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Abstract 11 

This article presents a probabilistic stability analysis of an existing earth dam 12 
including uncertainty quantification of soil properties and a reliability analysis of the 13 
dam sliding stability. The analyses are conducted by exploiting the available field 14 
measurements, and then by performing the Monte Carlo Simulation (MCS). Random 15 
fields and random variables approaches are both used to model the soil variabilities. 16 
Two left-and-right-bounded distributions, beta and truncated normal, are considered 17 
for the input random variables in the reliability analysis, and the influence of the 18 
horizontal autocorrelation distance on the failure probability is investigated. 19 
 20 
A comparative study of different reliability methods is also carried out by comparing 21 
with the results of the MCS. The considered reliability methods are: the Subset 22 
Simulation (SS), the Moment Method (MM), the Sparse Polynomial Chaos Expansion 23 
in combination with the Global Sensitivity Analysis (SPCE/GSA) and the Sparse 24 
Polynomial Chaos Expansion in combination with the Sliced Inverse Regression 25 
(SPCE/SIR). The comparative study shows that all these methods can give accurate 26 
results in term of the dam failure probability with small errors. It is also found that the 27 
most accurate method is the SPCE/GSA and the most efficient method is the SS.  28 
 29 

Keywords: Earth Dam; Dam Factor of Safety; Reliability analysis; Random fields; 30 

Monte Carlo Simulations; Polynomial chaos expansions.   31 
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1 Introduction 33 

Various uncertainties of soil properties (inherent spatial variability and measurement 34 

error) exist in earth dam engineering. Accounting for these uncertainties with specific 35 

methods and understanding their effects are of great value for dam design and safety 36 

assessment. In the literature, some studies related to probabilistic stability analyses of 37 

earth dams can be found [1–5]. However, most of the previous works simulated the 38 

uncertainties of soil properties by hypothetical or statistical considerations [1–4]. 39 

Another limitation of these existed studies is that soil spatial variabilities were 40 

generally ignored, such as in [1,3,4]. Additionally, only one reliability analysis result 41 

(reliability index or failure probability) was provided and no information about the 42 

distribution or the statistical moments for the factor of safety (FoS) was available in 43 

these studies [1–5].  44 

 45 

This paper is dedicated to address the problems mentioned above by presenting a 46 

comprehensive reliability analysis of an earth dam. It includes quantification of soil 47 

properties, soil variability modelling from real field data, uncertainties quantification 48 

and failure probability estimation. The reliability analysis is based on the sliding 49 

stability analyses of the dam under steady state flow conditions. The uncertainties of 50 

three soil properties (dry density (��), effective cohesion (��) and effective friction 51 

angle (��)) are considered and simulated by random fields or random variables. The 52 

selected soil properties are the most relevant for a slope stability analysis (as showed 53 

in [5,6]) and they are sufficient for a probabilistic study under the present design 54 

scenario (with a steady state flow condition). An advantage of the studied dam is that 55 

it was well documented and there are a large number of measurements available. 56 

More importantly, the ��  measurements are geo-localized during the embankment 57 

compaction, which allows a data geostatistical analysis and leads to a representation 58 
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of �� by random fields. The random fields of �� can then be obtained by transforming 59 

the ones of �� using a physical relation (Caquot’s relation as the works of [5]) and the 60 

�� is simulated by means of random variables. The propagation of these uncertainties 61 

is quantified by performing a classical MCS in combination with a mechanical model 62 

based on the limit equilibrium method which focuses on computing the dam FoS.  63 

 64 

The second objective of the paper is to investigate the performance of four reliability 65 

methods. Considering these methods, the results are compared with the ones of MCS.  66 

Since small values of autocorrelation distance are obtained for the considered dam by 67 

analyzing the measurements, a large number of random variables (around 2000) is 68 

needed to represent accurately the random fields of ��. The present study becomes 69 

thus a very high dimensional stochastic problem. Therefore, the comparison study is 70 

focused on evaluating the performance of different reliability methods for very high 71 

dimensional stochastic problems. Few studies exist for the comparison of different 72 

reliability methods in real engineering problems and no study has been done for the 73 

stochastic problems with more than 1000 random variables in the geotechnical field. 74 

The selected four reliability methods to be assessed are explained as follows. 75 

 76 

For a reliability analysis, the MCS is always considered as a standard reference to test 77 

other methods [7,8]. However, it suffers from a very low computational efficiency. 78 

Based on the MCS, two advanced sampling methods (Importance Sampling (IS) [7] 79 

and Subset Simulation (SS) [9]) were proposed to reduce the variance of the MCS 80 

estimator with a limited number of deterministic model calls. The SS can be used in a 81 

reliability analysis with both random variables approach and random fields approach 82 

as shown in [10], whereas the IS is not applicable for some cases with random fields if 83 

the involved random variables have no physical meaning. Another sampling-based 84 

technique is the Point Estimate Method (PEM) [11] which uses specific samplings to 85 
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estimate first moments of a system response and then to approximate reliability index 86 

by the estimated moments. Alternatively, the first moments can also be determined by 87 

performing an MCS until the convergence is reached. Furthermore, the First-Order 88 

Reliability Method (FORM) and the Second-Order Reliability Method (SORM) are 89 

also commonly used in the field of reliability [3,12]. They are usually employed in 90 

combination with the Response Surface Method (RSM). The aim is to seek a so-called 91 

design point by solving a constrained problem. Unfortunately, the FORM, SORM and 92 

RSM are not able to handle too many random variables [13]. During the last decades, 93 

meta-modelling techniques have received much attention in the reliability analysis 94 

due to their efficiency and accuracy [14]. This technique allows constructing a 95 

surrogate model (a.k.a. meta-model) to an original mechanical model. The constructed 96 

meta-model is usually expressed in an analytical form. The computational burden is 97 

thus quasi-negligible, which enables an MCS with respect to the meta-model. There 98 

are several mathematical tools available to reach the goal of a meta-modelling, such 99 

as Artificial Neural Networks (ANN) [15,16], Kriging model [17–19] and Polynomial 100 

Chaos Expansions (PCE) [20,21]. In the context of high dimensional stochastic 101 

problems, some dimension reduction techniques were introduced and combined with 102 

the meta-modelling to improve its performance, such as the SPCE/GSA [22] and the 103 

SPCE/SIR [23] which were proposed in recent years. They use respectively the GSA 104 

and the SIR to reduce the number of the involved random variables at first stage, and 105 

then to construct an accurate SPCE meta-model based on the reduced dimension. In 106 

summary, the selected reliability methods for the comparative study in the article are 107 

thus: a variance reduced MCS (the SS), an MCS-based moment method (the MM), 108 

and two meta-modelling methods for high dimensional stochastic problems (the 109 

SPCE/GSA and the SPCE/SIR). 110 

 111 

The studied dam was investigated in a probabilistic framework by Guo et al. in [24]. 112 

