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Abstract Establishing streamflow time series in unstable rivers is challenged by changes in the
stage-discharge relation after floods. Then, the field hydrologist must develop a new stage-discharge rating
curve using new calibration data but also using some information from previous calibration data and
previous rating curves. The process includes a large amount of informal expert knowledge and hydraulic
assumptions seldom made explicit. This paper develops a stage-period-discharge (SPD) model based on the
physical interpretation of changes in the stage-discharge relation across a series of stability periods defined
by known dates and times. Using simple hydraulic equations, the user provides prior knowledge on the
controls, their static and varying parameters, and their possible changes. As a single model is used for all
the periods, the estimation of all rating curves can be performed in one go: All gaugings hence provide
information to estimate the static parameters and the varying parameters for the relevant periods. Bayesian
inference is used, providing a natural way to include prior knowledge and to quantify uncertainty. The
generality and some key properties of the method are demonstrated through application to two
hydrometric stations, differing in hydraulic configuration and in number and type of changes. Specific
experiments demonstrate the ability of the SPD model to transfer information across periods.
Consequently, rating curves are more precisely estimated than by separately estimating them for each
period. The SPD model provides a hydraulically based, transparent, and user-friendly approach to
replace manual shift corrections traditionally applied in operational practice, with a quantification
of uncertainties.

1. Introduction
1.1. Changes in the Hydrometric Rating Curves
Among the most important variables in hydrology, river discharge cannot be measured continuously. Most
often, the discharge time series used by hydrologists result from the transformation of quasi-continuous
measurements of water level, also known as stage, via a stage-discharge relation, known as the rating curve
(e.g., World Meteorological Organization WMO, 2010). The rating curve must be estimated at each hydro-
metric station from occasional stage-discharge measurements (called gaugings) and some considerations
on the hydraulic controls which physically determine the stage-discharge relation (e.g., Réméniéras, 1949).
The process of building a rating curve is affected by many sources of uncertainty, including the imperfec-
tion of the specified rating curve equation, the measurement uncertainty of calibration gaugings, and the
uncertainty in estimated parameters. Rating curve uncertainty impacts any analysis that makes use of dis-
charge time series: flood frequency analysis (e.g., Steinbakk et al., 2016), hydrological model calibration (e.g.,
Sikorska & Renard, 2017), real-time flood forecasting (e.g., Ocio et al., 2017), hydrological change detection
(e.g., Juston et al., 2014; Lang et al., 2010), hydrological signatures (e.g., Westerberg & McMillan, 2015),
among many others. Consequently, quantifying rating curve uncertainty and using it in decision making
may lead to better decisions, as illustrated by McMillan et al. (2017). Nevertheless, discharge time series are
usually provided without quantitative uncertainties (Hamilton & Moore, 2012).

A major challenge to streamflow data accuracy comes from rating changes. Ibbitt and Pearson (1987) com-
puted how the streamflow uncertainty varied with the frequency of rating changes and the frequency of
gaugings at seven hydrometric stations with unstable river channels. They concluded that ignoring rat-
ing changes was the dominant source of uncertainty of streamflow data. Rating changes are caused by the
modification of the physical features controlling the stage-discharge relation: for instance, modification of
the geometry or the roughness of the main channel and destruction or reshaping of a gravel riffle after a
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flood. Such modifications induce changes in the rating curve parameters and possibly in the structure of
its equation. The processes leading to these modifications are numerous and complex (Herschy, 1995): bed
evolution, vegetation growth, debris/ice jams, dike break, etc. In this study, we focus on the widespread rat-
ing changes due to morphological evolution induced by floods. The associated physical mechanisms are not
detailed here, but comprehensive reviews can be found in textbooks (e.g., Ferreira da Silva & Yalin, 2017;
Schumm, 1977).

