
http://www.ades.eaufrance.fr
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available from 2011 to 2017 with less than 5% of missing data (contin-

uous or not). The level of alteration of groundwater levels by water

withdrawal is unknown because no information is available at this

scale.

Groundwater level data are used as covariates. A post‐processing

similar to the one applied to daily discharge is applied to groundwa-

ter levels (Figure A1) except for the first step, which consists in

selecting all piezometers located in a same HER instead of HER‐

HR combination. In a second step, in each HER, three covariates

are computed: the average nonexceedance frequency of the

observed groundwater level (a) at the dayObs (FGw0), (b) over the

5 days before dayObs (FGw5), and (c) over the 10 days before

dayObs (FGw10).
3.5 | Explanatory meteorological dataset

Daily meteorological covariates are taken from the SAFRAN dataset

(Quintana‐Seguí et al., 2008; Vidal, Martin, Franchistéguy, Baillon, &

Soubeyroux, 2010) that has an 8‐km resolution grid and is available

from August 1, 1958 to July 31, 2017. The SAFRAN dataset provides

precipitation and air temperature. The daily reference evapotranspira-

tion is computed with the Penman–Monteith formulation (Allen,

Pereira, Raes, & Smith, 1998). Daily catchment‐scale data are

computed for each gauging station and ONDE site using weighted

mean (for temperature) or sum (for precipitation and evapotranspira-

tion) of each contributive cell of the 8‐km grid to the catchment

surface (Sauquet & Catalogne, 2011).

The daily catchment‐scale air temperature (T), rainfall (R), and

potential evapotranspiration (PET) data are used as covariates in order

to reconstruct the daily drying dynamics at ONDE sites. For each

covariate, we consider daily values observed on the current day (R0,

PET0, T0) and on the previous day (R1, PET1, T1) along with values

accumulated or averaged over 10, 20, or 30 days preceding the

current day (Rp, PETp, Tp) with p = 10, 20, or 30.

We derive two additional annual climate descriptors, namely the

aridity index (AI) and the winter rainfall accumulation. AI is given by

the ratio between the mean annual precipitation and the mean

annual PET. The catchment is considered as “hyper‐arid” if AI <

0.03, “arid” if 0.03 ≤ AI ≤ 0.2, “semi‐arid” if 0.2 ≤ AI ≤ 0.5, “dry

subhumid” if 0.5 ≤ AI ≤ 0.65, and “humid” if AI > 0.65. Winter rain-

fall is determined each year as the rainfall accumulation between

December of the precedent year and March of the current year

(4 months).
4 | PERFORMANCE ASSESSMENT AND
COMPARISON

The performance of the classifiers is evaluated on the four selected

HERs (Figure 1). The calibration and validation methods are described

in the next sections.
4.1 | Cross‐validation over 2012–2016

A cross‐validation procedure is carried out for each classifier in each

HER. The calibration set is constituted by selecting randomly 80% of

the observations. The test set consists of the remaining 20%. Once

the classifiers are trained on the calibration set, the evaluation criteria

are calculated (see Section 4.4) based on the prediction on the test set.

This step is repeated 20 times in order to evaluate the uncertainty

associated to the selection of the calibration set.
4.2 | Extrapolation ability over 2017

