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Introduction

Various uncertainties of soil properties (inherent spatial variability and measurement error) exist in earth dam engineering. Accounting for these uncertainties with specific methods and understanding their effects are of great value for dam design and safety assessment. In the literature, some studies related to probabilistic stability analyses of earth dams can be found [START_REF] Liang | A reliability based approach for evaluating the slope stability of embankment dams[END_REF][START_REF] Gaouar | Reliability of earth dams: an approach based on random fields models[END_REF][START_REF] Babu | Reliability Analysis of Earth Dams[END_REF][START_REF] Yi | Reliability Analysis of High Rockfill Dam Stability[END_REF][START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF]. However, most of the previous works simulated the uncertainties of soil properties by hypothetical or statistical considerations [START_REF] Liang | A reliability based approach for evaluating the slope stability of embankment dams[END_REF][START_REF] Gaouar | Reliability of earth dams: an approach based on random fields models[END_REF][START_REF] Babu | Reliability Analysis of Earth Dams[END_REF][START_REF] Yi | Reliability Analysis of High Rockfill Dam Stability[END_REF].

Another limitation of these existed studies is that soil spatial variabilities were generally ignored, such as in [START_REF] Liang | A reliability based approach for evaluating the slope stability of embankment dams[END_REF][START_REF] Babu | Reliability Analysis of Earth Dams[END_REF][START_REF] Yi | Reliability Analysis of High Rockfill Dam Stability[END_REF]. Additionally, only one reliability analysis result (reliability index or failure probability) was provided and no information about the distribution or the statistical moments for the factor of safety (FoS) was available in these studies [START_REF] Liang | A reliability based approach for evaluating the slope stability of embankment dams[END_REF][START_REF] Gaouar | Reliability of earth dams: an approach based on random fields models[END_REF][START_REF] Babu | Reliability Analysis of Earth Dams[END_REF][START_REF] Yi | Reliability Analysis of High Rockfill Dam Stability[END_REF][START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF].

This paper is dedicated to address the problems mentioned above by presenting a comprehensive reliability analysis of an earth dam. It includes quantification of soil properties, soil variability modelling from real field data, uncertainties quantification and failure probability estimation. The reliability analysis is based on the sliding stability analyses of the dam under steady state flow conditions. The uncertainties of three soil properties (dry density ( ), effective cohesion ( ) and effective friction angle ( )) are considered and simulated by random fields or random variables. The selected soil properties are the most relevant for a slope stability analysis (as showed in [START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF][START_REF] Dawson | Slope stability analysis by strength reduction[END_REF]) and they are sufficient for a probabilistic study under the present design scenario (with a steady state flow condition). An advantage of the studied dam is that it was well documented and there are a large number of measurements available.

More importantly, the measurements are geo-localized during the embankment compaction, which allows a data geostatistical analysis and leads to a representation of by random fields. The random fields of can then be obtained by transforming the ones of using a physical relation (Caquot's relation as the works of [START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF]) and the is simulated by means of random variables. The propagation of these uncertainties is quantified by performing a classical MCS in combination with a mechanical model based on the limit equilibrium method which focuses on computing the dam FoS.

The second objective of the paper is to investigate the performance of four reliability methods. Considering these methods, the results are compared with the ones of MCS.

Since small values of autocorrelation distance are obtained for the considered dam by analyzing the measurements, a large number of random variables (around 2000) is needed to represent accurately the random fields of . The present study becomes thus a very high dimensional stochastic problem. Therefore, the comparison study is focused on evaluating the performance of different reliability methods for very high dimensional stochastic problems. Few studies exist for the comparison of different reliability methods in real engineering problems and no study has been done for the stochastic problems with more than 1000 random variables in the geotechnical field.

The selected four reliability methods to be assessed are explained as follows.

For a reliability analysis, the MCS is always considered as a standard reference to test other methods [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF][START_REF] Sudret | Stochastic finite element methods and reliability. A state-of-the-art-report[END_REF]. However, it suffers from a very low computational efficiency.

Based on the MCS, two advanced sampling methods (Importance Sampling (IS) [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF] and Subset Simulation (SS) [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]) were proposed to reduce the variance of the MCS estimator with a limited number of deterministic model calls. The SS can be used in a reliability analysis with both random variables approach and random fields approach as shown in [START_REF] Ahmed | Application of the subset simulation approach to spatially varying soils[END_REF], whereas the IS is not applicable for some cases with random fields if the involved random variables have no physical meaning. Another sampling-based technique is the Point Estimate Method (PEM) [START_REF] Rosenblueth | Point estimates for probability moments[END_REF] which uses specific samplings to estimate first moments of a system response and then to approximate reliability index by the estimated moments. Alternatively, the first moments can also be determined by performing an MCS until the convergence is reached. Furthermore, the First-Order Reliability Method (FORM) and the Second-Order Reliability Method (SORM) are also commonly used in the field of reliability [START_REF] Babu | Reliability Analysis of Earth Dams[END_REF][START_REF] Mollon | Probabilistic Analysis of Circular Tunnels in Homogeneous Soil Using Response Surface Methodology[END_REF]. They are usually employed in combination with the Response Surface Method (RSM). The aim is to seek a so-called design point by solving a constrained problem. Unfortunately, the FORM, SORM and RSM are not able to handle too many random variables [START_REF] Pan | Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis[END_REF]. During the last decades, meta-modelling techniques have received much attention in the reliability analysis due to their efficiency and accuracy [START_REF] Sudret | Surrogate models for uncertainty quantification: An overview[END_REF]. This technique allows constructing a surrogate model (a.k.a. meta-model) to an original mechanical model. The constructed meta-model is usually expressed in an analytical form. The computational burden is thus quasi-negligible, which enables an MCS with respect to the meta-model. There are several mathematical tools available to reach the goal of a meta-modelling, such as Artificial Neural Networks (ANN) [START_REF] Hurtado | Neural-network-based reliability analysis: a comparative study[END_REF][START_REF] Schueremans | Benefit of splines and neural networks in simulation based structural reliability analysis[END_REF], Kriging model [START_REF] Kaymaz | Application of kriging method to structural reliability problems[END_REF][START_REF] Echard | AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF][START_REF] Li | An efficient uniform design for Kriging-based response surface method and its application[END_REF] and Polynomial Chaos Expansions (PCE) [START_REF] Sudret | Polynomial Chaos Expansions and Stochastic Finite Element Methods[END_REF][START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF]. In the context of high dimensional stochastic problems, some dimension reduction techniques were introduced and combined with the meta-modelling to improve its performance, such as the SPCE/GSA [START_REF] Soubra | Efficient sparse polynomial chaos expansion methodology for the probabilistic analysis of computationally-expensive deterministic models[END_REF] and the SPCE/SIR [START_REF] Pan | Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions[END_REF] which were proposed in recent years. They use respectively the GSA and the SIR to reduce the number of the involved random variables at first stage, and then to construct an accurate SPCE meta-model based on the reduced dimension. In summary, the selected reliability methods for the comparative study in the article are thus: a variance reduced MCS (the SS), an MCS-based moment method (the MM), and two meta-modelling methods for high dimensional stochastic problems (the SPCE/GSA and the SPCE/SIR).

