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Abstract

This article presents a probabilistic stability analysis of an existing earth dam
including uncertainty quantification of soil properties and a reliability analysis of the
dam sliding stability. The analyses are conducted by exploiting the available field
measurements, and then by performing the Monte Carlo Simulation (MCS). Random
fields and random variables approaches are both used to model therisdillities

Two left-and-right-bounded distributions, beta and truncated normal, are considered
for the input random variables in the reliability analysis, and the influence of the
horizontal autocorrelation distance on the failure probability is investigated.

A comparative study of different reliability methods is also carried out by comparing
with the results of the MCS. The considered reliability methods are: the Subset
Simulation (SS), the Moment Method (MM), the Sparse Polynomial Chaos Expansion
in combination with the Global Sensitivity Analysis (SPCE/GSA) and the Sparse
Polynomial Chaos Expansion in combination with the Sliced Inverse Regression
(SPCE/SIR). The comparative study shows that all these methods can give accurate
results in term of the dam failure probability with small errors. It is also found that the
most accurate method is the SPCE/GSA and the most efficient method is the SS.

Keywords: Earth Dam;Dam Factor of SafetyReliability analysis; Random fields;

Monte Carlo Simulations; Polynomial chaos expansions.
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1 Introduction

Various uncertainties of soil properties (inherspatial variability and measurement
error) exist in earth dam engineeridgcounting for these uncertainties with specific
methods and understanding their effentsof great value for dam design and safety
assessment. In the literature, some studies refatptbbabilistic stabilityanalyseof
earth dams can be found [1-5]. However, most ofpile¥ious works simulated the
uncertainties of soil properties by hypothetical statistical considerations [1-4].
Another limitation of these existed studies is tlsail spatial variabilities were
generally ignored, such as in [1,3,4]. Additionaliyly one reliability analysis result
(reliability index or failure probability) was praded and no information about the
distribution or the statistical moment®r the factor of safety (FoSyas available in

these studies [1-5].

This paper is dedicated to address the problemdioned above by presenting a
comprehensive reliability analysis of an earth d#nmcludes quantification of soil
properties, soil variability modelling from reakfd data, uncertainties quantification
and failure probability estimation. The reliabilignalysis is based on the sliding
stability analyses of the dam under steady statg @onditions. The uncertainties of
three soil properties (dry density,(, effective cohesion() and effective friction
angle ¢")) are considered and simulated by random fieldsanodom variablesThe
selected soil properties are the most relevanafsiope stability analysis (as showed
in [5,6]) and they are sufficient for a probabiisstudy under the present design
scenario (with a steady state flow condition). Alvantage of the studied dam is that
it was well documented and there are a large nurobeneasurements available.
More importantly, they; measurements are geo-localized during the embarkme
compaction, which allows a data geostatistical ysisland leads to a representation
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of y4 by random fieldsThe random fields op’ can then be obtained by transforming
the ones of,; using a physical relatiofCaquot’s relation as the works of [&ihd the
C' is simulated by means of random variables. Theamation of these uncertainties
is quantified by performing a classical MCS in conaition with a mechanical model

based on the limit equilibrium method which focusascomputing the dam FoS.

The second objective of the paper is to investitfaeperformance of four reliability
methods. Considering these methods, the resultsoanpared with the ones of MCS.
Since small values of autocorrelation distanceoétained for the considered dam by
analyzing the measurements, a large number of mandwiables (around 2000) is
needed to represent accurately the random fielgg.ofhe present study becomes
thus a very high dimensional stochastic problener&tore, the comparison study is
focused on evaluating the performance of differefitibility methods for very high
dimensional stochastic problems. Few studies dgisthe comparison of different
reliability methods in real engineering problems a study has been done for the
stochastic problems with more than 1000 randomatséas in the geotechnical field.

The selected four reliability methods to be asskase explained as follows.

For a reliability analysis, the MCS is always caolesed as a standard reference to test
other methods [7,8]. However, it suffers from aywbkw computational efficiency.
Based on the MCS, two advanced sampling methodgoftiaince Sampling (IS) [7]
and Subset Simulation (SS) [9]) were proposed tluge the variance of the MCS
estimator with a limited number of deterministicaebcalls. The SS can be used in a
reliability analysis with both random variables eggch and random fields approach
as shown in [10], whereas the IS is not applicimesome cases with random fields if
the involved random variables have no physical nmganAnother sampling-based

technique is the Point Estimate Method (PEM) [1hjolk uses specific samplings to
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estimatefirst moments of a system resporas® then to approximate reliability index
by the estimated moments. Alternatively, the fingtments can also be determined by
performing an MCS until the convergence is reacledthermore, the First-Order
Reliability Method (FORM) and the Second-Order Rlgility Method (SORM) are
also commonly used in the field of reliability [2]1 They are usually employed in
combination with the Response Surface Method (RSM¢. aim is to seek so-called
design point by solving a constrained problem. Woidwately, the FORM, SORM and
RSM are not able to handle too many random varsaldlg]. During the last decades,
meta-modelling techniqudsave received much attention in the reliability lgsia
due totheir efficiency and accuracy [14]This technique allows constructing a
surrogate model (a.k.a. meta-model) to an origimathanical model. The constructed
meta-model is usually expressed in an analyticahfolrhe computational burden is
thus quasi-negligible, which enables an MCS witpeet to the meta-modélhere
are several mathematical tools available to rebhehgbal of a meta-modelling, such
as Artificial Neural Networks (ANN) [15,16], Kriggnmodel [17-19] and Polynomial
Chaos Expansions (PCE) [20,21]. In the context igh hdimensional stochastic
problems, some dimension reduction techniquese introduced and combined with
the meta-modelling to improve its performance, sashlthe SPCE/GSA [22] aride
SPCE/SIR [23] which were proposed in recent yeHngy use respectively the GSA
andthe SIR to reduce the number of the involved randonmabdes at first stage, and
then to construct an accurate SPCE meta-model lmas¢de reduced dimensiom
summary the selected reliability methods for the compaeastudy in the article are
thus: a variance reduced MC® 4 SS), an MCS-based moment methdd: (MM),
and two meta-modelling methods for high dimensiosi@chastic problemsthe

SPCE/GSA anthe SPCE/SIR).

The studied dam waavestigated in a probabilistic framework by Guaak in [24].