Recently, several methods for quantifying rating curve uncertainty have been introduced in the scientific
literature, solving some of the limitations of the standardized method (WMO, 2010). Typically, among the
seven methods compared by Kiang et al. (2018), only a few had some ability to account for rating changes.
McMillan and Westerberg (2015) considered that the existence of unknown rating changes induces epis-
temic rating curve errors. They proposed a method to quantify the resulting uncertainty and add it to other
sources of rating curve uncertainty. Dynamic approaches proposed by Reitan and Petersen-Øverleir (2011),
Westerberg et al. (2011), Guerrero et al. (2012), or Morlot et al. (2014) attempt to derive rating curves vary-
ing with time in a continuous way, based on the premise that the stage-discharge relation is itself evolving
continuously.

As rating changes often happen during episodic floods, models assuming sudden rating changes between
stability periods of time are more widespread than dynamic models in the operational practice. This
approach requires solving two main issues: detecting the dates and times of changes and estimating the
successive static rating curves with their associated uncertainties.

Several methods exist for sudden change detection. The most common approach in operational practice
is to detect changes when gaugings depart from the current rating curve by more than some predefined
threshold, or when successive gauged discharges are systematically above or below the current rating curve
(Puechberty et al., 2017; Rainville et al., 2016; Rantz, 1982). In a similar vein, Morlot et al. (2014) defined
stability periods by applying a segmentation procedure (Hubert et al., 1989) to the residuals between gaug-
ings and a time-invariant mean rating curve. An alternative, and perhaps overlooked, approach is to use
information beyond the gaugings to define stability periods. For instance, McMillan et al. (2010) started a
new period after every occurrence of a flood larger than the 0.5-year flood.

1.2. Methods for Adjusting Rating Curves to Shifts
Once the times of the rating changes have been identified, the shape and parameters of the rating curve have
to be adjusted for each stability period. Several alternative methods can be found in operational procedures
and in the scientific literature, based on differing assumptions.

Developing each rating curve independently from scratch (e.g., Coxon et al., 2015; Watson et al., 2016) is
only feasible at stations where gaugings are produced frequently compared to the occurrence of changes.
Consequently, the estimation of a new rating curve is often constrained by reusing selected gaugings from
other stability periods: high-flow gaugings (e.g., McMillan et al., 2010; Puechberty et al., 2017), recent gaug-
ings (e.g., Guerrero et al., 2012; Westerberg et al., 2011), hydraulically similar gaugings (e.g., Morlot, 2014),
or fictitious gaugings used as a high-flow convergence point (e.g., Morlot et al., 2014). The reuse of gaug-
ings across several periods implicitly assumes that the corresponding controls are not varying substantially,
while other controls, low-flow controls typically, are varying. The validity of this assumption depends on the
site-specific hydraulic configuration.

Another approach is to derive the shifted rating curve by modifying only some selected properties of a base
rating curve, as done in the “shift corrections” method commonly used by operational services in North
America (Kennedy, 1984; Rantz, 1982; WMO, 2010). In a segment of the base rating curve, discharge Q is
usually computed as a power function of flow depth, which is the difference between water stage h and
an offset b: Q(h) = a(h − b)c with a and c being the coefficient and the exponent of the power function,
respectively. Then, the flow depth is corrected by a stage variable shift s(h) as

Q(h) = a
[
h − b + s(h)

]c (1)

Similar to the U.S. Geological Survey procedures (T. A. Kenney, personal communication, April 2017), the
Water Survey of Canada (Rainville et al., 2016) considers three empirical types of stage variable shifts: “con-
stant,” “knee bend,” and “truss” shifts (Figure 1). Based on expert knowledge on the controls at a site and
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Figure 1. Shift correction methods used by the Water Survey of Canada: (a) shift (offset correction) as a function of
flow depth h − b; (b) base (blue) and shifted (red) rating curves (modified from Rainville et al., 2016).

their modification, and based on the departures of gaugings from the base rating curve, the field hydrol-
ogist has to select a type of stage variable shift s(h) and estimate its parameters. Typically, constant shifts
are applied after simple aggradation or degradation of the whole channel, whereas knee bend shifts are
used to adjust the low-flow section control when the overall geometry of the channel control is assumed to
be unchanged. Less common, truss shifts are used to reflect a disturbance at a specific range of stage, for
example, a tree falling across a channel or the slumping of a river bank.