The studied dam was investigated in a probabilistic framework by Guo et al. in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF].

The authors studied the dam reliability by using the SPCE with the field data. The soil variabilities of , were simulated by means of random variables. Two deterministic models were developed in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] for evaluating the dam FoS. The present study is dedicated to extend the studies in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] by conducting a variogram analysis on the geo-localised measurements to consider the soil spatial variabilities, and to compare different reliability methods in related to the considered dam reliability. The main objectives of the article are to present a thorough probabilistic stability analysis of an earth dam, and to conduct a comparative study on the performance of different reliability methods in a context of high dimensional stochastic problems. The presented procedure and obtained results could help designers to better understand reliability analyses of earth dams using real data, and to choose more specifically reliability methods for future problems.

Random fields and Reliability analysis methods

This section aims at presenting all the reliability analysis tools used in the article. It includes the method for generating random fields, the variogram analysis and the selected reliability methods.

Simulation of random fields by the Karhunen-Loève expansion (K-L)

In this study, the K-L expansion method is adopted to simulate random fields. Let us consider a stationary Gaussian random field , in a bounded domain .

Following the principles of the K-L expansion, , can be expressed as [START_REF] Baecher | Reliability and Statistics in Geotechnical Engineering[END_REF]:

, = + ≈ + (1) 
where represents the coordinates of an arbitrary point in , and are respectively the mean value and the standard deviation of the random field, is a vector of standard uncorrelated random variable, and are respectively the eigenvalues and the eigenfunctions of the autocovariance functions of the random field, and is the size of the series expansion for the truncated form. An autocovariance function is defined as the product of the variance and the autocorrelation function which gives a correlation value between two arbitrary points !, " and ! , , " , in . In this study, an exponential autocorrelation function is used [START_REF] Sudret | Stochastic finite element methods and reliability. A state-of-the-art-report[END_REF].

The value of depends on the desired accuracy, the autocorrelation distance (# $ , # % ) and the dimension of the random field. It can be determined by evaluating the error estimation of the truncated series expansion. The error estimate based on the variance of the truncated error for a K-L expansion with terms is given by [START_REF] Phoon | Numerical recipes for reliability analysis -a primer[END_REF]:

& = 1 Ω ∫ * +1 - - . Ω (2) 
In order to obtain a sufficient accuracy in terms of the variance error for random fields, Li and Der Kiureghian [START_REF] Li | Optimal discretization of random fields[END_REF] recommended that the stochastic grid size of a random field can be set as 0.2 times the autocorrelation distance. For the cases of non-Gaussian random fields, it can be achieved by an isoprobabilistic transformation once a Gaussian random field is obtained using the K-L expansion [START_REF] Cho | Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing[END_REF][START_REF] Li | Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[END_REF].

Variograms

A variogram is a function which provides a description of how data are correlated.

The first step of a variogram analysis is to construct an experimental variogram which describes the correlation between any two values of the observation data separated by a distance ℎ. The experimental semivariogram * is defined as [START_REF] Baecher | Reliability and Statistics in Geotechnical Engineering[END_REF]:

* ℎ = 1 22 3 45 -5 6 7 - 3 (3) 
where 5 and 5 6 represent all the possible pairs of samples which are separated with a distance of ℎ, and 2 3 is the number of the pairs of 5 and 5 6 . This calculation should be repeated for as many different values of ℎ as the observation data will support.

Then a mathematical model is applied to the experimental semivariogram in order to represent an autocorrelation structure over the whole study area and to estimate autocorrelation distances. One of the most common variogram models is the exponential model, which is used in this study and whose equation is [START_REF] Baecher | Reliability and Statistics in Geotechnical Engineering[END_REF]:

ℎ = 81 -9 : ;3/= > (4) 
The parameter represents the range of the variogram (also called autocorrelation distance), and is the sill value at which the variogram levels off. Figure 1 shows the characteristics of a variogram analysis. The MCS method has been widely employed in reliability analyses [START_REF] Wang | Efficient Monte Carlo Simulation of parameter sensitivity in probabilistic slope stability analysis[END_REF]. For an MCS with 2 ?@ model runs, the failure probability is given as:

AB = 1 2 ?@ * C D EFG 6 C = 1 HB I < 0; C = 0 9MN9 (5) 
where C is an index of failure and I presents a performance function. The number of 2 ?@ should be large enough in order to obtain an accurate failure probability. The coefficient of variation (CoV) of AB for a MCS can be calculated by [START_REF] Phoon | Numerical recipes for reliability analysis -a primer[END_REF]:

OP QR = 1 -AB / 2 ?@ * AB * 100% (6) 
Although this method suffers from low computational efficiency, it often serves as a standard reference to test other reliability methods because of its versatility and robustness. In this article, the reliability analysis of the studied dam is performed by the MCS and the obtained results are used to evaluate the accuracy and the efficiency of the selected reliability methods which are presented in next sub-sections.

Subset simulation (SS)

In order to tackle the problem of using the MCS especially for low failure probability cases, the SS was developed by [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]. The principle is to decompose a failure event T into a sequence of intermediate events UV , V -, … , V X Y with larger probabilities of occurrence. The target failure probability is written as [START_REF] Li | Matlab codes of Subset Simulation for reliability analysis and structural optimization[END_REF]:

AB = A T = A V Z A V |V : X - (7) 
where A V |V : is the conditional failure probability of the event V |V : . A key element of successfully using the SS is the generation of the conditional samples in each intermediate event. This is achieved by using the modified Metroplis-Hasting algorithm (MMH) in this article.