The authors studied the dam reliability by using the SPCE with the field data. The soil 113 
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variabilities of ��, ��	�	
	��  were simulated by means of random variables. Two 114 

deterministic models were developed in [24] for evaluating the dam FoS. The present 115 

study is dedicated to extend the studies in [24] by conducting a variogram analysis on 116 

the geo-localised ��  measurements to consider the soil spatial variabilities, and to 117 

compare different reliability methods in related to the considered dam reliability. The 118 

main objectives of the article are to present a thorough probabilistic stability analysis 119 

of an earth dam, and to conduct a comparative study on the performance of different 120 

reliability methods in a context of high dimensional stochastic problems. The 121 

presented procedure and obtained results could help designers to better understand 122 

reliability analyses of earth dams using real data, and to choose more specifically 123 

reliability methods for future problems. 124 

  125 
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2 Random fields and Reliability analysis methods 126 

This section aims at presenting all the reliability analysis tools used in the article. It 127 

includes the method for generating random fields, the variogram analysis and the 128 

selected reliability methods. 129 

2.1 Simulation of random fields by the Karhunen–Loève expansion (K-L) 130 

In this study, the K-L expansion method is adopted to simulate random fields. Let us 131 

consider a stationary Gaussian random field ��
, ��  in a bounded domain � . 132 

Following the principles of the K-L expansion, ��
, �� can be expressed as [25]: 133 

 134 

��
, �� = 	� + 	��������
���
�

���
	≈ 	� + 	��������
���

�

���
 (1) 

where 
 represents the coordinates of an arbitrary point in �, � and � are respectively 135 

the mean value and the standard deviation of the random field, �  is a vector of 136 

standard uncorrelated random variable, �� and �� are respectively the eigenvalues and 137 

the eigenfunctions of the autocovariance functions of the random field, and   is the 138 

size of the series expansion for the truncated form. An autocovariance function is 139 

defined as the product of the variance and the autocorrelation function which gives a 140 

correlation value between two arbitrary points �!, "� and �! ,, " ,� in �. In this study, 141 

an exponential autocorrelation function is used [8].  142 

 143 

The value of   depends on the desired accuracy, the autocorrelation distance (#$ , #%) 144 

and the dimension of the random field. It can be determined by evaluating the error 145 

estimation of the truncated series expansion. The error estimate based on the variance 146 

of the truncated error for a K-L expansion with   terms is given by [26]: 147 

 148 

& = 	 1Ω∫* +1 −	�����-�
�
�

���
. 
Ω (2) 
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In order to obtain a sufficient accuracy in terms of the variance error for random 149 

fields, Li and Der Kiureghian [27] recommended that the stochastic grid size of a 150 

random field can be set as 0.2 times the autocorrelation distance. For the cases of non-151 

Gaussian random fields, it can be achieved by an isoprobabilistic transformation once 152 

a Gaussian random field is obtained using the K-L expansion [28,29].  153 

2.2 Variograms  154 

A variogram is a function which provides a description of how data are correlated. 155 

The first step of a variogram analysis is to construct an experimental variogram which 156 

describes the correlation between any two values of the observation data separated by 157 

a distance ℎ. The experimental semivariogram �∗ is defined as [25]: 158 

 159 

�∗�ℎ� = 	 1223�45� − 567-
3

 (3) 

where 5� and 56 represent all the possible pairs of samples which are separated with a 160 

distance of ℎ, and 23 is the number of the pairs of 5� and 56. This calculation should 161 

be repeated for as many different values of ℎ as the observation data will support. 162 

Then a mathematical model is applied to the experimental semivariogram in order to 163 

represent an autocorrelation structure over the whole study area and to estimate 164 

autocorrelation distances. One of the most common variogram models is the 165 

exponential  model, which is used in this study and whose equation is [25]: 166 

 167 

��ℎ� = 	�81 − 9:�;3/=�> (4) 

The parameter � represents the range of the variogram (also called autocorrelation 168 

distance), and � is the sill value at which the variogram levels off. Figure 1 shows the 169 

characteristics of a variogram analysis.  170 
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 171 

Figure 1. Characteristics of a variogram analysis 172 

2.3 Presentation of the reliability methods used in the study 173 

2.3.1 Monte Carlo Simulation (MCS): the reference method for the study 174 

The MCS method has been widely employed in reliability analyses [30]. For an MCS 175 

with 2?@� model runs, the failure probability is given as: 176 

 177 

AB = 	 12?@� 	 ∗ � C
DEFG

6��
								�C = 1	HB	I < 0; 	C = 0	9MN9� (5) 

where C is an index of failure and I presents a performance function. The number of 178 

2?@� should be large enough in order to obtain an accurate failure probability. The 179 

coefficient of variation (CoV) of AB for a MCS can be calculated by [26]: 180 

 181 

�OPQR =	��1 − AB�/�2?@� ∗ AB� ∗ 	100% (6) 

Although this method suffers from low computational efficiency, it often serves as a 182 

standard reference to test other reliability methods because of its versatility and 183 

robustness. In this article, the reliability analysis of the studied dam is performed by 184 

Distance (h)

Correlation No correlation

Experimental variogram points

Variogram model

Nugget Range (a)

Sill (C)
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the MCS and the obtained results are used to evaluate the accuracy and the efficiency 185 

of the selected reliability methods which are presented in next sub-sections. 186 

2.3.2 Subset simulation (SS) 187 

In order to tackle the problem of using the MCS especially for low failure probability 188 

cases, the SS was developed by [9]. The principle is to decompose a failure event T 189 

into a sequence of intermediate events UV�, V-, … , VXY  with larger probabilities of 190 

occurrence. The target failure probability is written as [31]: 191 

 192 

AB = A�T� = A�V��ZA�V�|V�:��
X

��-
 (7) 

where A�V�|V�:�� is the conditional failure probability of the event V�|V�:� . A key 193 

element of successfully using the SS is the generation of the conditional samples in 194 

each intermediate event. This is achieved by using the modified Metroplis-Hasting 195 

algorithm (MMH) in this article.  196 

2.3.3 Moment method approximation (MM) 197 

The MM was introduced by [32] for structural reliability analyses. A well-known MM 198 

is the second-moment approximation (SM). It assumes that a system response follows 199 

a normal distribution and uses the first two moments to estimate the reliability index. 200 

In the present study, a fourth-moment approximation (FM) is also used to estimate the 201 

dam failure probability since it can give more accurate results compared to the SM as 202 

reported in [33]. The formulas of the two adopted MM methods (SM and FM) are 203 

given as follows [32]: 204 

 205 

\�? =	�]�] ; 						AB�? = 	Φ�−\�?� (8) 

\_? =	3�ab] − 1�\�? + a;]�\�?- − 1�
��9ab] − 5a;]- − 9��ab] − 1� ;						AB_? = 	Φ�−\_?� (9) 