The shift corrections discussed above correspond to assuming that only some selected parameters of the
base rating curve are changing. In order to avoid the manual estimation of the shift corrections, some
research methods (e.g., Guerrero et al., 2012; Juston et al., 2014; Reitan & Petersen-Øverleir, 2011) auto-
matically estimated the varying parameters of the rating curve equation, including parameters other than
offsets. Not all parameters are necessarily varying in time: Some of them may remain static, and Reitan
and Petersen-Øverleir (2011) highlight the hydraulic hypotheses associated with this choice. Unfortunately,
these specific hydraulic hypotheses on the nature of the control changes are not always stated explicitly. The
same issue applies to defining the type of stage variable shift in the aforementioned operational procedures.

A last approach is to compute the new rating curve using topography monitoring data and a hydraulic model
(e.g., Balasch et al., 2010; Di Baldassarre & Claps, 2011; Leonard et al., 2000; Naulet et al., 2005). The main
advantage of such methods is that direct measurements of the changes in the river geometry are used to com-
pute the corresponding rating changes using an explicit and objective hydraulic interpretation. However, the
routine application of numerical modeling to manage rating changes in operational practice is challenged
by the costs of field topography surveys and of the expertise required by computational techniques.

1.3. Objectives
While the temporal dynamics of rating changes and parameter estimation methods have received much
attention from research groups, there have been few advances on hydraulically consistent methods for updat-
ing the shape and parameters of new rating curves after a series of shift episodes. Operational methods
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such as the reuse of high-flow gaugings, high-flow convergence points, and shift corrections are based on
hydraulic assumptions that are rarely made explicit. Moreover, they usually require some manual fitting
which makes results operator-sensitive and uncertainty quantification challenging.

This paper focuses on sudden rating curve changes, typically induced by a morphogenic flood. We further
make the restrictive assumption (discussed in more depth in section 5.1) that the dates of change, or equiv-
alently the stability periods, are known. Under this set of hypotheses, the main objectives of this paper are
the following:

1. To formulate a rating curve model describing the evolution of the stage-discharge relation across stability
periods. The hydraulic hypotheses behind this model are exposed and discussed. Since the stability periods
are assumed to be known, they are considered as an additional input to the model, which is therefore
named a stage-period-discharge (SPD) model.

2. To derive a Bayesian framework to estimate the SPD model based on uncertain gaugings and available
hydraulic knowledge. Special emphasis is given to uncertainty quantification and the ability to transfer
information between periods.

3. To illustrate some key properties of the SPD model through two contrasting case studies, differing in their
hydraulic configuration and in the number and type of changes.

The remainder of the paper is organized as follows. Section 2 describes the formulation of the SPD model and
the underlying hydraulic hypotheses. Section 3 derives the Bayesian estimation framework, including the
likelihood function carrying the information brought by uncertain gaugings and the prior distribution used
to integrate existing hydraulic knowledge into the estimation process. Case studies based on two contrasting
hydrometric stations are proposed in section 4. The discussion in section 5 discusses current limitations
and avenues for improvement, and the concluding section 6 summarizes the main findings arising from
this paper.

2. Formulation of the SPD Model
The aim of this section is to derive the SPD model used to describe the evolution of the stage-discharge
relation across several stability periods, that is, periods of time separated by sudden change times. We start
by formulating the rating curve equation for one given period (section 2.1) before proposing an SPD model
describing how this rating curve changes across periods (section 2.2).

2.1. Hydraulic Configuration and Rating Curve Formulation
Depending on the flow and site complexity, the stage-discharge relation at a given hydrometric station often
results from the succession and addition of several hydraulic controls, which requires the development of
segmented rating curves (Le Coz et al., 2014; Petersen-Øverleir & Reitan, 2005).