The authors studied the dam reliability by using 8PCE with the field data. The soil
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variabilities of C', ¢' and y,; were simulated by means of random variables. Two
deterministic models were developed in [24] forleating the dam FoSlhe present
studyis dedicated to extend the studies in [24] by catidg a variogram analysis

the geo-localisegt; measurements to considére soil spatial variabilities, and to
compare different reliability methods in relatedtte considered dam reliabilityhe
main objectives of the article are to present aahgh probabilistic stability analysis
of an earth dam, and to conduct a comparative stadyjhe performance of different
reliability methods in a context of high dimensibr&iochastic problems. The
presented procedure and obtained results could dedgners to better understand
reliability analyses of earth dams using real dataj to choose more specifically

reliability methods for future problems.
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2 Random fields and Reliability analysis methods

This section aims at presenting all the reliabifityalysis tools used in the article. It
includes the method for generating random fieltig, ¥Yariogram analysis and the

selected reliability methods.

2.1 Simulation of random fields by the Karhunen—Loeve gpansion (K-L)
In this study, the K-L expansion method is adogtedimulate random fields. Let us
consider a stationary Gaussian random figlg,¢) in a bounded domair® .

Following the principles of the K-L expansidii(x, §) can be expressed as [25]:

[e9) S

HEH = u+ 0 ) JL6i§ ~ ut 0 ) J6i@)5 ®

i=1 i=1

wherex represents the coordinates of an arbitrary poiri, im ando are respectively
the mean value andhe standard deviation of the random fiefdjs a vector of
standard uncorrelated random varialdleandé; are respectively the eigenvalues and
the eigenfunctions of the autocovariance functionshef tandom field, an#l is the
size of the series expansion for the truncated .fokm autocovariance function is
defined as the product of the variance and thecautelation function which gives
correlation value between two arbitrary poifitsy) and(x’,y’) in 2. In this study,

an exponential autocorrelation function is used [8]

The value ofS depends on the desired accuracy, the autocoaeldtstancelf, L,)
and the dimension of the random field. It can btembeined by evaluating the error
estimation of the truncated series expansion. Tl estimate based on the variance

of the truncated error for a K-L expansion witierms is given by [26]:

gzéfn dQ ()

S
1= > 167(%)
i=1
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In order to obtain a sufficient accuracy in ternisttee variance error for random
fields, Li and Der Kiureghian [27] recommended thia@ stochastic grid size of a
random field can be set as 0.2 times the autoehiwal distance. For the cases of non-
Gaussian random fields, it can be achieved by @pradbabilistic transformation once

a Gaussian random field is obtained using the kqtaasion [28,29].

2.2 Variograms

A variogram is a function which provides a desaoiptof how data arecorrelated.
The first step of a variogram analysis is to cardtan experimental variogram which
describes the correlation between any two valugkeobbservation data separated by

a distancér. The experimental semivariograr is defined as [25]:

1 2
y(h) = Z—NhZ(gi - 9;) ®

whereg; andg; represent all the possible pairs of samples warehseparated with a
distance oh, andN, is the number of the pairs gf andg;. This calculation should
be repeated for as many different values ek the observation data will support.
Then a mathematical model is applied to the expental semivariogram in order to
representan autocorrelation structure over the whole studyaaamd to estimate
autocorrelation distances. One of the most commariogram models is the

exponential model, which is used in this study whdse equation is [25]:

y(h) = C[1— e~ CNMY] (4)
The parameten represents the range of the variogram (also callgdcorrelation

distance), and is the sill value at which the variogram level& &igure 1 shows the

characteristics of a variogram analysis.
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Figure 1. Characteristics of a variogram analysis

2.3 Presentation of the reliability methods used in thetudy

2.3.1 Monte Carlo Simulation (MCS): the reference rathod for the study
The MCS method has been widely employed in religbilnalyseg30]. For an MCS

with Ny,-s model runs, the failure probability is given as:

1 Nmcs
Pf = *ZI (I=1if G<O0;I=0else) (5)
Nycs =

wherel is an index of failurendG presents a performance functidrhe number of
Ny cs should be large enough in order to obtainaccurate failure probability. The

coefficient of variation (CoV) oPf for a MCS can be calculated by [26]:

CoVps = /(1 = Pf)/(Nycs * Pf) * 100% (6)
Although this method suffers from low computatioeéficiency, it often serves as a
standard reference to test other reliability methdecause of its versatility and

robustness. In this article, the reliability an#&ysf the studied dam is performed by
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the MCS and the obtained results are used to evalbatadcuracy anthe efficiency

of the selected reliability methods which are pnése in next sub-sections.

2.3.2 Subset simulation (SS)

In order to tackle the problem of usitige MCS especially for low failure probability
cases, the SS was developed by [9]. The princgpte decompose failure eventt
into a sequence of intermediate evesF,, ..., E,,] with larger probabilities of

occurrence. The target failure probability is venittas [31]:

Pf =P@E) =P(F) | | PRIF) ™

whereP (F;|F;_;) is the conditional failure probability of the evef|F;,_;. A key
element of successfully usirige SS is the generation dfie conditional samples
each intermediate everithis is achieved by using the modified Metropliasting

algorithm (MMH) in this article.

2.3.3 Moment method approximation (MM)
The MM was introduced by [32] for structural reliabylianalysesA well-known MM

is the second-moment approximation (SM). It assutinaisa system response follows
a normal distribution and uses the first two moradatestimate the reliability index.
In the present stugha fourth-moment approximation (FM)asso usedo estimate the
dam failure probability since it can give more aete results compared to the SM as
reported in [33]. The formulas of the two adopte®lMhethods (SM and FM) are
given as follows [32]:

Bsm = l;_Gi Pfsy = ®(—Bsm) (8)
G

_ 3(awe — Dfsy + azg (BZ, — 1) . o
o ‘/(90{46 - 5“%6 —9)(aye— 1) ’ Pfem = ®(=Frm) 9)
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where (Bsy, Pfsy) and (Bem, Pfry) are respectively the (reliability index, failure
probability) estimated by the SM and FMi;, 0.2, as; anda,; are the first four
statistical moments of the performance funcgtiand®(-) represents the cumulative
distribution function (CDF) of a standard normatighle. The values of the required
statistical momentare determined by an MCS in this study. The datestic model

is repeatedly run for different sets of input pagtens generated from a specific PDF,

until all the desired moments are converged.

2.3.4 Spares polynomial chaos expansion/Global séngty analysis (SPCE/GSA)
The SPCE/GSA was proposed by Sudret (2008) [34]rapdoved by Al-Bittar et al.