 206 
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where �\�?, AB�?�  and �\_?, AB_?�  are respectively the (reliability index, failure 207 

probability) estimated by the SM and FM,  �] , �]-, a;]  and ab]  are the first four 208 

statistical moments of the performance function, and Φ�∙� represents the cumulative 209 

distribution function (CDF) of a standard normal variable. The values of the required 210 

statistical moments are determined by an MCS in this study. The deterministic model 211 

is repeatedly run for different sets of input parameters generated from a specific PDF, 212 

until all the desired moments are converged.  213 

2.3.4 Spares polynomial chaos expansion/Global sensitivity analysis (SPCE/GSA) 214 

The SPCE/GSA was proposed by Sudret (2008) [34] and improved by Al-Bittar et al. 215 

[22] for high dimensional stochastic problems. The SPCE presents a suitable sparse 216 

basis of the PCE. The sparse basis can be built by a stepwise regression algorithm as 217 

described in  [21,35,36]. By using the SPCE, A model response can be expanded as 218 

[36]: 219 

 220 

f ≅ 	 � hiΨi���
i∈ℕE

 (10) 

where � = 	 m��, �-, … , �?n  are independent random variables, Ψi���  are 221 

multivariate polynomials, hi  are unknown coefficients to be computed and i =222 

ma�, … , a?n  is a multidimensional index. In this paper, the hyperbolic truncation 223 

scheme proposed in [21] is used to truncate the series expansion and the unknown 224 

coefficients hi are computed by using the least-regression method [36]. 225 

 226 

Concerning the GSA, it allows quantifying contributions of an input variable to the 227 

response variance of a physical model [34]. Sudret (2008) [34] introduced an 228 

analytical way to compute the Sobol index (a sensitivity index) by post-processing the 229 

SPCE coefficients. The Sobol index of one variable can be calculated as: 230 

 231 
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 ���� = 	∑ �h6�-TU�Ψi�-Yi∈pqr∑ �h6�-TU�Ψi�-Yi∈p  (11) 

where h6 are PCE coefficients, s is a truncation set, str is a subset of s in which the 232 

multivariate polynomials Ψi are only functions of the random variable �� (i.e., they 233 

only contain the variable ��), and TU�Ψi�-Y is the expectation of �Ψi�-. 234 

 235 

As a summary, the SPCE/GSA implementation for a reliability analysis consists of 3 236 

steps:  237 

1. Select significant input variables by performing a GSA based on a 2-order SPCE. 238 
It should be noted that the SPCE order has almost no influence on the Sobol 239 
index, so an SPCE with the order 2 can accurately provide contributions of each 240 
input variable to system response variabilities [22,34], 241 

2. Construct a meta-model using a high-order SPCE with the selected variables 242 
(effective dimension), 243 

3. Perform an MCS using the obtained meta-model to compute the system response 244 
PDF and the failure probability. 245 

2.3.5 Spare polynomial chaos expansion/Sliced inverse regression (SPCE/SIR) 246 

The SPCE/SIR was proposed by [23]. The principle remains the same to the 247 

SPCE/GSA which lies on a dimension reduction before construction of an accurate 248 

SPCE meta-model. The SPCE/GSA utilizes the GSA to reduce the number of the 249 

involved random variables, while it is achieved by another technique named SIR in 250 

the SPCE/SIR. This approach is based on the principle that a few linear combinations 251 

of original input variables could capture essential information of a model response 252 

[37]. It aims to find an effective dimension reduction (EDR) space by considering an 253 

inverse regression relation which regresses input variables against model responses. 254 

The algorithm presented in [23] is adopted in this study to find the EDR. By 255 

performing this algorithm, a new input vector can be obtained which is a linear 256 

combination of original input variables, and the dimension is reduced. Once the new 257 

input vector is determined, an accurate SPCE model can be constructed and then the 258 

failure probability can be estimated with an MCS. 259 
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3 Study case presentation: soil properties available and 260 

variability modelling  261 

This section focuses firstly on presenting the studied earth dam and describing the 262 

available field data. Then, the statistical parameters of the three soil properties 263 

(��, ��	�	
	��	 ) required for generating random fields or random variables are 264 

determined using the field data.  265 

3.1 Presentation of the studied dam  266 

Figure 2 presents the main cross section of the considered dam. It is a 170 m long and 267 

23.8 m high earth-filled dam located in the west of France. It closes a valley covered 268 

with alluvial deposits and can retain a reservoir of about 5 hm3. The normal and 269 

maximal reservoir water level is respectively 20 and 21.6 m. In the downstream part, 270 

two filter drains were installed for the purpose of lowering the phreatic surface [38]. 271 

In the foundation, a waterproof grout curtain was realized with a depth of 15 m. 272 

 273 

 274 

Figure 2. Main cross section of the studied dam 275 

As presented in Figure 2, the dam is formed by three different zones including a core 276 

and two backfill zones in respectively the upstream and downstream part of the core. 277 

These three zones are respectively named as Core, Shell-1 and Shell-2 in this article. 278 

The materials constituting the dam were collected from the vicinity of the dam site. 279 

Two different types of soils can be identified in the valley. The first type is gravelly 280 

sands resulting from alteration of shales on the slopes and uplands which dominate the 281 
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valley. This material is used for the construction of the Shell zone. The second soil 282 

type, sandy silts, can be found on the bottom of the valley and on the slopes. It was 283 

used for the construction of the Core zone. The foundation is composed of altered 284 

schists whose superficial layers have been purged. Its location is very close to the 285 

Shell zone according to the site investigation and granulometric analyses. 286 

3.2 The available field data 287 

Different data are available on the studied earth dam in several phases: design studies, 288 

construction controls and structure monitoring. This article presents only the field data 289 

which are relevant to the stability analysis of dams: dry density measurements 290 

collected during the construction and the results of the triaxial tests performed in 291 

laboratories. The former is directly related to the �� and the latter allows estimating 292 

�� and ��.  293 

3.2.1 Embankment compaction 294 

During the construction, the dry density and the soil water content after compaction 295 

were monitored in-situ using a gammadensimeter. This leads to a large number of �� 296 

data. An advantage of these data is that they were collected following a grid 297 

monitoring system. This makes it possible to localize the measurements in space 298 

(along three axes). The grid system consists of 10 profiles in the longitudinal direction 299 

(Y axis) and 13 profiles in the transversal direction (X axis). Such a grid system 300 

allows determining the location of the measurements on an X-Y plan and the 301 

knowledge of the construction layer gives the elevation of the measurements along the 302 

Z axis. In total, the number of effective geo-localized �� measurements is 381 for the 303 

Core zone, 248 for the Shell-1 zone and 272 for the Shell-2 zone.  304 

3.2.2 Triaxial shear tests 305 

The shear strength parameters were determined by triaxial shear tests. For a long-term 306 

stability analysis of earth dams, the effective cohesion and friction angle are required. 307 

Concerning these parameters, totally 8 consolidated-undrained triaxial shear tests with 308 
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pore water pressure measurement are available. Among the 8 tests, 5 tests are for the 309 

Shell zone and the other 3 for the Core zone. By plotting the Mohr circles of the 310 

effective stress at failure, the values of ��  and u�	��  can be estimated using the 311 