Moment method approximation (MM)

The MM was introduced by [START_REF] Zhao | Moment methods for structural reliability[END_REF] for structural reliability analyses. A well-known MM is the second-moment approximation (SM). It assumes that a system response follows a normal distribution and uses the first two moments to estimate the reliability index.

In the present study, a fourth-moment approximation (FM) is also used to estimate the dam failure probability since it can give more accurate results compared to the SM as reported in [START_REF] Napa-García | Reliability analyses of underground openings with the point estimate method[END_REF]. The formulas of the two adopted MM methods (SM and FM) are given as follows [START_REF] Zhao | Moment methods for structural reliability[END_REF]:

\ ? = ] ]
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where \ ? , AB ? and \ _? , AB until all the desired moments are converged.

Spares polynomial chaos expansion/Global sensitivity analysis (SPCE/GSA)

The SPCE/GSA was proposed by [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] and improved by Al-Bittar et al. [START_REF] Soubra | Efficient sparse polynomial chaos expansion methodology for the probabilistic analysis of computationally-expensive deterministic models[END_REF] for high dimensional stochastic problems. The SPCE presents a suitable sparse basis of the PCE. The sparse basis can be built by a stepwise regression algorithm as described in [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF][START_REF] Blatman | Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[END_REF][START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]. By using the SPCE, A model response can be expanded as [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]:

f ≅ h i Ψ i i∈ℕ E (10) 
where = m , -, … , ? n are independent random variables, Ψ i are multivariate polynomials, h i are unknown coefficients to be computed and i = ma , … , a ? n is a multidimensional index. In this paper, the hyperbolic truncation scheme proposed in [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF] is used to truncate the series expansion and the unknown coefficients h i are computed by using the least-regression method [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF].

Concerning the GSA, it allows quantifying contributions of an input variable to the response variance of a physical model [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] introduced an analytical way to compute the Sobol index (a sensitivity index) by post-processing the SPCE coefficients. The Sobol index of one variable can be calculated as:

= ∑ h 6 -TU Ψ i -Y i∈p q r ∑ h 6 -TU Ψ i -Y i∈p (11) 
where h 6 are PCE coefficients, s is a truncation set, s t r is a subset of s in which the multivariate polynomials Ψ i are only functions of the random variable (i.e., they only contain the variable ), and

TU Ψ i -Y is the expectation of Ψ i -.
As a summary, the SPCE/GSA implementation for a reliability analysis consists of 3 steps:

1. Select significant input variables by performing a GSA based on a 2-order SPCE.

It should be noted that the SPCE order has almost no influence on the Sobol index, so an SPCE with the order 2 can accurately provide contributions of each input variable to system response variabilities [START_REF] Soubra | Efficient sparse polynomial chaos expansion methodology for the probabilistic analysis of computationally-expensive deterministic models[END_REF][START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF], 2. Construct a meta-model using a high-order SPCE with the selected variables (effective dimension), 3. Perform an MCS using the obtained meta-model to compute the system response PDF and the failure probability.

Study case presentation: soil properties available and variability modelling

This section focuses firstly on presenting the studied earth dam and describing the available field data. Then, the statistical parameters of the three soil properties ( , ) required for generating random fields or random variables are determined using the field data. In the foundation, a waterproof grout curtain was realized with a depth of 15 m.

Presentation of the studied dam

Figure 2. Main cross section of the studied dam

As presented in Figure 2, the dam is formed by three different zones including a core and two backfill zones in respectively the upstream and downstream part of the core.

These three zones are respectively named as Core, Shell-1 and Shell-2 in this article.

The materials constituting the dam were collected from the vicinity of the dam site.

Two different types of soils can be identified in the valley. The first type is gravelly sands resulting from alteration of shales on the slopes and uplands which dominate the valley. This material is used for the construction of the Shell zone. The second soil type, sandy silts, can be found on the bottom of the valley and on the slopes. It was used for the construction of the Core zone. The foundation is composed of altered schists whose superficial layers have been purged. Its location is very close to the Shell zone according to the site investigation and granulometric analyses.

The available field data

Different data are available on the studied earth dam in several phases: design studies, construction controls and structure monitoring. This article presents only the field data which are relevant to the stability analysis of dams: dry density measurements collected during the construction and the results of the triaxial tests performed in laboratories. The former is directly related to the and the latter allows estimating and .

Embankment compaction

During the construction, the dry density and the soil water content after compaction were monitored in-situ using a gammadensimeter. This leads to a large number of data. An advantage of these data is that they were collected following a grid monitoring system. This makes it possible to localize the measurements in space (along three axes). The grid system consists of 10 profiles in the longitudinal direction (Y axis) and 13 profiles in the transversal direction (X axis). Such a grid system allows determining the location of the measurements on an X-Y plan and the knowledge of the construction layer gives the elevation of the measurements along the Z axis. In total, the number of effective geo-localized measurements is 381 for the Core zone, 248 for the Shell-1 zone and 272 for the Shell-2 zone.

Triaxial shear tests

The shear strength parameters were determined by triaxial shear tests. For a long-term stability analysis of earth dams, the effective cohesion and friction angle are required. The considered dam is actually a pseudo-zoned earth dam.

Variability modelling of the soil properties

In the present study, soil variability modelling consists of two steps. Firstly, an appropriate distribution type is assumed and then the relating distribution parameters are determined by fitting the measurements to the assumed distribution. Secondly, autocorrelation structures are estimated through a variogram analysis based on the geo-localized measurements. It is noted that the first step is directly related to the works in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF]. Therefore, only a brief description of the first step is given in the following parts.

First step: Distribution type and relating parameters

Two distribution types (beta and truncated normal distribution) are adopted as a candidate, in this article, to describe the measured data of , . The reason of choosing the two distribution types is that they can avoid unreasonable values by considering a physical range of soil properties. By fitting the measurements with the beta or truncated normal distribution, the corresponding soil parameter can be described as a random variable. The best fitted parameters are estimated using the maximum likelihood estimation method, and the bounded values are determined according to the soil type and the reference values recommend in [START_REF] Phoon | Characterization of geotechnical variability[END_REF][START_REF] Structx | Density Ranges for Different Soil Types[END_REF].