[22] for high dimensional stochastic problemi$ie SPCE presents a suitable sparse
basis of the PCE. The sparse basis can be budtdigpwise regression algorithm as
described in [21,35,36]. By using the SPCE, A nhadsponse can be expanded as
[36]:

Y = Z kalpa(f) (10)

aeNM
where & = {&, &, ..., &y} are independent random variable¥,(§) are
multivariate polynomialsk, are unknown coefficients to be computed ane
{ay,...,ay} is a multidimensional indexin this paper, the hyperbolic truncation
scheme proposed in [21] is used to truncate thiessexpansion and the unknown

coefficientsk, are computed by using the least-regression mg8&jd

Concerning the GSA, it allows quantifyimgntributionsof an input variable to the
response variance of a physical model [34]. Sud2®08) [34] introduced an
analytical way to computine Sobol index (a sensitivity index) by post-procegsime

SPCE coefficients. The Sobol index of one variadle be calculated as:

10
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Vacag ()2 E[(¥e)?]
Taca ()2 EL(Pe)]

wherekj are PCE coefficientd] is a truncation setA;i is a subset o in which the

(11)

SE) =

multivariate polynomial$¥, are only functions of the random variabldi.e., they

only contain the variablg), andE[(¥,)?] is the expectation @¥,,)?.

As a summary, the SPCE/GSA implementation for iabgity analysis consists of 3

steps:

1. Select significant input variables by performin@G8A based on a 2-order SPCE.
It should be noted that the SPCE order has almosintluence on the Sobol
index, so an SPCE witiine order 2 can accurately provide contributions ofheac
input variable to system responseiabilities[22,34],

2. Construct a meta-model using a high-order SPCE with selected variables
(effective dimension),

3. Perform an MCS using the obtained meta-model toptenthe system response
PDF andhefailure probability.

2.3.5 Spare polynomial chaos expansion/Sliced ingerregression (SPCE/SIR)

The SPCE/SIR was proposed by [23]. The principlmaies the same to the
SPCE/GSA which lies oa dimension reduction before construction of an eafeu
SPCE meta-model. The SPCE/GSA utilizes the GSAetluece the number dhe
involved random variables, while it is achieved dnother technique named SIR in
the SPCE/SIR. This approach is based on the plenttigt a few linear combinations
of original input variables could capture essentiérmation ofa model response
[37]. It aims to findan effective dimension reduction (EDR) space by coersind) an
inverse regression relation which regresses inpuables against model responses.
The algorithm presented in [23] is adopted in thiady to find the EDR. By
performing this algorithm, a new input vector cam @btained which is a linear
combination of original input variables, and thendinsion is reducednce the new
input vector is determined, an accurate SPCE maoalelbe constructed and then the

failure probability can be estimated with an MCS.

11
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3 Study case presentation: soil properties availableand
variability modelling

This section focuses firstly on presenting the isicearth dam and describing the
available field data. Then, the statistical pararsetof the three soil properties
(C',¢" and y; ) required for generating random fields or randoariables are

determined using the field data.

3.1 Presentation of the studied dam

Figure 2 presents the main cross section otthmsideredlam. It is al70 m long and
23.8 m high earth-filled darocated in the west of Franck closes a valley covered
with alluvial deposits and can retain a reservdimbout 5 hm. The normal and
maximal reservoir water level is respectively 2@ &1.6 m.In the downstream part,
two filter drains were installed for the purposel@miering the phreatic surface [38].

In the foundation, a waterproof grout curtain wealized with a depth of 15 m.

23.8 — :
Normal reservoir level 25

20 [ ——

il
Shell-2

3.25

2 Shell-1

Height (m)

ow
I

- |‘E|h—\ TT— T T T—T T T——T T T— T TTo==" — T T T—— T T T— T T T— T T— T — 11— ‘ ‘E‘ | |E

L A==

\ | | ] | | |
-79.5 -69.5 -20.5 0 8.5 60.8 73.8 88.8

Distance (m)

15 L

Figure 2. Main cross section of the studied dam

As presented in Figure 2, the dam is formed byetliéerent zones including a core
and two backfill zones in respectively the upstresand downstream part of the core.
These three zones are respectively named as Gue#;1Sand Shell-2 in this article.
The materials constituting the dam were collectednfthe vicinity of the dam site.
Two different types of soils can be identified hetvalley. The first type is gravelly

sands resulting from alteration of shaleglmslopes and uplands which dominate the
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valley. This material is used for the constructainthe Shell zone. The second soil
type, sandy silts, can be found on the bottom efualley and on the slopes. It was
used for the construction of the Core zomke foundation is composed of altered
schists whose superficial layers have been puriedocation is very close to the

Shell zone according to the site investigation grahulometric analyses.

3.2 The available field data

Different data are available on the studied eaatin th several phases: design studies,
construction controls and structure monitoring.sTéduiticle presents only the field data
which are relevant to the stability analysis of damdry density measurements
collected during the construction and the resuftshe triaxial tests performed in
laboratories The former is directly related to tirg and the latter allows estimating
C' andg’.

3.2.1 Embankment compaction

During the construction, the dry density and thi water content after compaction
were monitored in-situ using a gammadensimeters Tdads to a large number)of
data. An advantage of these data is that they weliected following a grid
monitoring system. This makes it possible to |laealthe measurements in space
(along three axes). The grid system consists grafles in the longitudinal direction
(Y axis) and 13 profiles in the transversal directi(X axis). Such a grid system
allows determining the location of the measuremeasrisan X-Y plan and the
knowledge of the construction layer gives the diewaof the measurements along the
Z axis. In total, the number of effective geo-lazatly,; measurements is 381 for the

Core zone, 248 for the Shell-1 zone and 272 foSthell-2 zone.

3.2.2 Triaxial shear tests

The shear strength parameters were determinedaxyjatrshear tests. Farlong-term
stability analysis of earth dams, the effectiveesibn and friction angle are required.
Concerning these parameters, totally 8 consolidatettained triaxial shear tests with

13



309 pore water pressure measurement are available. éuth@n8 tests, 5 tests are for the
310 Shell zone and the other 3 for the Core zdhe.plotting the Mohr circles of the
311 effective stress at failure, the values@fandtan¢g’ can be estimated using the
312 Coulomb line (approximately tangent to all the leisg. Usingthis method, the results
313 of each test can be exploited to computethieesof C'and¢’. According to the 8
314 available tests, the average@fis estimated to be equal to 9.4 kPa for the Stoelk

315 and to 10 kPa for the Core zone. gdr a value of 342was obtained for the Shell
316 zone and of 34%%or the Core zonet can be found that the shear strength parameters
317 for long term of the two soils are very close taleather. In fact, the two materials
318 are relatively similar as they derive from the sthalteration composing the bedrock.