Coulomb line (approximately tangent to all the circles). Using this method, the results 312 

of each test can be exploited to compute the values of ��and ��. According to the 8 313 

available tests, the average of �� is estimated to be equal to 9.4 kPa for the Shell zone 314 

and to 10 kPa for the Core zone. For ��, a value of 34.2o was obtained for the Shell 315 

zone and of 34.3o for the Core zone. It can be found that the shear strength parameters 316 

for long term of the two soils are very close to each other. In fact, the two materials 317 

are relatively similar as they derive from the schists alteration composing the bedrock. 318 

The considered dam is actually a pseudo-zoned earth dam.  319 

3.3 Variability modelling of the soil properties 320 

In the present study, soil variability modelling consists of two steps. Firstly, an 321 

appropriate distribution type is assumed and then the relating distribution parameters 322 

are determined by fitting the measurements to the assumed distribution. Secondly, 323 

autocorrelation structures are estimated through a variogram analysis based on the 324 

geo-localized measurements. It is noted that the first step is directly related to the 325 

works in [24]. Therefore, only a brief description of the first step is given in the 326 

following parts. 327 

3.3.1 First step: Distribution type and relating parameters 328 

Two distribution types (beta and truncated normal distribution) are adopted as a 329 

candidate, in this article, to describe the measured data of ��, ��	�	
	��. The reason 330 

of choosing the two distribution types is that they can avoid unreasonable values by 331 

considering a physical range of soil properties. By fitting the measurements with the 332 

beta or truncated normal distribution, the corresponding soil parameter can be 333 

described as a random variable. The best fitted parameters are estimated using the 334 
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maximum likelihood estimation method, and the bounded values are determined 335 

according to the soil type and the reference values recommend in [39,40]. 336 

 337 

The procedure of the first step mentioned above can be easily applied to the 338 

measurements of �� since many data exist for this soil property in each zone of the 339 

dam. However, the number of the available triaxial tests is only 8 and it does not 340 

allow a meaningful statistical estimation of the distribution parameters for �� and ��. 341 

In order to address this problem, [5] introduced a method which can generate a large 342 

number of  artificial data for ��and �� with limited triaxial test results. This method is 343 

also adopted in the works of [24] to determine the distribution parameters with the 344 

beta or truncated normal distribution for ��  and ��  of the studied dam. With this 345 

method, the distribution parameters for all the three soil properties (��, ��	�	
	��) can 346 

be obtained. Table 1 gives a summary of the distribution parameters for each zone. As 347 

an illustration, Figure 3 and Figure 4 present respectively the histogram and the two 348 

fitted CDF curves for the �� measurements in the Core zone, and for the generated �� 349 

in the Shell zone. The method introduced by [5] for determining the distribution 350 

parameters of �′ and �′ is based on a linear regression performed on the top of the 351 

Mohr circles. This method assumes that the intermediate parameters (the y-intercept 352 

and the slope of the Kf line) which are used for estimating the values of �′ and �′, 353 

are two uncorrelated normal variables. Therefore, no correlation is considered 354 

between the shear strength parameters in this paper. According to previous works [41] 355 

on slope reliability analyses, ignoring the correlation between �′ and �′ which is 356 

usually negative [42], leads to conservative estimates of failure probabilities. 357 
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 358 

Figure 3. Histogram and fitted CDF for the vw measurements in the Core zone 359 
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Figure 4. Histogram and CDF of the generated x� in the Shell zone 361 

Table 1. Distribution parameters of the soil properties  362 

Zones Soil property 
Beta Truncated normal Extreme values 

�1
 y1

 Mean CoV
2
(%) Min Max 

Shell-1 

�� (g/cm
3
) 15.7 18.0 1.99 3.21 1.63 2.40 

�� (kPa) 1.48 2.78 10.55 57.63 0 30 

�� (o
) 28.71 29.61 34.85 3.72 25 45 

Core 

�� (g/cm
3
) 22.4 27.5 1.83 3.33 1.44 2.32 

�� (kPa) 4.07 5.22 13.23 34.21 0 30 

�� (o
) 231.16 192.28 34.11 2.48 15 50 

Shell-2 

�� (g/cm
3
) 26.7 22.2 2.05 2.65 1.63 2.40 

�� (kPa) 1.48 2.78 10.55 57.63 0 30 

�� (o
) 28.71 29.61 34.85 3.72 25 45 

Note: 1Beta distribution parameters; 2Coefficient of variation 363 

3.3.2 Second step: Autocorrelation structure 364 

The second step aims at determining the autocorrelation structure of the simulated soil 365 

property for each dam zone. The method [5] adopted for generating values of �� and 366 

��  cannot provide the location information. Therefore, only the autocorrelation 367 

structure of �� is estimated. It could be realized by a variogram analysis on the geo-368 

localized �� measurements. Taking the Shell-2 zone as an example, an experimental 369 

semivariogram is firstly obtained by applying Eq. (3) to all the �� measurements of 370 

this zone. Then, the autocorrelation distances can be estimated by fitting a 371 

mathematical model (exponential one in this paper) to the experimental 372 

semivariogram. Figure 5 shows the experimental semivariogram together with the 373 

fitted exponential model for both horizontal and vertical directions. It can be observed 374 

that the variance between two measurements increases with the increase of its 375 

separation distance. The variance roughly reaches a constant value after the distance 376 

beyond 5-7m for the horizontal directions. For the vertical direction, it converges 377 
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when the distance is bigger than 1.5m (lower value than for the horizontal direction). 378 

The black points in Figure 5 represent the points which reach 95% of the sill value. It 379 

is considered that the abscissa of these points is the autocorrelation distance. For the 380 

cases in Figure 5, the horizontal and vertical distances are respectively 4.9 m and 381 

1.9 m. It indicates that the soil is less homogeneous in the vertical direction than in the 382 

horizontal direction. This finding is consistent with the observations of  [42,43]. By 383 

repeating the same procedure to the �� measurements in the other two zones Core and 384 

Shell-1, all the necessary autocorrelation distances are obtained and presented in 385 

Table 2.  386 

 387 

Table 2 indicates that a considerable homogeneity can be found in the Shell-1 zone, 388 

while the �� in the Shell-2 and Core zones are more spatially variable. This difference 389 

can be explained by the better selection of the material composing the upstream zone 390 

and the greater attention which has given to its construction. The nugget effect 391 

corresponds to about a half of the variance for the upstream shoulder and to a slightly 392 

lower fraction for the downstream shoulder and the core. The nugget effect can be 393 

attributed to the mixture of the materials during their excavation from the borrow pits. 394 

In our case, it is considered as a short dimension structure whose scale is less than the 395 

sampling step.  396 
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 397 

Figure 5. Variogram analysis for the vw measurements in the Shell-2 zone 398 

Table 2. Results of the geostatistical analysis for the vw measuremetns 399 

Zones 
Autocorrelation distance (m) 

Nugget effect 
Horizontal (#$) Vertical (#%) 