In order to assess the extrapolation ability of the classifiers, they were

calibrated over the period 2012–2016 and their performance is evalu-

ated over the first 3 months of 2017 (due to SAFRAN data availabil-

ity), namely May, June, and July. In each HER, all the covariates

associated with the ONDE observations between 2012 and 2016

are used to calibrate classifiers. Then, the covariates of the year

2017 are used as input to predict the daily flow states at the

ONDE sites. For BC, benchmark values are computed excluding

the year 2017.
4.3 | Spatio‐temporal extrapolation ability

In order to evaluate their spatio‐temporal extrapolation ability over

the period 2012–2016, the classifiers calibrated on the ONDE sites

are applied to 65 gauging stations—38 and 27 located on perennial

and intermittent streams, respectively. Based on the continuous

observations from the gauging stations, an independent test set of

daily flow states is constituted and serves to evaluate the classifiers

at the daily time step between May and September. The classifiers

remain calibrated against observations available at the ONDE sites

located in the same HER and used the covariates (Table 1) computed

for 65 gauged basins to predict the flow state. Gauging stations covar-

iates used for prediction are calculated as for the ONDE sites except

for the monthly proportion of observations with drying states

(MPD). MPD is calculated by taking into account the flow observed

at the gauging station on the 25th of each month corresponding

approximately to the ONDE observation dates. A day in the discharge

time series is classified in a drying state if the observed daily flow is

less than 1 l.s−1. This way, potential false‐positive detection of zero

flows associated with measurement resolution constraints and uncer-

tainty in discharge observations are accounted for. For BC, to predict

the flow state of a gauging station i during the month M of the year Y,

we select the most frequent flow states observed on the 25th at this

station i on months M during the reference period excluding the year

Y (2012–2016\Y). The flow state predicted is assigned to the 15 days

preceding and following the 25th of month M and year Y considered

in order to obtain continuous daily flow states comparable to predic-

tions of the other classifiers.
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4.4 | Evaluation criteria

Several validation criteria are calculated to compare the performance

of the classifiers. First, criteria based on a 2 × 2 contingency table, see

Table 3, are used to evaluate the ability of classifiers to accurately

predict flow states for a stream at a given day.

Derived from the contingency table, five criteria (see Equations (5)

to (9)), are calculated to assess classifiers performance: the probability

of detection (POD; best value is 100%), the false alarm ratio (FAR; best

value is 0%), the precision (best value is 1), the recall (best value is 1),

and the F‐score (best value is 1).

POD ¼ a
aþ c

× 100: (5)

FAR ¼ b
aþ b

× 100: (6)

Precision ¼ a
aþ b

: (7)

Recall ¼ a
aþ c

: (8)

F–score ¼ 2 ×
Precision × Recall
Precisionþ Recall

: (9)

In addition, the proportions of observed and predicted days with

a drying state—named Pobs and Ppred, respectively—at gauging

station i are compared to measure the spatio‐temporal ability

(Section 4.3),

P ið Þ ¼ Ndrð Þi
Nfl þNdrð Þi

× 100; (10)

with Ndr: the number of observed or predicted daily drying states

between the beginning of May to the end of September; Nfl: the

number of observed or predicted daily flowing states between the

beginning of May to the end of September. Ndr and Nfl can be

calculated annually or over the period between 2012 and 2016.
TABLE 3 Contingency table

Observations

Drying Flowing

Predictions Drying a b

Flowing c d

Note. a (b) represents the number of correctly (incorrectly) predicted “dry-
ing” states; c (d) represents the number of incorrectly (correctly) predicted

“flowing” states.
The bias and the root mean square error are calculated for a

performance assessment at the HER scale

Bias HERð Þ ¼ 1
G
∑G

i¼1 Ppred ið Þ − Pobs ið Þ� �
; (11)

RMSE HERð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
G
∑G

i¼1 Ppred ið Þ−Pobs ið Þ� �2r
; (12)

where i is a gauging station located inside a given selected HER and

G is the total number of gauging stations located in each HER.

4.5 | Evaluation of covariate contribution

In this evaluation, the covariates are grouped according to their type

defined in Table 1 except for MPD because this covariate is directly

related to local observations. The methods for estimating the

contribution of covariates to the prediction are different for each

classifier (see Sections 2.2 to 2.4) and the magnitude of the contribu-

tion of each covariate cannot be directly compared across classifiers.