319 The considered dam is actually a pseudo-zoned danth

320 3.3 Variability modelling of the soil properties

321 In the present study, soil variability modellingnetsts of two stepsFirstly, an

322 appropriate distribution type is assumed and thenrélating distribution parameters
323 are determined by fitting the measurements to #suraed distributionSecondly,
324 autocorrelationstructures areestimated through a variogram analysis based on the
325 geo-localized measurements. It is noted that tte¢ §tep is directly related to the
326 works in [24]. Therefore, only a brief descriptioh the first step is given in the

327 following parts.

328 3.3.1 First step: Distribution type and relating paameters

329 Two distribution types (beta and truncated normiatridbution) are adopted as a
330 candidate, in this article, to describe the meabulaa ofC’, ¢’ and y,;. The reason
331 of choosing the two distribution types is that tleayn avoid unreasonable values by
332 consideringa physical range of soproperties By fitting the measurements withe
333 beta or truncated normal distribution, the corresiyag soil parameter can be

334 described as a random variable. The best fittednpaters are estimated using the

14
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maximum likelihood estimation method, and the b@&thdalues are determined

according to the soil type and the reference valeesmmend in [39,40].

The procedure of the first stementioned above can be easily applied to the
measurements @f; since many data exist for this soil property icheaone of the
dam. However, the number of the available triaxial tast®nly 8 and itdoes not
allow a meaningful statistical estimation of thetdbution parameters fat’ andg’.

In order to address this problem, [5] introducesiethod which can generate a large
number of artificial data fof'and¢’ with limited triaxial test results. This method is
also adopted in the works of [24] to determine distribution parameters witthe
beta or truncated normal distribution ©f and¢’ of the studied dam. With this
method, the distribution parameters for all the¢hsoil propertie(, ¢’ and y,;) can

be obtained. Table 1 gives a summary of the diginobh parameters for each zone. As
an illustration, Figure 3 and Figure 4 present eeipely the histogram and the two
fitted CDF curves for thg; measurements in the Core zone, and for the gexatat

in the Shell zoneThe method introduced by [5] for determining thetbution
parameters of = and¢  is based on a linear regression performed onapet the
Mohr circles. This method assumes that the interategarameters (the y-intercept
and the slope of the Kf line) which are used fdineating the values of = and¢ ",
are two uncorrelated normal variables. Therefore, aorrelation is considered
between the shear strength parameters in this papeording to previous works [41]
on slope reliability analyses, ignoring the coriela betweerC ~ and¢ ~ which is

usually negative [42], leads to conservative edtaf failure probabilities.

15



60 T T T T T T T T

Frequency
N
o

N
o

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
Dry density of the Core zone (g/cm3)

1 T T T T T T
Raw data .
.......... Beta

= = =Truncated normal

)
3 0.5
0 L 1 1 1
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05
; 3
Dry density of the Core zone (g/cm~)
358
359 Figure 3. Histogram and fitted CDF for they,; measurements in the Core zone
4
10 x 10
3
C
S 5
o
o
L
0
0 5 10 15 20 25 30
Effective cohesion of the Shell zone (kPa)
1 T T T T
= Raw data
........ Beta
LL = = Truncated normal > z
Qo5 ——— P g 7]
“““ 7’
> 7
”
-~
- - -
0 - 1 | | | 1
0 5 10 15 20 25 30
360 Effective cohesion of the Shell zone (kPa)

16



361

362

363

364
365

366
367
368
369
370
371
372
373
374
375
376
377

Figure 4. Histogram and CDF of the generated’ in the Shell zone

Table 1. Distribution parameters of the soil propeties

Zones  Soil property Beta Truncated normalExtreme values
a' b Mean  CoV*(%) Min Max

Ya (g/cm’) 15.7 18.0 1.99 3.21 1.63 240

Shell-1 €' (kPa) 1.48 2.78 1055 57.63 0 30
o' (%) 28.71 29.61 34.85 3.72 25 45
Ya (g/cm®) 224 275 1.83 3.33 144 232

Core C' (kPa) 4.07 5.22 1323 3421 0 30

o' (%) 231.16 192.28 34.11 2.48 15 50

Ya (g/ecm®) 267 222  2.05 2.65 1.63 240

Shell-2 (' (kPa) 1.48 2.78 1055 57.63 0 30
o' (°) 28.71 29.61 34.85 3.72 25 45

Note:'Beta distribution parameterCoefficient of variation

3.3.2 Second step: Autocorrelation structure

The second step aims at determining the autoctimelstructure of the simulated soll
property for each dam zone. The method [5] adofiiedenerating values @ and
¢’ cannot provide the location information. Therefomnly the autocorrelation
structure ofy,; is estimatedlIt could be realized by a variogram analysistoageo-
localizedy,; measurementsiaking the Shell-2 zone as an example, an expetahen
semivariogram is firstly obtained by applying E§) (o all they, measurements of
this zone. Then, the autocorrelation distances ban estimated by fitting a
mathematical model (exponential one in this papé&) the experimental
semivariogram. Figure 5 shows the experimental &&noigram together with the
fitted exponential model for both horizontal andtioal directions. It can be observed
that the variance between two measurements in@easid the increase of its
separation distance. The variance roughly react@mstant value after the distance
beyond 5-7m for the horizontal directions. For treetical direction, it converges
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when the distance is bigger than 1.5m (lower véhae for the horizontal direction).
The black points in Figure 5 represent the poirigchvreach 95% of the sill value. It

is considered that the abscissa of these poiriteeisiutocorrelation distance. For the
cases in Figure 5, the horizontal and verticalaticés are respectively 4.9 m and
1.9 m.It indicates that the soll is less homogeneoukeénvertical direction than in the
horizontal direction. This finding is consistenttivthe observations of [42,4By
repeating the same procedure tojtheneasurements in the other two zones Core and
Shell-1, all the necessary autocorrelation distarae obtained and presented in

Table 2.