Shell-1 78.1 m 7.8 m 1.6×10-3 

Core 13.0 m 1.5 m 8.6×10-4 

Shell-2 4.9 m 1.9 m 1.0×10-3 

 400 

As presented in section 2.1, a K-L expansion should be truncated to a limited number 401 

of series terms   for practical applications. The value of   can be determined by 402 

evaluating the error defined by Eq. (2) with a prescribed accuracy. This error depends 403 

on the autocorrelation distances and size of a random field. For an accuracy between 404 

10% and 9%, the   is estimated to be equal to 30, 368 and 1710 for respectively the 405 

Shell-1, Core and Shell-2 zones (considering their site dimension and the relating 406 
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autocorrelation distances presented in Table 2). Therefore, it needs 1710 random 407 

variables to represent accurately a random field of  �� in the Shell-2 zone. Such small 408 

values of the #$ and #% in the Shell-2 zone lead to the present study become a very 409 

high dimensional stochastic problem.  410 

3.4 Seismic loading condition  411 

A pseudo-static acceleration is considered in this study in order to take into account 412 

seismic loading conditions. The value of the acceleration is set equal to 2.4 m.s-2. It is 413 

determined according to the location of the considered dam with respect to the seismic 414 

zones in France and the category of the dam [44]. The seismic acceleration used in the 415 

calculation is considered to be related to a return period of 5000 years. This means 416 

that the failure probability directly obtained under such a pseudo-static acceleration 417 

should be multiplied by 1/5000 to consider the seismic occurrence probability. The 418 

two types of failure probability are respectively noted as AB��z{|}  and AB|~�  in the 419 

study. 420 

4 Presentation of the deterministic models 421 

Two deterministic models were developed in [24] for computing the dam FoS. The 422 

first one is a numerical model based on the strength reduction method, and the second 423 

one is an analytical model based on the limit equilibrium theory. The latter is 424 

employed in this article to perform the deterministic calculations in the reliability 425 

analyses since it can give similar FoS values compared to the numerical model but 426 

with a lower computational time. Such an advantage is very significant and important 427 

for a reliability analysis which needs usually a large number of calls to a deterministic 428 

model. Concerning the numerical model, it was developed for providing the pore 429 

water pressure distribution inside the dam and validating the analytical model.  430 

 431 
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This section aims at presenting the two models briefly. In the end, a comparison study 432 

between the two models is conducted in order to validate the analytical model in the 433 

context of random fields. 434 

4.1 The numerical model 435 

The numerical model in [24] was created using Flac2D which is a two-dimensional 436 

explicit finite difference program [45]. The boundary conditions used in this model 437 

are the following ones: the displacements are blocked following the horizontal and 438 

vertical axis on the base of the model; the horizontal displacements are blocked on the 439 

lateral edges of the model. Figure 6 presents a mesh used for the following 440 

calculations. The mesh includes around 18000 4-node quadrilateral plane elements. 441 

The selected number of the elements was determined by a mesh refinement study 442 

[24]. The created model allows calculating the pore water pressure distribution inside 443 

the dam by applying a hydrostatic head in the upstream. The dam FoS is computed 444 

based upon the strength reduction method [6]. 445 

 446 

Figure 6. The numerical model mesh of the studied dam 447 

4.2 The analytical model 448 

The analytical model proposed in [24] is based on the limit equilibrium theory in 449 

combination with a genetic algorithm (GA) [46]. The principle is to generate a 450 

number of trial slip surfaces as an initial population at first, and then to search the 451 

minimum FoS value by simulating natural process along generations including 452 

reproduction, crossover, mutation and survivors’ selection. The FoS of a given slip 453 

surface is computed by using the procedure of Zhu et al. [23] which is based on the 454 
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Morgenstern Price method, and the slip surface generation method described in [24] is 455 

adopted which allows generating non-circular slip surfaces. It is also noted that the 456 

pore water pressures at the base of each slice are determined using the ones obtained 457 

by the numerical model. For more details about the model, readers are referred to 458 

[24]. 459 

4.3 Validation of the analytical model 460 

It was shown in [24] that the analytical model is able to give similar FoS values in a 461 

deterministic calculation and similar reliability results in a probabilistic calculation 462 

compared to the numerical model. However, the comparison and validation studies 463 

conducted in [24] are only related to the cases of random variables. The performance 464 

of the analytical model in the context of random fields is thus still unknown. In order 465 

to address this issue, a comparison study is carried out and presented in this section.    466 

The idea is to generate 2|~X random fields for ϕ�	and	γ�, and 2|~X random variables 467 

for C� . For each set of input parameters, the two deterministic models are both 468 

performed. The obtained FoS values are then compared with each other to evaluate 469 

the accuracy of the analytical model. The numerical model is adopted as a reference to 470 

assess the performance of the analytical model for the following reasons: 1) no 471 

assumptions are needed concerning the failure surface, 2) no assumptions on inter-472 

slice side forces are needed, since there is no concept of slices, and 3) no optimization 473 

procedure is needed since the minimum FoS and the critical slip surface are obtained 474 

automatically.  475 

 476 

In total 150 sets of input parameters are considered in the comparison study. Each set 477 

of input parameters is obtained randomly and is composed of three random fields of  478 

�� , three random fields of ��  and two random variables of �� . The other soil 479 

parameters, except ��, ��	�	
	��, required for the numerical model are taken from the 480 

values given in  [24]. The values of the GA parameters in the analytical model are the 481 
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same to the ones in [24]. As an illustration, a realization of three random fields of �� 482 

are mapped to the numerical model and presented in Figure 7. Using the Caquot’s 483 

relation, three random fields of �� are also obtained and shown in Figure 8.  484 

 485 

Figure 9 presents a direct comparison of the FoS values computed with the two 486 

models for the 150 different parameter sets. It is shown that the results are close to the 487 

unit line and relative errors are smaller or around 5%. These observations indicate that 488 

the analytical model is able to estimate an accurate FoS value for the studied dam 489 

considering random fields. Therefore, the analytical model is validated and can be 490 

used for deterministic calculations for the following reliability analyses. 491 

 492 

Figure 7. Example of a realization of three random fields of vw 493 

 494 

Figure 8. Example of a realization of three random fields of �� 495 
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 496 