The procedure of the first step mentioned above can be easily applied to the measurements of since many data exist for this soil property in each zone of the dam. However, the number of the available triaxial tests is only 8 and it does not allow a meaningful statistical estimation of the distribution parameters for and .

In order to address this problem, [START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF] introduced a method which can generate a large number of artificial data for and with limited triaxial test results. This method is also adopted in the works of [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] to determine the distribution parameters with the beta or truncated normal distribution for and of the studied dam. With this method, the distribution parameters for all the three soil properties ( , ) can be obtained. Table 1 gives a summary of the distribution parameters for each zone. As an illustration, Figure 3 and Figure 4 present respectively the histogram and the two fitted CDF curves for the measurements in the Core zone, and for the generated in the Shell zone. The method introduced by [START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF] for determining the distribution parameters of ′ and ′ is based on a linear regression performed on the top of the Mohr circles. This method assumes that the intermediate parameters (the y-intercept and the slope of the Kf line) which are used for estimating the values of ′ and ′ , are two uncorrelated normal variables. Therefore, no correlation is considered between the shear strength parameters in this paper. According to previous works [START_REF] Jiang | Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method[END_REF] on slope reliability analyses, ignoring the correlation between ′ and ′ which is usually negative [START_REF] Tang | Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis[END_REF], leads to conservative estimates of failure probabilities. The second step aims at determining the autocorrelation structure of the simulated soil property for each dam zone. The method [START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF] adopted for generating values of and cannot provide the location information. Therefore, only the autocorrelation structure of is estimated. It could be realized by a variogram analysis on the geolocalized measurements. Taking the Shell-2 zone as an example, an experimental semivariogram is firstly obtained by applying Eq. ( 3) to all the measurements of this zone. Then, the autocorrelation distances can be estimated by fitting a mathematical model (exponential one in this paper) to the experimental semivariogram. Figure 5 shows the experimental semivariogram together with the fitted exponential model for both horizontal and vertical directions. It can be observed that the variance between two measurements increases with the increase of its separation distance. The variance roughly reaches a constant value after the distance beyond 5-7m for the horizontal directions. For the vertical direction, it converges when the distance is bigger than 1.5m (lower value than for the horizontal direction).

The black points in Figure 5 represent the points which reach 95% of the sill value. It is considered that the abscissa of these points is the autocorrelation distance. For the cases in Figure 5, the horizontal and vertical distances are respectively 4.9 m and 1.9 m. It indicates that the soil is less homogeneous in the vertical direction than in the horizontal direction. This finding is consistent with the observations of [START_REF] Tang | Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis[END_REF][START_REF] Lumb | Safety factors and the probability distribution of soil strength[END_REF]. By repeating the same procedure to the measurements in the other two zones Core and Shell-1, all the necessary autocorrelation distances are obtained and presented in Table 2.

Table 2 indicates that a considerable homogeneity can be found in the Shell-1 zone, while the in the Shell-2 and Core zones are more spatially variable. This difference can be explained by the better selection of the material composing the upstream zone and the greater attention which has given to its construction. The nugget effect corresponds to about a half of the variance for the upstream shoulder and to a slightly lower fraction for the downstream shoulder and the core. The nugget effect can be attributed to the mixture of the materials during their excavation from the borrow pits.

In our case, it is considered as a short dimension structure whose scale is less than the sampling step. Shell-2 4.9 m 1.9 m 1.0×10 -3 As presented in section 2.1, a K-L expansion should be truncated to a limited number of series terms for practical applications. The value of can be determined by evaluating the error defined by Eq. ( 2) with a prescribed accuracy. This error depends on the autocorrelation distances and size of a random field. For an accuracy between 10% and 9%, the is estimated to be equal to 30, 368 and 1710 for respectively the Shell-1, Core and Shell-2 zones (considering their site dimension and the relating Ly=1.9m

autocorrelation distances presented in Table 2). Therefore, it needs 1710 random variables to represent accurately a random field of in the Shell-2 zone. Such small values of the # $ and # % in the Shell-2 zone lead to the present study become a very high dimensional stochastic problem.

Seismic loading condition

A pseudo-static acceleration is considered in this study in order to take into account seismic loading conditions. The value of the acceleration is set equal to 2.4 m.s -2 . It is determined according to the location of the considered dam with respect to the seismic zones in France and the category of the dam [START_REF] Loudière | Risque sismique et sécurité des ouvrages hydrauliques[END_REF]. The seismic acceleration used in the calculation is considered to be related to a return period of 5000 years. This means that the failure probability directly obtained under such a pseudo-static acceleration should be multiplied by 1/5000 to consider the seismic occurrence probability. The two types of failure probability are respectively noted as AB z{|} and AB |~• in the study.

Presentation of the deterministic models

Two deterministic models were developed in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] for computing the dam FoS. The first one is a numerical model based on the strength reduction method, and the second one is an analytical model based on the limit equilibrium theory. The latter is employed in this article to perform the deterministic calculations in the reliability analyses since it can give similar FoS values compared to the numerical model but with a lower computational time. Such an advantage is very significant and important for a reliability analysis which needs usually a large number of calls to a deterministic model. Concerning the numerical model, it was developed for providing the pore water pressure distribution inside the dam and validating the analytical model.

This section aims at presenting the two models briefly. In the end, a comparison study between the two models is conducted in order to validate the analytical model in the context of random fields.

The numerical model

The numerical model in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] was created using Flac2D which is a two-dimensional explicit finite difference program [START_REF]Itasca. FLAC 7.0 reference manual[END_REF]. The boundary conditions used in this model are the following ones: the displacements are blocked following the horizontal and vertical axis on the base of the model; the horizontal displacements are blocked on the lateral edges of the model. Figure 6 presents a mesh used for the following calculations. The mesh includes around 18000 4-node quadrilateral plane elements.

The selected number of the elements was determined by a mesh refinement study [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF]. The created model allows calculating the pore water pressure distribution inside the dam by applying a hydrostatic head in the upstream. The dam FoS is computed based upon the strength reduction method [START_REF] Dawson | Slope stability analysis by strength reduction[END_REF]. 