Table 2 indicates that a considerable homogeneaitybe found in the Shell-1 zone,
while they, in the Shell-2 and Core zones are more spatialfialle. This difference
can be explained by the better selection of theen@tcomposing the upstream zone
and the greater attention which has given to itsstaction. The nugget effect
corresponds to about a half of the variance forupp&tream shoulder and to a slightly
lower fraction for the downstream shoulder and ¢bee. The nugget effect can be
attributed to the mixture of the materials durihgit excavation from the borrow pits.
In our case, it is considered as a short dimerstiarcture whose scale is less than the

sampling step.
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Figure 5. Variogram analysis for they; measurements in the Shell-2 zone
Table 2. Results of the geostatistical analysis ftine y, measuremetns
Autocorrelation distance (m)
Zones _ : Nugget effect
Horizontal ¢,)  Vertical (L)
Shell-1 78.1m 7.8m 1.6x10
Core 13.0m 1.5m 8.6x10
Shell-2 4.9 m 1.9 m 1.0x10

As presented in section 24 K-L expansion should be truncated to a limited beam
of series terms for practical applications. The value ®fcan be determined by
evaluatingthe error defined by Eq. (¥ith a prescribed accuracyhis error depends
on the autocorrelation distances and size of aomniield. For an accuracy between
10% and 9%, th# is estimated to be equal to 30, 368 and 1710dspeactively the

Shell-1, Core and Shell-2 zones (considering tbge& dimension and the relating
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autocorrelation distances presented in Table 2gréffbre, it needs 1710 random
variables to represent accurately a random fielgr pin the Shell-2 zone. Such small
values of thd., andL, in the Shell-2 zone lead to the present study ineca very

high dimensional stochastic problem.

3.4 Seismic loading condition

A pseudo-static acceleration is considered in shisly in order to take into account
seismic loading conditions. The value of the aaegien is set equal to 2.4 nf.slt is
determined according to the location of the considelam with respect to the seismic
zones in France and the category of the dam [4¥.SEismic acceleration used in the
calculation is considered to be related to a reperniod of 5000 years. This means
that the failure probability directly obtained undich a pseudo-static acceleration
should be multiplied by 1/5000 to consider the re@soccurrence probability. The
two types of failure probability are respectivelgted asPf;irec: andPf,, In the

study.

4 Presentation of the deterministic models

Two deterministic models were developed in [24] domputing the dam FoS. The
first one is a numerical model based on the strerggluction method, and the second
one is an analytical model based on the limit éguiim theory. The latter is
employed in this article to perform the determigistalculations in the reliability
analyses since it can give similar FoS values coethto the numerical model but
with a lower computational time. Such an advantage ig sgnificant and important
for a reliability analysis which needs usually ganumber of calls to a deterministic
model. Concerning the numerical model, it was dgwedl for providing the pore

water pressure distribution inside the dam andlatilng the analytical model.
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This section aims at presenting the two modeldliprim the end, a comparison study
between the two models is conducted in order twatd the analytical model in the

context of random fields.

4.1 The numerical model
The numerical model in [24] was created using Aaeich is a two-dimensional
explicit finite difference program [45]. The boumgaconditions used in this model
are the following ones: the displacements are ldddollowing the horizontal and
vertical axis on the base of the model; the hotialotisplacements are blocked on the
lateral edges of the model. Figure 6 presemtsnesh used for the following
calculations. The mesh includes around 18000 4-mpdelrilateral plane elements.
The selected number of the elements was deternbgeal mesh refinement study
[24]. The created model allows calculating the pwater pressure distribution inside
the dam by applying a hydrostatic head in the epstt The dam FoS is computed
based upon the strength reduction method [6].

— e

= Core

I Drain
Bl shell-2

Figure 6. The numerical model mesh of the studied aia

4.2 The analytical model

The analytical model proposed in [24] is based loa limit equilibrium theory in
combination with a genetic algorithm (GA) [46]. Thpginciple is to generate a
number of trial slip surfaces as initial population at first, and then to search the
minimum FoS value by simulating natural processn@lagenerations including
reproduction, crossover, mutation and survivor¢éd®n. The FoS of a given slip
surface is computed by using the procedure of Zhal.423] which is based on the
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Morgenstern Price method, and the slip surfacergéina method described in [24] is

adopted which allows generating non-circular slipfaces. It is also noted that the
pore water pressures at the base of each slicgeteemined using the ones obtained
by the numerical model. For more details about riaglel, readers are referred to

[24].

4.3 Validation of the analytical model

It was shown in [24] that the analytical model Ideato give similar FoS values in a
deterministic calculation and similar reliabilitgsults in a probabilistic calculation
compared to the numerical model. However, the coispa and validation studies
conducted in [24] are only related to the casesnflom variables. The performance
of the analytical model in the context of randoerlids is thus still unknown. In order
to address this issue, a comparison study is daoug and presented in this section.
The idea is to generale,,,,, random fields forp’ and y4, andN,,,, random variables
for C'. For each set of input parameters, the two detgstit models are both
performed. The obtained FoS values are then compaith each other to evaluate
the accuracy of the analytical model. The numenuadlel is adopted as a reference to
assess the performance of the analytical modeltiHferfollowing reasons: 1) no
assumptions are needed concerning the failure yrf3) no assumptions on inter-
slice side forces are needed, since there is ncepbrf slices, and 3) no optimization
procedure is needed since the minimum FoS andrifeatslip surface are obtained

automatically.

In total 150 sets of input parameters are consiigréhe comparison study. Each set
of input parameters is obtained randomly and ispmsed of three random fields of
vq, three random fields op’ and two random variables @f. The other soil
parameters, except, ¢’ and y,, required for the numerical model are taken from t

values given in [24]. The values of the GA pararetn the analytical model are the

22



482
483
484
485
486
487
488
489
490
491

492
493

494
495

same to the ones in [24]. As an illustration, dizaéion of three random fields ¢f;
are mapped to the numerical model and presentédgure 7. Using the Caquot’s

relation, three random fields ¢f are also obtained and shown in Figure 8.

Figure 9 presents a direct comparison of the Fd8esacomputed with the two
models for the 150 different parameter sets. shiswn that the results are close to the
unit line and relative errors are smaller or aroGfel These observations indicate that
the analytical model is able testimate araccurate FoS value for the studied dam
considering random fields. Therefore, the analjtioadel is validated and can be

used for deterministic calculations for the follogireliability analyses.

Density
1.65E+03
1.75E+03
1.85E+03
1.95E+03
2.05E+03

Figure 7. Example of a realization of three randonfields of y4

friction

2 50E+01
2.75E+01
3.00E+01
3.25E+01
3.50E+01
3. 75E+01
4.00E+01

Figure 8. Example of a realization of three randontfields of ¢’
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Figure 9. Comparison of the FoS values for 150 set$ input parameters

Using the analytical model, rather than the nuna¢rione, can reduce the
computational time of a stability analysis for stedied dam from 20 minutes to 10
seconds in an Intel Xeon CPU E5-1620 3.5 GHz PCchSa reduction in

computational time is very significant for a religtly analysis which needs usually a
large number of calls to a deterministic model. gaivthat the analytical model can
give reasonable FoS values compared to the nurheneabut with a reduced time,

the following analyses are all based on the ar@lythodel.