Figure 9. Comparison of the FoS values for 150 sets of input parameters 497 

Using the analytical model, rather than the numerical one, can reduce the 498 

computational time of a stability analysis for the studied dam from 20 minutes to 10 499 

seconds in an Intel Xeon CPU E5-1620 3.5 GHz PC. Such a reduction in 500 

computational time is very significant for a reliability analysis which needs usually a 501 

large number of calls to a deterministic model. Given that the analytical model can 502 

give reasonable FoS values compared to the numerical one but with a reduced time, 503 

the following analyses are all based on the analytical model. 504 

5 Reliability analysis results by the reference method MCS 505 

This section presents the reliability analysis for the studied dam using the reference 506 

method MCS. The uncertainties in the soil properties ��, ��	�	
	��  are quantified 507 

using random fields or random variables with the parameters presented in the sections 508 
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3.2 and 3.3. In addition, the effect of autocorrelation distances on the dam failure 509 

probability is discussed. 510 

5.1 Reliability analysis results 511 

20 000 deterministic calculations are performed in the reliability analysis by an MCS 512 

with the Latin Hypercube sampling technique. For each calculation, 2 110 513 

independent standard random variables �� are generated firstly. The first two ��  are 514 

transformed to physical values of ��  using the iso-probabilistic method with the 515 

specific PDF presented in Table 1. The rest �� are used in the K-L expansion for the 516 

generation of the three random fields of ��. The three random fields of �� are then 517 

obtained by a transformation from those of �� using the Caquot’s relation. 518 

 519 

Figure 10 shows the PDF of the obtained 20 000 FoS values for the two distribution 520 

types, and Table 3 gives the reliability results.  521 

 522 

Figure 10. PDF of the FoS values obtained by the MCS with two distributions 523 
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Table 3. Reliability results obtained by the MCS with two distributions 524 

Distribution 
Failure probability Statistical moments of FoS 

AB��z{|} AB|~� �OPQR Mean Standard deviation 

Beta 0.022 4.4×10-6 4.71% 1.232 0.108 

Truncated 

normal 
0.016 3.2×10-6 5.61% 1.248 0.097 

 525 

From Figure 10, it can be observed that the PDF curve obtained by the truncated 526 

normal distribution (A�VD) is taller and narrower than the one of beta distribution 527 

(A�V� ). It means that the FoS values are less dispersive if a truncated normal 528 

distribution is assumed for the input random variables. More precisely, the two PDF 529 

curves are almost superposed for relative high FoS values (bigger than 1.4), while the 530 

A�VD is significantly lower than the A�V� for relative small FoS values (smaller than 531 

1.2). This is because of the probability of generating a small value of �� in the Shell 532 

zone drawn from the fitted beta distribution is higher than the truncated normal 533 

distribution, as presented in Figure 4. In addition, the two curves are not symmetric. 534 

They are considered to be negatively skewed with a relatively bigger tail at the left. It 535 

can be explained by the fact that the distribution of the input variables is not 536 

symmetric and that some variables have more small values, such as �� in the Shell 537 

zone as shown in Figure 4.  538 

 539 

The direct failure probability AB��z{|} of the dam under a pseudo-static acceleration of 540 

2.4 m.s-2 is estimated to be equal to 0.022 and 0.016 respectively by the two 541 

distributions. These values are then multiplied by a coefficient of 1/5000 to consider 542 

the seismic occurrence probability and become equal to 4.4×10-6 and 3.2×10-6 543 

respectively. As for the statistical moments of the FoS values, the beta assumption 544 

gives a slightly lower value for the mean but a bigger value for the standard deviation, 545 
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compared to the truncated normal assumption. A big value of standard deviation 546 

means a high level of data scatter. This is consistent with the observation in Figure 10. 547 

 548 

In conclusion, the dam failure probability under a pseudo-static loading condition is 549 

estimated to be around 4×10-6.  The two distribution assumptions lead to similar 550 

results with the same order of magnitude. The beta distribution gives slightly more 551 

conservative results in term of the failure probability. As the beta distribution 552 

describes better the variability of the soil properties as shown in Figure 4 and is 553 

conservative in the design, this type of distribution is adopted for the next analyses. 554 

5.2 Influence of the autocorrelation distance 555 

One of the factors which can influence reliability results is autocorrelation distance. It 556 

defines by means of an autocorrelation function, the autocorrelation structure of a 557 

random field. According to a literature review given by El-Ramly et al. [47], the 558 

autocorrelation distance for soils is usually within a range of 10-40 m in the horizontal 559 

direction, while it ranges between 1 and 3 m in the vertical direction. It is found that 560 

the #$ and #% in the Shell-1 zone (Table 2) are bigger than the values indicated in [47] 561 

while the #$ in the Shell-2 zone is smaller than expected values. Therefore, careful 562 

attention must be done to these parameters and their induced influence on the 563 

reliability analysis. 564 

 565 

Finally, the impact investigation is focused on the value of #$ in the Shell-2 zone 566 

while the estimated autocorrelation distances in the Shell-1 zone are accepted for the 567 

values in Table 2. The reasons are as follows: 1) the obtained large values of #$ and 568 

#% are expected for the Shell-1 zone since the materials are better selected and more 569 

attention are given to its construction; 2) the upstream part of the backfill 570 

embankment is considered to have a very limited influence on the dam stability under 571 
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steady state flow conditions; 3) large values of autocorrelation distances may lead to 572 

bigger failure probabilities, so conservative designs as pointed in [13,48,49]. 573 

 574 

For the #$  value in the Shell-2 zone, a first improvement is made by fitting the 575 

experimental semivariogram with other theoretical variogram models such as the 576 

Gaussian and the spherical models [50]. The #$ is estimated to be equal to 6.7m for 577 

the Gaussian model, and to 4.7m for the spherical model. These values are both 578 

different to the one estimated with the exponential model (4.9m) as shown in the 579 

section 3.3, and these differences may induce an impact on the dam failure 580 

probability. 581 

 582 

In order to quantify the influence induced by different values of #$ , a parametric 583 

study is conducted. Several values of #$ in the Shell-2 zone are tested using the MCS. 584 

The objective is to investigate the evolution of the dam failure probability with the #$ 585 

value. For the sake of simplicity and clarity, the other values of autocorrelation 586 

distance are rounded to integer values (see details in Table 4). In addition, the	#$  587 

value in the Core zone is also varied. Totally, four cases are selected for the 588 

parametric study. The #$ value in the Core and Shell-2 zones are decreased from 80 to 589 

10m. These four cases allow investigating the influence of the horizontal 590 

autocorrelation distance in the Core and Shell-2 zones on the dam failure probability. 591 

The reference case in Table 4 refers to the values estimated by the variogram analysis 592 

with the exponential model (see Table 2).  593 

Table 4. Selected values of �
 and �� for the parametric study 594 

 Shell-1 Core Shell-2 

 #$ (m) #% (m) #$ (m) #% (m) #$ (m) #% (m) 

Case1 80 8 80 2 80 2 

Case2 80 8 40 2 40 2 

Case3 80 8 20 2 20 2 
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Case4 80 8 10 2 10 2 

Reference case 78.1 7.8 13 1.5 4.9 1.9 

 595 

By adopting different values of autocorrelation distance as shown in Table 4, four 596 

complementary MCSs are performed. Figure 11 plots the four obtained failure 597 

probabilities together with the one of the reference case. The first two moments of the 598 

dam FoS for each case are also given in Figure 11. 599 

 600 

Figure 11. Influence of the �
 on the dam failure probability 601 

It can be observed from Figure 11 that the horizontal autocorrelation distance in the 602 