The analytical model

The analytical model proposed in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] is based on the limit equilibrium theory in combination with a genetic algorithm (GA) [START_REF] Li | An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm[END_REF]. The principle is to generate a number of trial slip surfaces as an initial population at first, and then to search the minimum FoS value by simulating natural process along generations including reproduction, crossover, mutation and survivors' selection. The FoS of a given slip surface is computed by using the procedure of Zhu et al. [START_REF] Pan | Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions[END_REF] which is based on the Morgenstern Price method, and the slip surface generation method described in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] is adopted which allows generating non-circular slip surfaces. It is also noted that the pore water pressures at the base of each slice are determined using the ones obtained by the numerical model. For more details about the model, readers are referred to [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF].

Validation of the analytical model

It was shown in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] that the analytical model is able to give similar FoS values in a deterministic calculation and similar reliability results in a probabilistic calculation compared to the numerical model. However, the comparison and validation studies conducted in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF] are only related to the cases of random variables. The performance of the analytical model in the context of random fields is thus still unknown. In order to address this issue, a comparison study is carried out and presented in this section.

The idea is to generate 2 |~X random fields for ϕ and γ … , and 2 |~X random variables for C . For each set of input parameters, the two deterministic models are both performed. The obtained FoS values are then compared with each other to evaluate the accuracy of the analytical model. The numerical model is adopted as a reference to assess the performance of the analytical model for the following reasons: 1) no assumptions are needed concerning the failure surface, 2) no assumptions on interslice side forces are needed, since there is no concept of slices, and 3) no optimization procedure is needed since the minimum FoS and the critical slip surface are obtained automatically.

In total 150 sets of input parameters are considered in the comparison study. Each set of input parameters is obtained randomly and is composed of three random fields of , three random fields of and two random variables of . The other soil parameters, except , , required for the numerical model are taken from the values given in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF]. The values of the GA parameters in the analytical model are the same to the ones in [START_REF] Guo | Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion[END_REF]. As an illustration, a realization of three random fields of are mapped to the numerical model and presented in Figure 7. Using the Caquot's relation, three random fields of are also obtained and shown in Figure 8. 

Reliability analysis results by the reference method MCS

This section presents the reliability analysis for the studied dam using the reference method MCS. The uncertainties in the soil properties , are quantified using random fields or random variables with the parameters presented in the sections FoS (analytical model)

3.2 and 3.3. In addition, the effect of autocorrelation distances on the dam failure probability is discussed.

Reliability analysis results

20 000 deterministic calculations are performed in the reliability analysis by an MCS with the Latin Hypercube sampling technique. For each calculation, 2 110 independent standard random variables are generated firstly. The first two are transformed to physical values of using the iso-probabilistic method with the specific PDF presented in Table 1. The rest are used in the K-L expansion for the generation of the three random fields of . The three random fields of are then obtained by a transformation from those of using the Caquot's relation.

Figure 10 shows the PDF of the obtained 20 000 FoS values for the two distribution types, and Table 3 gives the reliability results. 2). This is because of the probability of generating a small value of in the Shell zone drawn from the fitted beta distribution is higher than the truncated normal distribution, as presented in Figure 4. In addition, the two curves are not symmetric.

They are considered to be negatively skewed with a relatively bigger tail at the left. It can be explained by the fact that the distribution of the input variables is not symmetric and that some variables have more small values, such as in the Shell zone as shown in Figure 4.

The direct failure probability AB z{|} of the dam under a pseudo-static acceleration of 2.4 m.s -2 is estimated to be equal to 0.022 and 0.016 respectively by the two distributions. These values are then multiplied by a coefficient of 1/5000 to consider the seismic occurrence probability and become equal to 4.4×10 -6 and 3.2×10 -6 respectively. As for the statistical moments of the FoS values, the beta assumption gives a slightly lower value for the mean but a bigger value for the standard deviation, compared to the truncated normal assumption. A big value of standard deviation means a high level of data scatter. This is consistent with the observation in Figure 10.

In conclusion, the dam failure probability under a pseudo-static loading condition is estimated to be around 4×10 -6 . The two distribution assumptions lead to similar results with the same order of magnitude. The beta distribution gives slightly more conservative results in term of the failure probability. As the beta distribution describes better the variability of the soil properties as shown in Figure 4 and is conservative in the design, this type of distribution is adopted for the next analyses.

Influence of the autocorrelation distance

One of the factors which can influence reliability results is autocorrelation distance. It defines by means of an autocorrelation function, the autocorrelation structure of a random field. According to a literature review given by El-Ramly et al. [START_REF] El-Ramly | Probabilistic stability analysis of a tailings dyke on presheared clay-shale[END_REF], the autocorrelation distance for soils is usually within a range of 10-40 m in the horizontal direction, while it ranges between 1 and 3 m in the vertical direction. It is found that the # $ and # % in the Shell-1 zone (Table 2) are bigger than the values indicated in [START_REF] El-Ramly | Probabilistic stability analysis of a tailings dyke on presheared clay-shale[END_REF] while the # $ in the Shell-2 zone is smaller than expected values. Therefore, careful attention must be done to these parameters and their induced influence on the reliability analysis.

Finally, the impact investigation is focused on the value of # $ in the Shell-2 zone while the estimated autocorrelation distances in the Shell-1 zone are accepted for the values in Table 2. The reasons are as follows: 1) the obtained large values of # $ and # % are expected for the Shell-1 zone since the materials are better selected and more attention are given to its construction; 2) the upstream part of the backfill embankment is considered to have a very limited influence on the dam stability under steady state flow conditions; 3) large values of autocorrelation distances may lead to bigger failure probabilities, so conservative designs as pointed in [START_REF] Pan | Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis[END_REF][START_REF] Cho | Effects of spatial variability of soil properties on slope stability[END_REF][START_REF] Liu | Conditional random field reliability analysis of a cohesion-frictional slope[END_REF].

For the # $ value in the Shell-2 zone, a first improvement is made by fitting the experimental semivariogram with other theoretical variogram models such as the Gaussian and the spherical models [START_REF] Fenton | Risk Assessment in Geotechnical Engineering[END_REF]. The # $ is estimated to be equal to 6.7m for the Gaussian model, and to 4.7m for the spherical model. These values are both different to the one estimated with the exponential model (4.9m) as shown in the section 3.3, and these differences may induce an impact on the dam failure probability.

In order to quantify the influence induced by different values of # $ , a parametric study is conducted. Several values of # $ in the Shell-2 zone are tested using the MCS.