5 Reliability analysis results by the reference methi MCS

This section presents the reliability analysis tfoe studied dam using the reference
method MCS. The uncertainties ihe soil propertie’, ¢’ and y,; are quantified

using random fields or random variables with theapeeters presented in the sections
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3.2 and 3.3. In addition, the effect of autocoiela distances on the dam failure

probability is discussed.

5.1 Reliability analysis results

20 000 deterministic calculations are performethmreliability analysis by an MCS
with the Latin Hypercube sampling technique. Forcheacalculation, 2110
independent standard random varialdleare generated firstly. The first twp are
transformed to physical values 6f using the iso-probabilistic method with the
specific PDF presented in Table 1. The gstre used in the K-L expansion for the
generation of the three random fieldsygf The three random fields ¢f are then

obtained by a transformation from those/gfusing the Caquot’s relation.

Figure 10 shows the PDF of the obtained 20 000 Va&es forthe two distribution

types, and Table 3 gives the reliability results.

0.05 T T .

Beta

0.045 = = Truncated normal | |

0.04
0.035 |
0.03
a
g 0.025
0.02
0.015 |
0.01

0.005

FoS

Figure 10. PDF of the FoS values obtained by the M&with two distributions
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524 Table 3. Reliability results obtained by the MCS wth two distributions

Failure probability Statistical moments of FoS
Distribution —
Pfiirect  Pfeon CoVpy Mean Standard deviation
Beta 0.022 4.4xID 4.71% 1.232 0.108
Truncated
0.016 3.2x10 5.61% 1.248 0.097
normal

525

526 From Figure 10, it can be observed that the PDWecwbtained by the truncated
527 normal distribution RDFy) is taller and narrower than the one of beta ithstion
528 (PDFg). It means that the FoS values are less dispeisivetruncated normal
529 distribution is assumed for the input random vdeabMore precisely, the two PDF
530 curves are almost superposed for relative highwd&es (bigger than 1.4), while the
531 PDEFy is significantly lower than thBDFy for relative small FoS values (smaller than
532 1.2). This is because of the probability of geriegat small value of’ in the Shell
533 zone drawn from the fitted beta distribution is Heg than the truncated normal
534 distribution, as presented in Figure 4. In additithe two curves are not symmetric.
535 They are considered to be negatively skewed wittladively bigger tail at the left. It
536 can be explained by the fact that the distributainthe input variables is not
537 symmetric and that some variables have more snadlies, such a&’ in the Shell
538 zone as shown in Figure 4.

539

540 The direct failure probabilitf,;;.... of the dam under a pseudo-static acceleration of
541 2.4m.§ is estimated to be equal to 0.022 and 0.016 ré&spbc by the two
542 distributions. These values are then multipliedabgoefficient of 1/5000 to consider
543 the seismic occurrence probability and become edoa#t.4x1® and 3.2x16
544  respectively. As for the statistical moments of BeS values, the beta assumption

545 gives a slightly lower value for the mean but ageigvalue for the standard deviation,
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compared to the truncated normal assumption. Avaige of standard deviation

means a high level of data scatter. This is comsisvith the observation in Figure 10.

In conclusion, the dam failure probability undepseudo-static loading condition is
estimated to be around 4%10 The two distribution assumptions lead to similar
results withthe same order of magnitude. The beta distributioregislightly more
conservative results in term of the failure probgbi As the beta distribution
describes better the variability of the soil prd@sr as shown in Figure 4 and is

conservative in the design, this type of distribatis adopted for the next analyses.

5.2 Influence of the autocorrelation distance

One of the factors which can influence reliabili&gults is autocorrelation distance. It
defines by means of an autocorrelation functioe, datocorrelation structure of a
random field. According to a literature review givey El-Ramly et al. [47], the
autocorrelation distance for soils is usually withirange of 10-40 m in the horizontal
direction, while it ranges between 1 and 3 m inugdical direction. It is found that
theL, andL, in the Shell-1 zone (Table 2) are bigger tharveiaes indicated in [47]
while theL, in the Shell-2 zone is smaller than expected &li@erefore, careful
attention must be done to these parameters and their indudkdence on the

reliability analysis.

Finally, the impact investigation is focused on theue ofL, in the Shell-2 zone
while the estimated autocorrelation distances énShell-1 zone are accepted for the
values in Table 2. The reasons are as followshd )obtained large values bf and

L, are expected for the Shell-1 zone since the nadd¢eare better selected and more
attention are given to its construction; 2) the tigzsm part of the backfill

embankment is considered to have a very limiteldiémice on the dam stability under
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steady state flow conditions; 3) large values dbeorrelation distances may lead to

bigger failure probabilities, so conservative dasigs pointed in [13,48,49].

For thelL, value in the Shell-2 zone, a first improvementmade by fitting the
experimental semivariogram with other theoreticatiagram models such as the
Gaussian and the spherical models [50]. Thes estimated to be equal to 6.7m for
the Gaussian model, and to 4.7m for the sphericadleln These values are both
different to the one estimated with the exponentiadel (4.9m) as shown in the
section 3.3, and these differences may induce apadétmon the dam failure

probability.

In order to quantify the influence induced by diffiet values ol.,, a parametric
study is conducted. Several valued.pfin the Shell-2 zone are tested using the MCS.
The objective is to investigate the evolution cf tham failure probability with thi,
value. For the sake of simplicity and clarity, thther values of autocorrelation
distance are rounded to integer values (see detailable 4). In addition, thk,
value in the Core zone is also varied. Totally, rfmases are selected for the
parametric study. The, value in the Core and Shell-2 zones are decrdased80 to
10m. These four cases allow investigating the erfbe of the horizontal
autocorrelation distance in the Core and Shelly#gmn the dam failure probability.
The reference case in Table 4 refers to the vasesated by the variogram analysis

with the exponential model (see Table 2).

Table 4. Selected values df, and L,, for the parametric study

Shell-1 Core Shell-2
Ly(m) Ly(m) Ly(m) Ly,(m) Ly(m) Ly(m)
Casel 80 8 80 2 80 2
Case2 80 8 40 2 40 2
Case3 80 8 20 2 20 2
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Case4 80 8 10 2 10 2
Reference case 78.1 7.8 13 15 4.9 1.9

By adopting different values of autocorrelationtaice as shown in Table 4, four
complementary MCSs are performed. Figure 11 plaes four obtained failure
probabilities together with the one of the refeeenase. The first two moments of the

dam FoS for each case are also given in Figure 11.