Cumulative or averaged percentages representing the relative contri-

bution of the covariates in each classifier are used to rank the groups

of covariates.
5 | RESULTS

5.1 | Classifier assessment over four contrasted HER

5.1.1 | Cross‐validation results between May and
September over the period 2012–2016

The three classifiers ANN, RF and LASSO outperforms BC in all HERs.

This can be seen from the POD, FAR, and F‐scores in Figure 2. The

LASSO classifier, although linear, performed only slightly worse than

the ANN classifier, its non‐linear counterpart (see the POD and FAR

scores in Figure 2). Amongst the two non‐linear classifiers, RF

achieved the overall best performance in the four HERs (see the three

scores in Figure 2).

The performance obtained by the two non‐linear classifiers is very

close and the best POD is obtained by ANN in all selected HERs

(Figure 2a). However, RF minimizes the FAR and obtains a better

F‐score than ANN on average over the four HERs.

5.1.2 | Performance of classifiers in extrapolation
over 2017

The results of the classifier predictions in extrapolation in 2017 show

that BC obtains the best POD, which is greater than 60% in the four

HERs (Figure 3a). However, the FARs are very high and exceed 50%

so BC tends to strongly overestimate drying states in 2017 especially

in HER1 and HER3 (Figure 3b).



FIGURE 3 Evaluation criteria calculated in extrapolation over 2017
with the four classifiers: (a) probability of detection (POD); (b) false
alarm ratio (FAR); (c) F‐score

FIGURE 2 Evaluation criteria calculated with the cross‐validation
process over the period 2012–2016 with the four classifiers: (a)
probability of detection (POD); (b) false alarm ratio (FAR); (c) F‐score

BEAUFORT ET AL. 9
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ANN obtains a POD higher than 50% and a FAR significantly lower

than BC whatever the HER. The ANN classifier obtains the best

F‐score for each selected HER (F‐score > 0.5).

The performance of the LASSO and RF are rather moderate. They

obtain very low POD lower than 30% on the HER1, HER2, and HER3

but also a very low FAR reaching zero for the HER3. We deduce that

these two classifiers tend to underestimate the number of drying states

extrapolated in 2017. Their F‐score is lower than BC in the HER2 but

remains very close to the F‐score of ANN in the HER4, which corre-

sponds to the HER where the most drying state is observed.

5.1.3 | Performance of the spatio‐temporal extrapo-
lation over the period 2012–2016

For the three classifiers ANN, LASSO, and RF, Ppred are close to Pobs

especially for gauging stations whose proportions of drying states

are greater than 20% (Figure 4). For stations where the proportion

of drying states is lower than 20%, the accuracy of the classifiers is

more contrasted.

Overall, ANN achieves the best performance with an average root

mean square error (RMSE) of 3.3% over the four HERs (Table 4). The

RMSE is similar and close to 3% for each HER. ANN tends to slightly
FIGURE 4 Predicted and observed proportions of “drying” states over th
hydro‐ecoregions. Drying states predictions are obtained respectively with
shrinkage and selection operator, and (d) benchmark classifier. Each dot is
overestimate the proportion of observed drying states illustrated by

positive biases and a FAR close to 40% on the four HERs (Table 4).

RF underestimates the proportions of drying states especially in the

HER1, HER3, and HER4 where the biases are below −1.5%. The pre-

dictions of LASSO are more contrasted with an overestimation of

the drying state proportions in the HER1, an underestimation of the

drying proportions in the HER3 and biases close to zero in the HER2

and HER4.

For the 27 gauging stations with at least one observed drying state

between 2012 and 2016, the ANN classifier can detect drying states

on 23 gauging stations but failed to detect drying states on four of

them. These four gauging stations are located in the HER1 and

showed a proportion of drying states less than 5%. In comparison,

RF and LASSO failed to detect drying states for seven and nine

gauging stations, respectively.