The objective is to investigate the evolution of the dam failure probability with the # $ value. For the sake of simplicity and clarity, the other values of autocorrelation distance are rounded to integer values (see details in Table 4). In addition, the # $ value in the Core zone is also varied. Totally, four cases are selected for the parametric study. The # $ value in the Core and Shell-2 zones are decreased from 80 to 10m. These four cases allow investigating the influence of the horizontal autocorrelation distance in the Core and Shell-2 zones on the dam failure probability.

The reference case in Table 4 refers to the values estimated by the variogram analysis with the exponential model (see Table 2). probabilities together with the one of the reference case. The first two moments of the dam FoS for each case are also given in Figure 11. decreases, the AB decreases. For example, a decrease of # $ from 80 to 10 m results in a reduction of about 10% for the AB (from 0.0295 to 0.0259). This finding has already been confirmed by many researchers for different geotechnical engineering [START_REF] Pan | Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis[END_REF][START_REF] Cho | Effects of spatial variability of soil properties on slope stability[END_REF][START_REF] Liu | Conditional random field reliability analysis of a cohesion-frictional slope[END_REF]. Concerning the statistical moments, the mean value remains almost constant whereas the standard deviation increases when increasing the # $ . This indicates that the # $ has no impact on the mean value of the dam FoSs, whereas it affects the FoSs dispersion of the dam. The reference case corresponds to the lowest failure probability and the smallest standard deviation.

Shell-1 Core Shell-2 # $ (m) # % (m) # $ (m) # % (m) # $ (m) # % (m)

A comparative study of different reliability methods

This section presents the results and the relating interpretation of the comparative study of the four selected approximated reliability methods. The objective is to evaluate the performance of the considered methods for very high dimensional stochastic problems.

The parametric study on the autocorrelation distance (presented in section 5.2) is reperformed by the four reliability methods (SS, MM, SPCE/GSA and SPCE/SIR) which are mentioned in the section Introduction and presented in section 2.3. The obtained results in term of the failure probability for each case are plotted in Figure 12, and the numbers of calls to the deterministic model (2 |=OEOE ) for each case are summarized in Table 5. Additionally, the results of the MCS are also provided and considered as a standard reference for the comparison. In Table 5, the number of required random variables ( 2 •Ž = 2 •Ž_•' + 2 ) for representing , by means of random fields or random variables is given as well. The 2 •Ž_•' is the number of random variables needed for generating relatively accurate random fields of by using the K-L expansion method, and the number 2 represents the two random variables of in the Shell and the Core zones. The information in Table 5 helps to visualize the effiency of each method by comparing the 2 •Ž with the 2 |=OEOE . In other words, the efficiency of these three methods is not related to the number of input random variables, but depends on, in fact, the value of the target failure probability. However, the 2 |=OEOE of the two metamodelling methods (SPCE/GSA and SPCE/SIR) increases rapidly with increasing the 2 •Ž . This indicates that the efficiency of the meta-modelling method depends strongly on the number of input random variables. Indeed, more input variables means that more information is needed. Thus, a higher 2 |=OEOE will be required for constructing a meta-model which will be used to replace an original mechanical model.

The following subsections give a detailed interpretation of the comparative study for each reliability method. In the end, some concluding remarks of the comparative study are summarised.

The SS

This method is the most efficient one, according to samples. This results in a large number of repeated samples in the SS. Given that the number of these repeated samples is not constant (i.e. random) for each SS, the obtained results are thus not steady.

The SPCE/SIR

According to Figure 12, this method gives always lower failure probability than the MCS. This can be explained by the fact that a dimension reduction technique is employed. As the dimension is reduced, the variability of the input parameters is reduced. The estimated failure probability is thus smaller. Compared to the SS, this method has a better performance in the parametric study i.e. the obtained values show a clear reduction trend of AB with decreasing # $ . Concerning the efficiency, the 2 |=OEOE is found not constant for different cases but increases from the Case 1 to the Reference case. The 2 |=OEOE for the Reference case is even very close to the MCS one.

An explanation is given as follows. The required number of input random variables for the random field generation increased since the # $ becomes smaller. Therefore, the construction of a meta-model needs more training points i.e. more deterministic simulation. As a result, it is not recommended to use this method if the 2 •Ž is large (e.g. >2500) from a point of view of efficiency.

The SPCE/GSA

This method is the most accurate one based on Figure 12. The obtained values of AB are extremely close to the ones of the MCS. Except to this remark, similar observations to the SPCE/SIR can also be noted: 1) the estimated values of AB are all lower than those of the MCS; 2) the parametric study can be correctly conducted; 3) the 2 |=OEOE increases with decreasing the # $ and the 2 |=OEOE for the Reference case is even very close to the one of the MCS. The interpretation to these observations given above remains valid as well for this method. In addition, it is found that this method is always less efficient than the SPCE/SIR. This difference originates from the different dimension reduction techniques employed in the two methods. For the SPCE/GSA, it should always construct a 2-order meta-model with a full dimension. On the contrary, the dimension is reduced before constructing meta-models in the SPCE/SIR. For very high dimensional stochastic problems, considerable deterministic simulations are required even for constructing a 2-order SPCE meta-model.

The MM

This method is the second efficient one according to Table 5 and it shows also a good performance in estimating the value of AB . Given its simplicity and easy implementation procedure, it is a good alternative to the MCS for such a very high dimensional stochastic problem. However, this article only evaluates the MM for the cases of relative high failure probability. Careful attention should be paid when applying this method to calculate low failure probabilities since it may lead to large errors as pointed out in [START_REF] Napa-García | Reliability analyses of underground openings with the point estimate method[END_REF]. Besides, this method is not able to carry out a parametric study of # $ as expected since the obtained AB results fluctuate. Theoretically, the collection of all the moments (of all orders, from 0 to ∞) uniquely describes a bounded distribution. Then, failure probabilities can be determined by estimating the tail area of the distribution. In the present study, only four moments are collected and the tail area is estimated by an approximated way (Eq. 8 and 9). The induced errors are not related to the 2 •Ž or # $ of the problem but depend on the complexity of the FoS distribution and the target value of the dam failure probability (tail area). It may lead to a large error for a lower AB but a small error for a higher AB. As a result, the obtained AB values in the parametric study are not monotonously decreasing.