0.03

0.029 Mean=1.233
Std=0.118

0.028 - Mean= 1.233

Std=0.117 Mean= 1.232 b

Std=0.112

0.027

Mean= 1.232

0.026 - Std=0.114

0.025 - \ |

0.024 .

Failure probability

0.023 | \ 7

0.022 + ¥ 1
Mean= 1.232
0.021 F Std=0.108

1

0 02 1 1 1 1 1
Case1 Case2 Case3 Case4 Ref. Case

Study case

Figure 11. Influence of theL, on the dam failure probability

It can be observed from Figure 11 that the horiazloatitocorrelation distance in the
Core and Shell-2 zones have an influence on the fddure probability. As thel,
decreases, thef decreases. For example, a decreask.dfom 80 to 10 m results in
a reduction of about 10% for tii (from 0.0295 to 0.0259). This finding has already
been confirmed by many researchers for differenbteghnical engineering

[13,48,49]. Concerning the statistical moments, thean value remains almost
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constant whereas the standard deviation increases wncreasing thd., . This
indicates that thd., has no impact on the mean value of the dam FoBereas it
affects the FoSs dispersion of the dam. The referease corresponds to the lowest

failure probability and the smallest standard disia

6 A comparative study of different reliability methods

This section presents the results and the relatiteypretation of the comparative
study of the four selected approximated reliabiltethods. The objective is to
evaluate the performance of the considered metliodssery high dimensional

stochastic problems.

The parametric study on the autocorrelation digtgpcesented in section 5.2) is re-
performed by the four reliability methods (SS, MMPCE/GSA and SPCE/SIR)
which are mentioned in the section Introduction @nelsented in section 2.3. The
obtained results in term of the failure probability each case are plotted in Figure
12, and the numbers of calls to the deterministadeh (NV.,;) for each case are
summarized in Table 5. Additionally, the resultstioé MCS are also provided and
considered as a standard reference for the coroparis Table 5, the number of
required random variablesNgy, = Ngy x; +2) for representing’, ¢’ and y, by
means of random fields or random variables is giasnwell. TheNgy x, is the
number of random variables needed for generatitagively accurate random fields
of y; by using the K-L expansion method, and the nuntbeepresents the two
random variables af’ in the Shell andthe Core zones. The information in Table 5

helps to visualize the effiency of each method &ayparing theVy, with theN,,;.
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Figure 12. Comparison of the failure probability oltained by the five reliability methods

Table 5. Comparison of the necessary run numbers diie deterministic model for the five reliability

methods
Case 1 Case 2 Case 3 Case 4 Reference case
Ngyt 225 370 647 1207 2110
MCS 20000 20000 20000 20000 20000
SS 600 600 600 600 600
SPCE/SIR 1000 5000 8000 10000 15000
SPCE/GSA 3000 5000 8000 13000 18000
MM 1946 1755 2081 2026 1981

Note: *Number of required random variables for represgding’ and y, by means

of random fields or random variables for each case
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A quick review of Figure 12 reveals that the fouethods can all give relatively
accurate failure probabilities compared to the ltesof MCS. The values dtf are
within a same order of magnitude for different methods. &@ample, théf varies

between 0.015 and 0.027 for the Reference casediegdo the four methods.

Concerning the efficiency comparison presented abld 5, it is found that all the
approximated methods need fewer calls of the détéstit model than the MCS.
This is the reason why these methods are an ditezni@ the MCS for reliability
analysesBesides, the value df, increased from Casel to Case4, andWheof the
Reference Case is the biggest one. This is bedhesautocorrelation distandg
value in the Core and Shell-2 zones are decreaeed 80 to 10m. Smaller value of
the autocorrelation distance means that it needse mendom variable®yy g to
represent a random field with a specific error aace. By comparing thg, with
theN,,; of each method, it is observed that Mg;; of the methods MCS, SS and
MM is almost changeless to thg,. In other words, the efficiency of these three
methods is not related to the number of input ramd@riables, but depends on, in
fact, the value of the target failure probabilijowever, thav,,; of the two meta-
modelling methods (SPCE/GSA and SPCE/SIR) increag®dly with increasing the
Nyy. This indicates that the efficiency of the metadelbng method depends strongly
on the number of input random variables. Indeedremioput variables means that
more information is needed. Thus, a highgy; will be required for constructing a

meta-model which will be used to replameoriginal mechanical model.

The following subsections give a detailed interatien of the comparative study for
each reliability method. In the end, some conclgdiemarks of the comparative

study are summarised.

6.1 The SS
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This method is the most efficient one, according able 5, which requires only 600
calls of the deterministic model. Tig,;; of the SS is much less than the MCS one
(about 3%) and is constant with tNg,, variation. This finding is not surprising since
the target failure probability is relatively highréund 0.022) and changes slightly
between the different proposed cases in the prepestilem. If a conditional
probability P. of 0.2 is adopted for each simulation level, oBlgimulation levels are
needed to reach the final failure domain. In thigdg, theP. is set to 0.2 and the
sample numbers in each simulation levél{.;) is set to 200. However, it is found
that the SS cannot produce a consistent evolufigf avith L,. The obtained values
of Pf are fluctuated fronthe Case 1 to the Reference case, while they are esgéxt
be monotone decreasing as shown by the MCS. Tigation originates from the
generation of the conditional samples in the SS.aARrge number of random
variables are considered and more importantly tlussel for random field generation
have no physical meanings, it is thus very diffidol generate effective conditional
samples. This results in a large number of repesdetples in the SS. Given that the
number of these repeated samples is not constantréndom) for each SS, the

obtained results are thus not steady.

6.2 The SPCE/SIR

According to Figure 12, this method gives alwaysdo failure probability than the
MCS. This can be explained by the fact that a dimenseduction technique is
employed. As the dimension is reduced, the vartgbdf the input parameters is
reduced. The estimated failure probability is togaller. Comparedio the SS, this
method has a better performance in the parameitrily $.e. the obtained values show
a clear reduction trend &ff with decreasing,. Concerning the efficiency, theé.,;

is found not constant for different cases but iases fromthe Case 1 to the
Reference case. T, for the Reference case is even very close to tG& Mne.

An explanation is given as follows. The requiredniner of input random variables
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for the random field generation increased sincelthbecomes smaller. Therefore,
the construction of a meta-model needs more trgipmints i.e. more deterministic
simulation. As a result, it is not recommended $e this method if th&, is large

(e.g. >2500) from a point of view of efficiency.