Core and Shell-2 zones have an influence on the dam failure probability. As the 	#$ 603 

decreases, the AB decreases. For example, a decrease of 	#$ from 80 to 10 m results in 604 

a reduction of about 10% for the AB (from 0.0295 to 0.0259). This finding has already 605 

been confirmed by many researchers for different geotechnical engineering 606 

[13,48,49]. Concerning the statistical moments, the mean value remains almost 607 
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constant whereas the standard deviation increases when increasing the 	#$ . This 608 

indicates that the 	#$ has no impact on the mean value of the dam FoSs, whereas it 609 

affects the FoSs dispersion of the dam. The reference case corresponds to the lowest 610 

failure probability and the smallest standard deviation.  611 

6 A comparative study of different reliability methods 612 

This section presents the results and the relating interpretation of the comparative 613 

study of the four selected approximated reliability methods. The objective is to 614 

evaluate the performance of the considered methods for very high dimensional 615 

stochastic problems.  616 

 617 

The parametric study on the autocorrelation distance (presented in section 5.2) is re-618 

performed by the four reliability methods (SS, MM, SPCE/GSA and SPCE/SIR) 619 

which are mentioned in the section Introduction and presented in section 2.3. The 620 

obtained results in term of the failure probability for each case are plotted in Figure 621 

12, and the numbers of calls to the deterministic model (2|=��) for each case are 622 

summarized in Table 5. Additionally, the results of the MCS are also provided and 623 

considered as a standard reference for the comparison. In Table 5, the number of 624 

required random variables (2�� = 2��_�� + 2 ) for representing ��, ��	�	
	��  by 625 

means of random fields or random variables is given as well. The 2��_��  is the 626 

number of random variables needed for generating relatively accurate random fields 627 

of ��  by using the K-L expansion method, and the number 2 represents the two 628 

random variables of �� in the Shell and the Core zones. The information in Table 5 629 

helps to visualize the effiency of each method by comparing the 2�� with the 2|=��. 630 
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 631 

Figure 12. Comparison of the failure probability obtained by the five reliability methods  632 

Table 5. Comparison of the necessary run numbers of the deterministic model for the five reliability 633 

methods 634 

 
Case 1 Case 2 Case 3 Case 4 Reference case 

2��1 225 370 647 1207 2110 

MCS 20000 20000 20000 20000 20000 

SS 600 600 600 600 600 

SPCE/SIR 1000 5000 8000 10000 15000 

SPCE/GSA 3000 5000 8000 13000 18000 

MM 1946 1755 2081 2026 1981 

Note: 1Number of required random variables for representing ��, ��	�	
	�� by means 635 

of random fields or random variables for each case 636 

 637 
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A quick review of Figure 12 reveals that the four methods can all give relatively 638 

accurate failure probabilities compared to the results of MCS. The values of AB are 639 

within a same order of magnitude for different methods. For example, the AB varies 640 

between 0.015 and 0.027 for the Reference case according to the four methods.  641 

 642 

Concerning the efficiency comparison presented in Table 5, it is found that all the 643 

approximated methods need fewer calls of the deterministic model than the MCS. 644 

This is the reason why these methods are an alternative to the MCS for reliability 645 

analyses. Besides, the value of 2�� increased from Case1 to Case4, and the 2�� of the 646 

Reference Case is the biggest one. This is because the autocorrelation distance #$ 647 

value in the Core and Shell-2 zones are decreased from 80 to 10m. Smaller value of 648 

the autocorrelation distance means that it needs more random variables 2��_��  to 649 

represent a random field with a specific error variance. By comparing the 2�� with 650 

the 2|=�� of each method, it is observed that the 2|=�� of the methods MCS, SS and 651 

MM is almost changeless to the 2��. In other words, the efficiency of these three 652 

methods is not related to the number of input random variables, but depends on, in 653 

fact, the value of the target failure probability. However, the 2|=�� of the two meta-654 

modelling methods (SPCE/GSA and SPCE/SIR) increases rapidly with increasing the 655 

2��. This indicates that the efficiency of the meta-modelling method depends strongly 656 

on the number of input random variables. Indeed, more input variables means that 657 

more information is needed. Thus, a higher 2|=�� will be required for constructing a 658 

meta-model which will be used to replace an original mechanical model. 659 

 660 

The following subsections give a detailed interpretation of the comparative study for 661 

each reliability method. In the end, some concluding remarks of the comparative 662 

study are summarised. 663 

6.1 The SS 664 
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This method is the most efficient one, according to Table 5, which requires only 600 665 

calls of the deterministic model. The 2|=�� of the SS is much less than the MCS one 666 

(about 3%) and is constant with the 2�� variation. This finding is not surprising since 667 

the target failure probability is relatively high (around 0.022) and changes slightly 668 

between the different proposed cases in the present problem. If a conditional 669 

probability A| of 0.2 is adopted for each simulation level, only 3 simulation levels are 670 

needed to reach the final failure domain. In this study, the A| is set to 0.2 and the 671 

sample numbers in each simulation level (2�{�{�) is set to 200. However, it is found 672 

that the SS cannot produce a consistent evolution of AB with 	#$. The obtained values 673 

of AB are fluctuated from the Case 1 to the Reference case, while they are expected to 674 

be monotone decreasing as shown by the MCS. This limitation originates from the 675 

generation of the conditional samples in the SS. As a large number of random 676 

variables are considered and more importantly those used for random field generation 677 

have no physical meanings, it is thus very difficult to generate effective conditional 678 

samples. This results in a large number of repeated samples in the SS. Given that the 679 

number of these repeated samples is not constant (i.e. random) for each SS, the 680 

obtained results are thus not steady.  681 

6.2 The SPCE/SIR 682 

According to Figure 12, this method gives always lower failure probability than the 683 

MCS. This can be explained by the fact that a dimension reduction technique is 684 

employed. As the dimension is reduced, the variability of the input parameters is 685 

reduced. The estimated failure probability is thus smaller. Compared to the SS, this 686 

method has a better performance in the parametric study i.e. the obtained values show 687 

a clear reduction trend of AB with decreasing	#$. Concerning the efficiency, the 2|=�� 688 

is found not constant for different cases but increases from the Case 1 to the 689 

Reference case. The 2|=�� for the Reference case is even very close to the MCS one. 690 

An explanation is given as follows. The required number of input random variables 691 
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for the random field generation increased since the 	#$ becomes smaller. Therefore, 692 

the construction of a meta-model needs more training points i.e. more deterministic 693 

simulation. As a result, it is not recommended to use this method if the 2�� is large 694 