Concluding remarks

Here gives a summary of the remarks observed in Figure 12 and Table 5.

a) The most accurate method is the SPCE/GSA and the most efficient one is the SS.

b) The efficiency of the two meta-modelling methods strongly depends on the number of input variables, while the 2 |=OEOE of the sampling-based methods (the SS and the MM) is related to the target value AB. As the AB doesn't vary significantly from Case1 to the Reference Case, the 2 |=OEOE of SS and MM is more or less changeless.

c) The sampling-based methods cannot produce a consistent evolution of AB in the parametric study of the # $ whereas the meta-modelling methods perform well in such a study.

d) The sampling-based methods are more efficient than the two considered metamodelling methods for very high dimensional stochastic problems.

e) The two meta-modelling methods estimate smaller values of AB compared to the MCS. This is because that dimension reduction techniques are employed in these two methods.

It should be noted that the conducted comparative study is related to a case of a relatively high failure probability (order of 10 -2 ). The performance of the four methods for estimating low failure probabilities (e.g. <10 -4 ) in the context of very high dimensional stochastic problems is not investigated and thus unknown. This is a difficult issue in the field of reliability analyses to assess an approximated method for very low AB, since the consuming time of running an MCS is very high even with a simplified deterministic model. The present study provides first insights into the performance of the four reliability methods in the context of very high stochastic problems, and some concluding remarks (e.g. the points b, c and e mentioned above) can be extended to the cases of low AB.

Conclusions and perspectives

In this article, a probabilistic stability analysis of an earth dam is presented. The uncertainties in three soil properties ( , ) are considered in the analysis and quantified by exploiting the project-specific data. A large number of available geolocalized measurements allow accounting for the soil spatial variability by estimating the autocorrelation structure with a variogram analysis. The MCS is adopted for performing the reliability analysis. Two distribution types for the input random variables are considered and compared in the article. Besides, the effect of the # $ on the dam AB is investigated. Such a study is original because it uses real dam construction data, proposes using the benefits of geostatistics (a very high dimensional stochastic problem) and presents a procedure on how to produce meaningful statistical estimations of soil variability with limited measurements. This study can then be used as a part of a global dam safety assessment combined with a risk analysis as reported in [START_REF] Peyras | Probability-based assessment of dam safety using combined risk analysis and reliability methods -application to hazards studies[END_REF]. This study also has some weakness points which will allow possible improvements for future works:

-It is commonly recognized that a negative correlation exists between and [START_REF] Tang | Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis[END_REF]. However, no correlation is considered in this study for the two soil properties due to the limited number of available triaxial test results and the employed method [START_REF] Mouyeaux | Probabilistic stability analysis of an earth dam by Stochastic Finite Element Method based on field data[END_REF] for generating the values of and .

-The is represented by means of random variables. Its spatial variability is thus ignored in the present study, -For the sake of simplicity and consistency with other studies, only stationary unconditional random fields are considered in this article. The effects of more complex random fields (non-stationary or conditional) could be investigated in future studies, -The performance of the four reliability methods is only assessed for the cases of relatively high failure probability. For the cases with low AB, the accuracy and efficiency of the four methods remain unknown for very high dimensional stochastic problems. 
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 123231 Figure 1. Characteristics of a variogram analysis
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 2 Figure 2 presents the main cross section of the considered dam. It is a 170 m long and 23.8 m high earth-filled dam located in the west of France. It closes a valley covered with alluvial deposits and can retain a reservoir of about 5 hm 3 . The normal and maximal reservoir water level is respectively 20 and 21.6 m. In the downstream part, two filter drains were installed for the purpose of lowering the phreatic surface [38].
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 34 Figure 3. Histogram and fitted CDF for the v w measurements in the Core zone
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 5 Figure 5. Variogram analysis for the v w measurements in the Shell-2 zone Table 2. Results of the geostatistical analysis for the v w measuremetns
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 6 Figure 6. The numerical model mesh of the studied dam
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 9 Figure 9 presents a direct comparison of the FoS values computed with the two models for the 150 different parameter sets. It is shown that the results are close to the unit line and relative errors are smaller or around 5%. These observations indicate that the analytical model is able to estimate an accurate FoS value for the studied dam considering random fields. Therefore, the analytical model is validated and can be used for deterministic calculations for the following reliability analyses.
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 10 Figure 10. PDF of the FoS values obtained by the MCS with two distributions
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 11 Figure 11. Influence of the Š on the dam failure probability
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 12 Figure 12. Comparison of the failure probability obtained by the five reliability methods

  By benefiting to the results of the deterministic simulations collected in the performed MCS, a comparative study is carried out. It aims at evaluating the performance of different reliability methods for very high dimensional stochastic problems. Both the accuracy and efficiency are considered in the comparison. The results show that the most accurate method is the SPCE/GSA and the most efficient method is the SS. The efficiency of the methods SS and MM are independent to the number of input variables while the necessary 2 |=OEOE of the methods SPCE/GSA and SPCE/SIR can be very important (close to the 2 |=OEOE of an MCS) when a large number of random variables are involved. For a first order estimate, the methods SS and MM are sufficient to give relatively accurate results. Nevertheless, it should be noted that these two methods were not sufficiently accurate for the parametric study of # $ since the obtained values of AB fluctuate.

  Among the 8 tests, 5 tests are for the Shell zone and the other 3 for the Core zone. By plotting the Mohr circles of the effective stress at failure, the values of and u can be estimated using the Coulomb line (approximately tangent to all the circles). Using this method, the results of each test can be exploited to compute the values of and . According to the 8 available tests, the average of is estimated to be equal to 9.4 kPa for the Shell zone and to 10 kPa for the Core zone. For , a value of 34.2 o was obtained for the Shell zone and of 34.3 o for the Core zone. It can be found that the shear strength parameters for long term of the two soils are very close to each other. In fact, the two materials are relatively similar as they derive from the schists alteration composing the bedrock.

Concerning these parameters, totally 8 consolidated-undrained triaxial shear tests with pore water pressure measurement are available.