For each control, the relation between stage h and discharge Q can often be approximated as a power func-
tion of the form Q(h) = a(h − b)c. Parameters a, b, and c (coefficient, offset, and exponent) are related
to the type of control and its physical characteristics. Typically, low-flow section controls can often be
approximated by a rectangular weir formula:

Q(h) = CrBw
√

2g
⏟⏞⏞⏟⏞⏞⏟

a

(h − b)3∕2 (2)

where Cr[ − ] is a discharge coefficient (≈ 0.4), Bw (m) is the weir perpendicular-to-flow width, g (m/s2) is
the gravity acceleration (≈ 9.81 m/s2), b (m) is the weir crest elevation, and c = 3∕2 (–) is the exponent for
a rectangular weir. Similarly, for wide rectangular channels, the following form of the Manning-Strickler
equation holds:

Q(h) = KSBc
√

S0
⏟⏞⏞⏟⏞⏞⏟

a

(h − b)5∕3 (3)

where KS (m1/3/s) is the Strickler flow resistance coefficient, Bc (m) is the channel width, S0 (m/m) is the
bed slope, b (m) is the mean bed elevation along the controlling reach, and c = 5∕3 (–) is the exponent for
a wide rectangular channel.
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Figure 2. Schematic illustration of a hydraulic configuration subject to changes. In each panel, the right part shows the longitudinal profile (riverbed and water
surface corresponding to several stages) and the left part shows the cross section at the staff gauge.

The rating curve equation can then be derived by describing how hydraulic controls succeed or add up to
each other. As an illustration, consider the frequent configuration comprising three successive controls (see
left panel in Figure 2): (i) a low-flow section control (typically a natural riffle or a weir); (ii) the main channel
control; and (iii) a floodway control that adds up to the main channel control. Neglecting the head losses due
to the interaction of the compound channel flows, we follow a divided-channel approach, and discharges in
the main channel and in the floodway are simply added. The full rating curve equation for the three-control
configuration considered here can be written as

Q(h) =
⎧⎪⎨⎪⎩

a1
(

h − b1
)c1 , if 𝜅1 ≤ h < 𝜅2 (low flow section control)

a2
(

h − b2
)c2 , if 𝜅2 ≤ h < 𝜅3 (main channel)

a2
(

h − b2
)c2 + a3

(
h − b3

)c3 , if h ≥ 𝜅3 (main channel + floodway)
(4)

where 𝜅1 < 𝜅2 < 𝜅3 are the activation stages for each control. This three-control equation is a particular
case of the more general equation involving Nc controls (see Le Coz et al., 2014, for an in-depth presentation):

Q(h) =
Nc∑
i=1

(
1[𝜅i;𝜅i+1](h) ×

Nc∑
𝑗=1

M(i, 𝑗) × a𝑗(h − b𝑗)c𝑗

)
(5)

where1A(h) is the indicator function of a set A and M(i, j) is the control matrix, equal to 1 if control j is active

in the ith stage range [𝜅 i; 𝜅 i + 1] and 0 otherwise. In the three-control example above, M =
⎛⎜⎜⎝

1 0 0
0 1 0
0 1 1

⎞⎟⎟⎠.

Finally, note that the unknown parameters of the rating curve are
(

b𝑗 , a𝑗 , c𝑗
)
𝑗=1…Nc

but that the activation
stages 𝜅 j are deduced by continuity of the rating curve. When a control is added to active control(s) (e.g.,
floodway added to the main channel), the continuity condition necessarily leads to 𝜅 j = bj. When a control
replaces an active control, 𝜅 j is a solution of the following equation:

a𝑗(𝜅𝑗 − b𝑗)c𝑗 = a𝑗−1(𝜅𝑗 − b𝑗−1)c𝑗−1 (6)

This equation has no explicit solution and has to be solved numerically using, for example, the
Newton-Raphson method. Depending on parameter values, there can be zero, one or two solutions. If two
solutions exist, the highest one is selected because the smallest solution creates a discontinuity that does not
make physical sense (cf. Appendix A for mathematical details).