(e.g. >2500) from a point of view of efficiency. 695 

6.3 The SPCE/GSA 696 

This method is the most accurate one based on Figure 12. The obtained values of AB 697 

are extremely close to the ones of the MCS. Except to this remark, similar 698 

observations to the SPCE/SIR can also be noted: 1) the estimated values of AB are all 699 

lower than those of the MCS; 2) the parametric study can be correctly conducted; 3) 700 

the 2|=�� increases with decreasing the 	#$ and the 2|=�� for the Reference case is even 701 

very close to the one of the MCS. The interpretation to these observations given above 702 

remains valid as well for this method. In addition, it is found that this method is 703 

always less efficient than the SPCE/SIR. This difference originates from the different 704 

dimension reduction techniques employed in the two methods.  For the SPCE/GSA, it 705 

should always construct a 2-order meta-model with a full dimension. On the contrary, 706 

the dimension is reduced before constructing meta-models in the SPCE/SIR. For very 707 

high dimensional stochastic problems, considerable deterministic simulations are 708 

required even for constructing a 2-order SPCE meta-model. 709 

6.4 The MM 710 

This method is the second efficient one according to Table 5 and it shows also a good 711 

performance in estimating the value of AB . Given its simplicity and easy 712 

implementation procedure, it is a good alternative to the MCS for such a very high 713 

dimensional stochastic problem. However, this article only evaluates the MM for the 714 

cases of relative high failure probability. Careful attention should be paid when 715 

applying this method to calculate low failure probabilities since it may lead to large 716 

errors as pointed out in [33]. Besides, this method is not able to carry out a parametric 717 

study of 	#$  as expected since the obtained AB  results fluctuate. Theoretically, the 718 
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collection of all the moments (of all orders, from 0 to ∞) uniquely describes a 719 

bounded distribution. Then, failure probabilities can be determined by estimating the 720 

tail area of the distribution. In the present study, only four moments are collected and 721 

the tail area is estimated by an approximated way (Eq. 8 and 9). The induced errors 722 

are not related to the 2�� or #$ of the problem but depend on the complexity of the 723 

FoS distribution and the target value of the dam failure probability (tail area). It may 724 

lead to a large error for a lower AB but a small error for a higher AB. As a result, the 725 

obtained AB values in the parametric study are not monotonously decreasing. 726 

6.5 Concluding remarks 727 

Here gives a summary of the remarks observed in Figure 12 and Table 5. 728 

a) The most accurate method is the SPCE/GSA and the most efficient one is the SS. 729 

b) The efficiency of the two meta-modelling methods strongly depends on the 730 

number of input variables, while the 2|=�� of the sampling-based methods (the SS 731 

and the MM) is related to the target value AB. As the AB doesn’t vary significantly 732 

from Case1 to the Reference Case, the 2|=��  of SS and MM is more or less 733 

changeless. 734 

c) The sampling-based methods cannot produce a consistent evolution of AB in the 735 

parametric study of the	#$ whereas the meta-modelling methods perform well in 736 

such a study. 737 

d) The sampling-based methods are more efficient than the two considered meta-738 

modelling methods for very high dimensional stochastic problems.  739 

e) The two meta-modelling methods estimate smaller values of AB compared to the 740 

MCS. This is because that dimension reduction techniques are employed in these 741 

two methods.  742 

 743 

It should be noted that the conducted comparative study is related to a case of a 744 

relatively high failure probability (order of 10-2). The performance of the four 745 
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methods for estimating low failure probabilities (e.g. <10-4) in the context of very 746 

high dimensional stochastic problems is not investigated and thus unknown. This is a 747 

difficult issue in the field of reliability analyses to assess an approximated method for 748 

very low AB, since the consuming time of running an MCS is very high even with a 749 

simplified deterministic model. The present study provides first insights into the 750 

performance of the four reliability methods in the context of very high stochastic 751 

problems, and some concluding remarks (e.g. the points b, c and e mentioned above) 752 

can be extended to the cases of low AB.  753 

7 Conclusions and perspectives 754 

In this article, a probabilistic stability analysis of an earth dam is presented. The 755 

uncertainties in three soil properties (��, ��	�	
	��) are considered in the analysis and 756 

quantified by exploiting the project-specific data. A large number of available geo-757 

localized ��  measurements allow accounting for the soil spatial variability by 758 

estimating the autocorrelation structure with a variogram analysis. The MCS is 759 

adopted for performing the reliability analysis. Two distribution types for the input 760 

random variables are considered and compared in the article. Besides, the effect of the 761 

#$ on the dam AB is investigated. Such a study is original because it uses real dam 762 

construction data, proposes using the benefits of geostatistics (a very high 763 

dimensional stochastic problem) and presents a procedure on how to produce 764 

meaningful statistical estimations of soil variability with limited measurements. This 765 

study can then be used as a part of a global dam safety assessment combined with a 766 

risk analysis as reported in [51]. 767 

 768 

By benefiting to the results of the deterministic simulations collected in the performed 769 

MCS, a comparative study is carried out. It aims at evaluating the performance of 770 

different reliability methods for very high dimensional stochastic problems. Both the 771 

accuracy and efficiency are considered in the comparison. The results show that the 772 
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most accurate method is the SPCE/GSA and the most efficient method is the SS. The 773 

efficiency of the methods SS and MM are independent to the number of input 774 

variables while the necessary 2|=�� of the methods SPCE/GSA and SPCE/SIR can be 775 

very important (close to the 2|=��  of an MCS) when a large number of random 776 

variables are involved. For a first order estimate, the methods SS and MM are 777 

sufficient to give relatively accurate results. Nevertheless, it should be noted that these 778 

two methods were not sufficiently accurate for the parametric study of 	#$ since the 779 

obtained values of AB fluctuate.  780 

 781 

This study also has some weakness points which will allow possible improvements 782 

for future works: 783 

- It is commonly recognized that a negative correlation exists between �� and �� 784 

[42]. However, no correlation is considered in this study for the two soil 785 

properties due to the limited number of available triaxial test results and the 786 

employed method [5] for generating the values of �� and ��. 787 

- The �� is represented by means of random variables. Its spatial variability is 788 

thus ignored in the present study, 789 

- For the sake of simplicity and consistency with other studies, only stationary 790 

unconditional random fields are considered in this article. The effects of more 791 

complex random fields (non-stationary or conditional) could be investigated in 792 

future studies, 793 

- The performance of the four reliability methods is only assessed for the cases 794 

of relatively high failure probability. For the cases with low AB, the accuracy 795 

and efficiency of the four methods remain unknown for very high dimensional 796 

stochastic problems.  797 

8 List of symbols 798 

Soil properties 
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�� (g/cm
3
) Dry density 

�� (kPa) Effective cohesion 

�� (o
) Friction angle 

Some important symbols used in the statistical models 

�  Mean value 

�  Standard deviation 

   Truncation term of the PCE series expansion 

#$ and #% Horizontal and vertical autocorrelation distance 

2?@�  Number of MCS population 

I  Performance function 

\  Reliability index 

AB  Probability of Failure 

� and y  Beta distribution parameters 

�  A vector of standard uncorrelated random variable 

2��  Number of random variables 

2|=��  Number of calls to the deterministic model 

Abbreviation  

MCS Monte Carlo simulation 

SS Subset Simulation 

MM Moment method 

SPCE Sparse Polynomial Chaos Expansions 

GSA Global Sensitivity Analysis 

SIR Sliced Inverse Regression 

FoS Factor of Safety 

CoV Coefficient of variation 

PDF Probability Density Function 

K-L Karhunen–Loève expansions 

 799 
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