On the other hand, ANN tends to predict very short drying states,

persisting less than 2 days, on perennial stations leading to a predic-

tion of drying states of less than 1% (Figure 4a). These incorrectly pre-

dicted drying states correspond to periods of severe low flows, that is,

when most of the daily flows stay below the 90th quantile of the flow

duration curve. Thus, although not strictly speaking in a drying state,

they are consistent with the ANN classifier predictions.
e period 2012–2016 at gauging stations located in the four selected
(a) artificial neural network, (b) random forest, (c) least absolute
a gauging station and the y‐axis displays a square root scale



TABLE 4 Biases, RMSE, POD, FAR, and F‐score calculated at the
gauging stations located in the four HERs over the period 2012–2016.
The bolded values correspond to the region HER where the best
performance is achieved by model for each criterion

CRITERIA HER1 HER2 HER3 HER4

ANN

Bias 0.3 1.2 1.7 0.6

RMSE 3.6 3 3.2 3.2

POD 80 96 72 79

FAR 39 41 44 36
F‐score 0.71 0.73 0.63 0.69

RF

Bias −1.5 0.5 −4.3 −1.8

RMSE 3.9 1.4 8.6 4.8

POD 73 60 38 63

FAR 36 32 48 42

F‐score 0.62 0.58 0.44 0.61

LASSO

Bias 1 0.1 −1.6 −0.2

RMSE 5.9 1.9 3.1 4.7

POD 58 92 18 59

FAR 32 31 35 35

F‐score 0.60 0.79 0.28 0.62

BC

Bias −1.6 −2.7 4.2 −1.8

RMSE 4.3 7.2 8.4 6.3

POD 73 60 38 63

FAR 36 32 48 42

F‐score 0.62 0.58 0.44 0.61

Note. ANN: artificial neural network; BC: benchmark classifier; FAR: false

alarm ratio; HER: hydro‐ecoregion; LASSO: least absolute shrinkage and

selection operator; POD: probability of detection; RF: random forest;

RMSE: root mean square error.
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The nonexceedance frequency of discharge observed at four

gauging stations, representing each selected HER and having a propor-

tion of drying states less than 20%, is compared with the flow states

predicted by the four classifiers (Figure 5).

During the warmest year in 2012, ANN, RF, and LASSO give con-

sistent results and suggest dry periods relatively close to observations

for three of the four HERs (HER1, HER2, and HER3). Conversely,

all the classifiers predict drying states in HER4 whereas no event is

observed but these predicted drying states remain concomitant with

a period of severe low flow beginning in June (most of the daily flows

stay below the 80th quantile of the flow duration curve).

On the other hand, during wet years (in 2013 for HER2 and HER3

and in 2014 for HER1 and HER2; Figure 6), ANN, RF, and LASSO tend

to overestimate drying states but the periods with drying states are

very short.

Globally, BC failed to detect drying states in HER1 and falsely

detect drying states in HER2 and HER4. Drying states incorrectly

detected by BC are not always concomitant with a period with low

flows and BC is unable to reproduce the hydrological dynamics of

gauging stations.

RF and LASSO can perform better than ANN in some years, espe-

cially in the HER1 and HER3. However, their accuracy is less regular

and in some instances, they largely underestimate the duration of

drying states during some years, for example, in 2015 and 2016 for

HER3 with RF and in 2014 and 2015 for HER4 with LASSO

(Figure 5).
5.2 | Identification of covariate contributions to
drying state predictions

The analysis of the contributions of the covariates is summarized in

Table 5. Results are displayed by type of covariate. The pre‐eminence

of the type of covariate differs depending on the classifier.

For the ANN classifier, climatic covariates are identified as the

main drivers in cumulative value for the prediction of daily drying

states. The percentage of the contributions of climatic covariates

reaches as much as 67.5% in the HER3. The second most relevant

covariates for predicting drying states are related to river flow for

HER1 and HER3 or to groundwater level for HER2 and HER4. The

MPD is the third most significant covariate. However, it is worthy to

note that there is a balance between the relative weight of MPD

and the climatic covariates: MPD has a high value whereas climatic

covariates are found less important, and conversely. Despite a large

number of climatic covariates (17; Table 1), ANN uses all of them

but assigns them less weight than MPD.