Table 1 . Distribution parameters of the soil properties

 1 

	Zones Soil property (g/cm 3 )	1 15.7	Beta	y 1 18.0	Truncated normal Extreme values Mean CoV 2 (%) Min Max 1.99 3.21 1.63 2.40
	Shell-1	(kPa)	1.48		2.78	10.55	57.63	0	30
		( o )	28.71 29.61 34.85	3.72	25	45
		(g/cm 3 )	22.4		27.5	1.83	3.33	1.44	2.32
	Core	(kPa)	4.07		5.22	13.23	34.21	0	30
		( o )	231.16 192.28 34.11	2.48	15	50
		(g/cm 3 )	26.7		22.2	2.05	2.65	1.63	2.40
	Shell-2	(kPa)	1.48		2.78	10.55	57.63	0	30
		( o )	28.71 29.61 34.85	3.72	25	45
	Note: 1 Beta distribution parameters; 2 Coefficient of variation	

3.3.2 Second step: Autocorrelation structure

Table 3 . Reliability results obtained by the MCS with two distributions

 3 

	Distribution Beta	Failure probability AB z{|} AB |~• OP QR 0.022 4.4×10 -6 4.71%	Statistical moments of FoS Mean Standard deviation 1.232 0.108
	Truncated normal	0.016	3.2×10 -6 5.61%	1.248	0.097
	From Figure 10, it can be observed that the PDF curve obtained by the truncated
	normal distribution (AˆV D ) is taller and narrower than the one of beta distribution ( AˆV

‰ ). It means that the FoS values are less dispersive if a truncated normal distribution is assumed for the input random variables. More precisely, the two PDF curves are almost superposed for relative high FoS values (bigger than 1.4), while the AˆV D is significantly lower than the AˆV ‰ for relative small FoS values (smaller than 1.

Table 4 .

 4 Selected values of Š and Š ‹ for the parametric study

  By adopting different values of autocorrelation distance as shown in Table4, four complementary MCSs are performed. Figure11plots the four obtained failure

	Case4	80	8	10	2	10	2
	Reference case	78.1	7.8	13	1.5	4.9	1.9
	Case1	80	8	80	2	80	2
	Case2	80	8	40	2	40	2
	Case3	80	8	20	2	20	2
							29

Table 5 . Comparison of the necessary run numbers of the deterministic model for the five reliability methods

 5 Failure probabilityA quick review of Figure12reveals that the four methods can all give relatively accurate failure probabilities compared to the results of MCS. The values of AB are within a same order of magnitude for different methods. For example, the AB varies between 0.015 and 0.027 for the Reference case according to the four methods.Concerning the efficiency comparison presented in Table5, it is found that all the approximated methods need fewer calls of the deterministic model than the MCS. This is the reason why these methods are an alternative to the MCS for reliability analyses. Besides, the value of 2 •Ž increased from Case1 to Case4, and the 2 •Ž of the Reference Case is the biggest one. This is because the autocorrelation distance # $ value in the Core and Shell-2 zones are decreased from 80 to 10m. Smaller value of the autocorrelation distance means that it needs more random variables 2 •Ž_•' to represent a random field with a specific error variance. By comparing the 2 •Ž with the 2 |=OEOE of each method, it is observed that the 2 |=OEOE of the methods MCS, SS and MM is almost changeless to the 2 •Ž .

	1 MCS 2 •Ž	Case 1 225 20000	Case 2 370 20000	Case 3 647 20000	Case 4 Reference case 1207 2110 20000 20000
	SS	600	600	600	600	600
	SPCE/SIR	1000	5000	8000	10000	15000
	SPCE/GSA	3000	5000	8000	13000	18000
	MM	1946	1755	2081	2026	1981
	Note: 1 Number of required random variables for representing ,	by means
	of random fields or random variables for each case		

Table 5 ,

 5 which requires only 600 calls of the deterministic model. The 2 |=OEOE of the SS is much less than the MCS one (about 3%) and is constant with the 2 •Ž variation. This finding is not surprising since the target failure probability is relatively high (around 0.022) and changes slightly between the different proposed cases in the present problem. If a conditional probability A | of 0.2 is adopted for each simulation level, only 3 simulation levels are needed to reach the final failure domain. In this study, the A | is set to 0.2 and the sample numbers in each simulation level (2 OE{'{OE ) is set to 200. However, it is found that the SS cannot produce a consistent evolution of AB with # $ . The obtained values of AB are fluctuated from the Case 1 to the Reference case, while they are expected to be monotone decreasing as shown by the MCS. This limitation originates from the generation of the conditional samples in the SS. As a large number of random variables are considered and more importantly those used for random field generation have no physical meanings, it is thus very difficult to generate effective conditional

8 List of symbols Soil properties

  

		(g/cm 3 ) Dry density
		(kPa)	Effective cohesion
		( o )	Friction angle
		Some important symbols used in the statistical models
			Mean value
			Standard deviation
		Truncation term of the PCE series expansion Horizontal and vertical autocorrelation distance Number of MCS population Performance function Reliability index Probability of Failure Beta distribution parameters A vector of standard uncorrelated random variable Number of random variables Number of calls to the deterministic model Abbreviation # $ and # % 2 ?@ I \ AB and y 2 •Ž 2 |=OEOE
		MCS	Monte Carlo simulation
		SS	Subset Simulation
		MM	Moment method
		SPCE	Sparse Polynomial Chaos Expansions
		GSA	Global Sensitivity Analysis
		SIR	Sliced Inverse Regression
		FoS	Factor of Safety
		CoV	Coefficient of variation
		PDF	Probability Density Function
		K-L	Karhunen-Loève expansions
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2.3.5 Spare polynomial chaos expansion/Sliced inverse regression (SPCE/SIR)The SPCE/SIR was proposed by[START_REF] Pan | Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions[END_REF]. The principle remains the same to the SPCE/GSA which lies on a dimension reduction before construction of an accurate SPCE meta-model. The SPCE/GSA utilizes the GSA to reduce the number of the involved random variables, while it is achieved by another technique named SIR in the SPCE/SIR. This approach is based on the principle that a few linear combinations of original input variables could capture essential information of a model response[START_REF] Li Kc | High dimensional data analysis via the SIR/PHD approach[END_REF]. It aims to find an effective dimension reduction (EDR) space by considering an inverse regression relation which regresses input variables against model responses.The algorithm presented in[START_REF] Pan | Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions[END_REF] is adopted in this study to find the EDR. By performing this algorithm, a new input vector can be obtained which is a linear combination of original input variables, and the dimension is reduced. Once the new input vector is determined, an accurate SPCE model can be constructed and then the failure probability can be estimated with an MCS.
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