

RESPONSE OF BROWN TROUT POPULATIONS TO FLOODS IN NATURAL AND BYPASS REACHES

Gouraud V.¹, Bret V.¹, Capra H.², Tissot L.¹, Lamouroux N.²

¹ Electricité de France - EDF - R&D, LNHE, France

² National Research Institute of Science and Technology for Environment and Agriculture - Irstea, UR MALY, France

HYNES partnership

Variability of brown trout populations among reaches

KEY ROLE OF FLOODS

Floods

Trout population

≠ degrees of impact

Hayes, 1995; Sabaton et al., 2008; Alonso et al., 2011; Alonso-Gonzàlez et al., 2008; Nicola et al., 2009

QUESTIONS

• How to quantify this effect of floods?

 How to diagnose population status in taking into account effect of floods and other processes?

OBJECTIVES

• Determine at which spatial scale operate the effect of floods

 Quantify effect of floods on population dynamics and disentangle effects from other parameters

Natural reaches

Context Materials & Methods Results Conclusions and prospects

DATASET

- 40 reaches
 - 23 French rivers
 - ✓ 19 bypass reaches
- Electrofishing samplings (from 4 to 20 years per reach)

(Details on data collection in Bret et al. 2015)

- Measures
 - ✓ Shelter availability
 - ✓Mean water temperature
 - \checkmark Mean wetted width
 - ✓ Habitat suitability index
 - ✓Upstream dam

$3 \neq \text{APPROACHES}$

1. Density synchrony analysis

36 reaches

2. Deterministic population dynamics model on 9 reaches

9 reaches

3. Hierarchical Bayesian Model

Bret et al. 2016

Materials & Methods

Results

Conclusion

RESULTS

8

1. DENSITY SYNCHRONY ANALYSIS

- Strong synchrony for reaches over distances less than ~ 75 km
- Negative influence of strong discharges during the emergence period and a influence of substrate mobilility during the spawning period
- Close reaches are likely to be synchronous, even if they are separated by dams and have different flow regimes.

2. DETERMINISTIC MODEL MODYPOP

Results on 9 reaches

Bypassed section	Period	Q threshold (m ³ s ⁻¹)	Q threshold/Q10	Nb days	Mortality rate (%)
Beyrède	March-June	35	3.3	9	75
	March-June	35	3.3	4-8	20
	November-December	60	5.7	1	75
	Whenever	94	8.9	1	75
Fontan	March-June	8	1.6	1	75
	Whenever	71	13.6	2	90
Breil	March-June	60	4.9	1	75
Pont-Haut	March-June	9	3.5	1	75
Rory	March-June	5.5	2.5	1	75

Tissot et al. 2016

3. Hierarchical Bayesian Model

- High flow => very high mortality in emerging fry (91%) for flow velocity >1.15m.s-1
- Prediction of densities and mortalities as a function of water temperature and shelter availability

Results

Conclusion

Conclusion - Prospects

CONCLUSION - PROSPECTS

• Spatial scale of floods influence

- Synchronism of recruitment at the watershed scale

=> Need to be taken into account for diagnosis of population status

- Synchronism between reaches (<75 km), even if they are separated by dams

=> But, need to investigate difference of resiliency of population after floods in function of reach morphology

=> Protection of sections with high resiliency is a major issue with the climate change

CONCLUSION - PROSPECTS

Quantification of key role of floods

- Strength of abiotic mortality among 0+ due to floods → ≠ thresholds of limiting flow

- Translation in one hydraulic threshold thanks to hierarchical bayesian model

Dynamics population models MODYPOP and Hierachical Bayesian Model DYPOP:

Tools which are useful to diagnose status of populations and disentangle the effects of floods from those of other abiotic or biotic parameters

=> 2 softwares in preparation

THANK YOU FOR YOUR ATTENTION

irstea

FÉDÉRATION