6.3 The SPCE/GSA

This method is the most accurate one based ond-iir The obtained values Bf
are extremely close to the ones of the MCS. Exdeptthis remark, similar
observations to the SPCE/SIR can also be noteithel¢stimated values 8 are all
lower than those of the MCS; 2) the parametric \sitah be correctly conducted; 3)
the N, increases with decreasing tiig¢ and theN,,; for the Reference case is even
very close to the one of the MCS. The interpretatmthese observations given above
remains valid as well for this method. In additiohjs found that this method is
always less efficient than the SPCE/SIR. This dgfifiee originates from the different
dimension reduction techniques employed in thervethods. For the SPCE/GSA, it
should always constructzaordermeta-model witha full dimension. On the contrary,
the dimension is reduced before constructing meidets in the SPCE/SIR. For very
high dimensional stochastic problems, consideratd@&gerministic simulations are

requiredevenfor constructing a 2-order SPCE meta-model.

6.4 The MM

This method is the second efficient one according tdd'&kand it shows also a good
performance in estimating the value Bf . Given its simplicity and easy

implementation procedure, it is a good alternatvéhe MCS for such a very high

dimensional stochastic problem. However, this Ertanly evaluates the MM for the

cases of relative high failure probability. Carefttention should be paid when
applying this method to calculate low failupeobabilitiessince it may lead to large

errors as pointed out in [33]. Besides, this metisaabt able to carry out a parametric

study of L, as expected since the obtainefl results fluctuate. Theoretically, the
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collection of all the moments (of all orders, franto =) uniquely describes a
bounded distribution. Then, failupgobabilitiescan be determined by estimating the
tail area of the distribution. In the present stunlyly four moments are collected and
the tail area is estimated by an approximated Vizmy 8 and 9). The induced errors
are not related to th¥g, or L, of the problem but depend on the complexity of the
FoS distribution and the target value of the daituri@ probability (tail area). It may
lead to a large error for a lowByf but a small error for a high@yf. As a result, the

obtainedPf values in the parametric study are not monotoryadestreasing.

6.5 Concluding remarks

Heregives a summary of the remarks observed in FigRrant Table 5.

a) The most accurate method is the SPCE/GSA and tise effacient one is the SS.

b) The efficiency of the two meta-modelling methodsoisgly depends on the
number of input variables, while the,; of the sampling-based methods (the SS
and the MM) is related to the target vaRje As thePf doesn’t vary significantly
from Casel to the Reference Case, Mhg; of SS and MM is more or less
changeless.

c) The sampling-based methods cannot produce a cemisestolution ofPf in the
parametric study of the, whereas the meta-modelling methods perform well in
such a study.

d) The sampling-based methods are more efficient thantwo considered meta-
modelling methods for very high dimensional stoticgsroblems.

e) The two meta-modelling methods estimate smallemeslofPf compared tdhe
MCS. This is because that dimension reducternniques aremployed in these

two methods.

It should be noted that the conducted comparatiudysis related to a case of a

relatively high failure probability (order of T The performance of the four
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methods for estimating low failure probabilitiesgle<10% in the context of very
high dimensional stochastic problems is not ingaséid and thus unknown. This is a
difficult issue in the field of reliability analysdo assess an approximated method for
very lowPf, since the consuming time of running an MCS ig/\regh even with a
simplified deterministic model. The present studpvdes first insights into the
performance of the four reliability methods in tbentext of very high stochastic
problems, and some concluding remarks (e.g. thetgbi, c and e mentioned above)

can be extended to the cases of Ryv

7 Conclusions and perspectives

In this article, a probabilistic stability analysis an earth dam is presented. The
uncertainties in three soil properti€s, (@’ and y,) are considered in the analysis and
guantified by exploiting the project-specific dafalarge number of available geo-
localized y; measurements allow accounting for the soil spatialiability by
estimating the autocorrelation structure with aiognam analysis. The MCS is
adopted for performing the reliability analysis. dwistribution types for the input
random variables are considered and compared iartivée. Besides, the effect of the
L, on the danPf is investigated. Such a study is original becatsses real dam
construction data, proposes using the benefits ebsitistics (a very high
dimensional stochastic problem) and presents aedwoe on how to produce
meaningful statistical estimations of soil varig@ilwith limited measurements. This
study can then be used as a part of a global déstysessessment combined with a

risk analysis as reported in [51].

By benefiting to the results of the deterministimwlations collected in the performed
MCS, a comparative study is carried out. It aimewluating the performance of
different reliability methods for very high dimensal stochastic problems. Both the

accuracy and efficiency are considered in the coispa The results show that the
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most accurate method is the SPCE/GSA and the rffaseet method is the SS. The
efficiency of the methods SS and MM are independenthe number of input
variables while the necessavy,,;; of the methods SPCE/GSA and SPCE/SIR can be
very important (close to th¥.,; of an MCS) when a large number of random
variables are involved. For a first order estimdtee methods SS and MM are
sufficient to give relatively accurate results. Meheless, it should be noted that these
two methods were not sufficiently accurate for gaametric study of., since the

obtained values a?f fluctuate.

This study also has some weakness points whichalgdiv possible improvements
for future works:

- Itis commonly recognized that a negative corretagxists betwee@’ and¢g’
[42]. However, no correlation is considered in thisidy for the two soill
properties due to the limited number of availabiaxtal test results and the
employed method [5] for generating the value§ ‘candg’.

- The(C'is represented by means of random variables.pisiad variability is
thus ignored in the present study,

- For the sake of simplicity and consistency witheotbtudies, only stationary
unconditional random fields are considered in #rigle. The effects of more
complex random fields (non-stationary or conditiprcauld be investigated in
future studies,

- The performance of the four reliability methodordy assessed for the cases
of relatively high failure probability. For the @sswith lowPf, the accuracy
and efficiency of the four methods remain unknownviery high dimensional

stochastic problems.

8 List of symbols

Soil properties
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Ya (g/cm®)  Dry density
C' (kPa) Effective cohesion

o' (°) Friction angle

Some important symbols used in the statistical mode

U Mean value
o Standard deviation
S Truncation term of the PCE series expansion

Ly andL,  Horizontal and vertical autocorrelation distance

Nycs Number of MCS population

G Performance function

B Reliability index

Pf Probability of Failure

a andb Beta distribution parameters

3 A vector of standard uncorrelated random variable
Ngy Number of random variables

Nean Number of calls to the deterministic model
Abbreviation

MCS Monte Carlo simulation

SS Subset Simulation

MM Moment method

SPCE Sparse Polynomial Chaos Expansions
GSA Global Sensitivity Analysis

SIR Sliced Inverse Regression

FoS Factor of Safety

CoV Coefficient of variation

PDF Probability Density Function

K-L Karhunen—Loéve expansions
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