For the LASSO classifier, the climatic covariates and the MPD

seem to be the most relevant in cumulative values for predicting

drying states. In HER1, hydrology is the third most important driver

and small predictive power is given to covariates describing ground-

water whereas in HER4, the results bring forward groundwater

instead of river hydrology. In HER2 and HER3, groundwater and

hydrology are less differentiated with covariates importance above

10%. The pre‐eminence of hydrology against groundwater level covar-

iates is not linked to their respective sites number located in each HER

(Table 2).

In the RF classifier, the most important covariate, in cumulated or

averaged value, is MPD that obtains a percentage higher than 40%

for the four HERs. In HER2, HER, and HER4, climate is the second

main driver followed by hydrology and groundwater. The importance

of hydrological covariates is, however, more important in terms of

averaged values than climate covariates in all HERs.

The ONDE site characteristics, constant in time at a given site,

have a minor importance for predicting daily drying state for the three

classifiers.
6 | DISCUSSION

6.1 | Global comparison of the classifiers

This first conclusion is that the covariates bring valuable information in

drying state predictions as can be deduced from the fact that the three

classifiers, ANN, LASSO, and RF, perform better than BC which does

not use any covariates. The cross‐validation procedure between

2012 and 2016 shows similar performance between the classifiers

and suggests that the non‐linearity taken into account by both ANN

and RF is one possible cause of improved POD and FAR scores in

comparison with LASSO (Figure 2). The performance of classifiers

assessed in extrapolation over the period May–July 2017 (F‐score ~

0.5) is lower than their performance obtained in cross‐validation



FIGURE 5 Observed and predicted flow states for four gauging stations located in the four hydro‐ecoregions (HERs). Observed daily flows are
categorized in four classes based on their associated quantile of the flow duration curve (F)
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(F‐score > 0.75). It can be partly explained by the particularity of the

year 2017 (Figure 6) when an early drought beginning in May is

observed over a large part of France. Between 2012 and 2016, the

south‐east of France is the only region that was affected by droughts

and dryings in spring whereas dryings started from July in the other

regions. This unusual situation was never encountered in the calibra-

tion dataset and the estimates of flow states are less accurate except

in HER4 where the F‐score is higher than 0.6 for the four classifiers.

Nevertheless, there is a clear gain in performance with the ANN clas-

sifier in comparison with RF and LASSO. This added value is even

more important when classifiers are tested against continuous time

series of daily discharges. The ANN classifier seems to better predict

the year‐to‐year variability (dry year vs. wet year) at a given station.

The conclusions of this comparison are drawn only on analyses based

on the 2012–2017 observation period (Figure 6). The ONDE network

is still functional and we could expect that the additional flow states

observations in contrasted years would contribute to improve the cal-

ibration of classifiers and this could lead to improved performances in

extrapolation ability.

The main difficulty encountered by the three classifiers comes

from the complexity of predicting rare events. In cross‐validation over
the period 2012–2016 and in extrapolation in year 2017, the best

F‐scores amongst the three classifiers are obtained in HER4 where

the drying state frequency is the most important (Table 2). ANN is

the classifier that achieves the best performance for weakly intermit-

tent HS. Classifiers tend to underestimate drying states with an

observed frequency smaller than 20% (Figure 4). It may occur that

no drying state is observed due to the rarity of zero‐flow events and

the value of MPD is zero whatever the month of the year. The high

importance of this covariate in classifiers leads to an underestimation

of predicted drying states or to consider the HS as perennial. This

underlines the importance of taking into account a calibration dataset

composed of years with contrasted climate thus allowing a better rep-

resentation of the extreme events. Future observations of the ONDE

network will make it possible to sample more contrasted situations

and to better identify sites impacted by flow intermittence leading

to an updated ranking of the three classifiers.

6.2 | Drivers of flow intermittence

MPD is considered as very important for the three classifiers. This

covariate reflects the level of flow intermittence of each ONDE site



FIGURE 6 Distribution of the percentages of drying observed at Observatoire National des Etiages sites for the years (a) 2012–2017, (b) 2012,
(c) 2013, (d) 2014, (e) 2015, (f) 2016, and (g) 2017
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and the classifiers aim at reproducing the variability around this

average value.

ONDE site characteristics are not identified as drivers by the three

classifiers. This is surprising because several studies have shown that

the catchment area (Area) is a very important explanatory variable in

hydrology and specifically for classifying streams as temporary or

perennial (González‐Ferreras & Barquín, 2017; Snelder et al., 2013).

The catchment altitude (Alti) and streams slope (Slope) were also iden-

tified as relevant variable to detect intermittent streams (D'Ambrosio,

De Girolamo, Barca, Ielpo, & Rulli, 2017; Snelder et al., 2013). One

possible reason is that the HERs are homogeneous. We may expect
also that other covariates related, for example, to exchanges between

open channels and groundwater systems operating at small scale,

riverbed permeability, and aquifer structure, would be relevant to cap-

ture the variability between sites. Datry et al. (2016) showed that river

network could be very fragmented at the local scale (< 100 m) and two

nearby sites can experience a very different drying dynamics albeit

sharing a similar climate. Despite our effort to select unaltered ONDE

sites, unexpected water withdrawal or release may govern the drying

dynamics.

Classifiers use climatic, groundwater, and hydrological information

to capture and predict the daily variability of drying state. Both RF and



TABLE 5 Covariates importance (%) determined for each classifier and for each selected HER aggregated as a function of their type defined in
Table 1. The bolded values correspond to the highest covariates importance (cumulative or average) for each region HER

HER Climate Hydrology Groundwater level ONDE sites characteristics MPD

ANN

1 38.5 (2.3) 22.4 (7.5) 13.9 (4.6) 6.5 (2.2) 18.7 (18.7)
2 66.4 (3.9) 5.5 (1.8) 14.0 (4.7) 6.7 (2.2) 7.4 (7.4)
3 67.5 (4.2) 10.8 (3.6) 6.1 (2.0) 5.7 (1.9) 9.9 (9.9)
4 49.8 (3.1) 8.7 (2.9) 25.6 (8.5) 1.6 (0.5) 14.3 (14.3)

LASSO

1 37.6 (9.4) 24.7 (8.2) 0.1 (0.0) 0.1 (0.0) 37.5 (37.5)
2 22.4 (2.3) 11.1 (3.7) 18.2 (6.1) 1.8 (0.6) 46.4 (46.4)
3 15.5 (4.2) 16.8 (5.6) 22.2 (7.4) 0.1 (0.0) 45.5 (45.5)

4 46.2 (2.6) 1.8 (0.6) 12.7 (4.2) 0.0 (0.0) 39.3 (39.3)

RF

1 18.0 (1.4) 20.2 (6.7) 4.1 (1.4) 6.4 (2.1) 51.3 (51.3)

2 37.9 (1.4) 7.7 (2.6) 6.8 (2.3) 6.2 (2.1) 41.3 (41.3)
3 22.4 (1.3) 15.3 (5.1) 11.8 (3.9) 7.5 (2.5) 42.9 (42.9)
4 27.5 (1.8) 11.2 (3.7) 6.6 (2.2) 5.9 (2.0) 48.8 (48.8)

Note. ANN: artificial neural network; HER: hydro‐ecoregion; LASSO: least absolute shrinkage and selection operator; ONDE: Observatoire National des

Etiages; RF: random forest. The first value is the cumulative importance of each covariate in a given type and the value in brackets represents the average

importance of covariates.
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LASSO seem to put too much weight on MPD that leads them to

underestimate drying states when a new situation is encountered in

extrapolation as in 2017. ANN gives more importance to climatic

covariates in comparison with RF and LASSO. Some studies

underlined the importance of meteorological features in drying vari-

ability. Abdollahi et al. (2017) have shown the importance to combine

precipitation and flow patterns for predicting daily mean streamflow

of an IRES. De Girolamo, Barca, Pappagallo, and Lo Porto (2017) iden-

tified that errors in meteorological inputs are responsible of the limited

performance of the model in predicting stream flow and hydrological

indicators in an IRES. The regional climate patterns (Snelder et al.,

2013) and the minimum monthly precipitation values in August

(González‐Ferreras & Barquín, 2017) were relevant variables to both

detect and map IRES at the regional scale. Furthermore, the non‐linear

structure of ANN might enable it to better exploit the day‐to‐day

variability of climate, groundwater, and hydrological data in order to

reproduce drying dynamics. Both RF and LASSO may not be flexible

enough to take benefit from covariates other than MPD. ANN makes

it possible to predict drying states on sites where no drying state was

observed when the drought conditions become severe and seems to

be more suitable in extrapolation. LASSO and RF seem to require a

longer observation period of the flow states provided by the ONDE

observations in order to more accurately estimate the MPD and thus

hope to improve the drying predictions in extrapolation.
7 | CONCLUSION

The main scientific contribution concerns the exploitation of ONDE

observations, discontinuous in time and space, to improve our knowl-

edge about the headwater catchment functioning. Despite the low

frequency of the observations, they provide essential information to

be combined with statistical methods adapted to discontinuous data

in time for reconstructing the dynamics of the local drying states at

a daily resolution.
The main conclusion of this study is that statistical classifiers

predicting at‐site drying states from covariates are better than using

the dominant observed flow states. In this context, taking into account

of the non‐linearity in classification model is of importance to ensure

the best predictive performance. The non‐linearity of the ANN classifier

gives it a greater degree of freedom and, according to our results, made

it possible to improve flow state predictions, especially in extrapolation.

Moreover, our results underline the importance to consider calibration

datasets that span a full range of expected hydrological conditions lead-

ing to a better representation of extreme events. Anothermajor conclu-

sion concerns the importance of the predictive information provided by

the monthly proportion of observations with drying states (MPD). This

covariate reflects the level of flow intermittence of each ONDE site

and the classifiers aim at reproducing the variability around this average

value. Meteorological variables as covariates appear as important

drivers of the flow intermittence although the site characteristics have

unexpectedly low relevance.

One of the perspectives to this work would be to explore how this

non‐linearity is used to predict daily drying dynamics. Studying the

statistical decision boundary of ANN especially for weakly intermittent

stations constitute a first step toward this goal. Another perspective

concerns the determination of additional covariates more locally

defined that could be tested to analyse their added value in local dry-

ing predictions. All these approaches will have to be studied in

contrasted climatic and environmental situations in order to accurately

assess the performance of each classifier.

Thanks to this first application, the next step will be to extend this

approach in all HERs in France. It is therefore conceivable to use the

results of our models, that is, the reconstructed drying dynamics, in

the context of ecological studies that focus on the distribution and

persistence of aquatic communities in response to flow alterations.

In addition, this work could be relevant for watershed management.

The knowledge of the duration and the variability of the drying phase

is very important for assessing the ecological status of IRES (Mazor,

Stein, Ode, & Schiff, 2014; Prat et al., 2014). It could also help to
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identify which metrics are the most relevant for detecting human

impacts (Datry, Bonada, & Boulton, 2017). Many IRES occur in the

headwater of perennial systems and their conservation is widely rec-

ognized, especially for the supply of good quality water (Lowe &

Likens, 2005). The reconstruction of local drying dynamics could guide

stakeholders to improve the ecological restoration and protection of

IRES.
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