2.2. Rating Changes
The generic rating curve equation (5) can be modified to reflect the changes occurring between P stability
periods. Without loss of generality, periods are numbered from the most recent to the oldest one. A SPD
model can be formulated as a model with two input variables: the stage h and the period index k. This
corresponds to the hypothesis that the stability periods are known and can therefore be considered as an
input to the model. An SPD version of equation (5) can for instance be obtained by simply assuming that all
rating curve parameters

(
a(k)
𝑗 , b(k)

𝑗 , c(k)𝑗

)
are period specific:

Q(h, k) =
Nc∑
i=1

(
1[𝜅(k)i ;𝜅(k)i+1]

(h) ×
Nc∑
𝑗=1

M(i, 𝑗) × a(k)
𝑗 (h − b(k)

𝑗 )c(k)𝑗

)
(7)
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Since all the parameters are changing between periods, this SPD model is equivalent to establishing a new
rating curve from scratch for each period. This can be further constrained by assuming that some parameters
are static, that is, they do not depend on the period. In turn, this corresponds to the physical assumption that
some properties of the hydraulic controls do not change between periods. To further illustrate this, consider
the three-control rating curve of equation (4) and its SPD version given below:

Q(h, k) =

⎧⎪⎪⎨⎪⎪⎩
a1

(
h − b(k)

1

)c1
, if 𝜅(k)

1 ≤ h < 𝜅(k)
2 (low flow section control)

a2

(
h − b(k)

2

)c2
, if 𝜅(k)

2 ≤ h < 𝜅3 (main channel)

a2

(
h − b(k)

2

)c2
+ a3

(
h − b3

)c3 , if h ≥ 𝜅3 (main channel + floodway)

(8)

Offsets parameters b(k)
1 , b(k)

2 are here assumed period specific, while all other parameters (coefficients
a1, a2, a3, exponents c1, c2, c3, and floodway offset b3) are assumed static. The underlying hydraulic assump-
tions are the following:

1. Static exponents (c1, c2, c3) imply that the type of control does not change (e.g., a rectangular cross-section
control cannot become triangular).

2. Static coefficients (a1, a2, a3) imply that the width and discharge coefficient of the low-flow controlling
riffle, and the widths, slopes, and resistance coefficients of the channels do not vary.

3. The static floodway offset (b3) implies that the floodway remains unchanged across periods.
4. In addition, the structure of the rating curve does not change across periods; that is, controls cannot be

created or deleted.

The example SPD model of equation (8) should be modified whenever this set of assumptions is deemed
unrealistic. For instance, if one suspects that the width of the low-flow controlling riffle may change, then
the coefficient a(k)

1 should be made period specific. The key point is that the specification of the SPD model
in terms of static/period-specific parameters should be based on the hydraulic analysis of the station—just
as the formulation of the rating curve equation.

3. Bayesian Inference
3.1. Inference Setup and Assumptions
Let 𝛃 denote the unknown parameters of the SPD model, comprising static and period-specific parameters
𝛃static and 𝛃period. For the example SPD model of equation (8), 𝛃static =

(
a1, c1, a2, c2, b3, a3, c3

)
and 𝛃period =(

b(k)
1 , b(k)

2

)
k=1…P

. The discharge computed by the SPD model can then be written as follows:

Q̂ = 𝑓 (h, k|𝛃) (9)

Inference on the parameters is performed using a set of gaugings
(

h̃i, k̃i, Q̃i
)

i∈[[1;N]]. Note that since the SPD
model uses the period as an input variable, a gauging is a triplet comprising the period k̃i with which it
is associated, in addition to the usual stage-discharge pair

(
h̃i, Q̃i

)
. The tilde symbol is used to denote the

fact that a gauging is made up of imperfect measurements and is therefore an estimate of the real values(
hi, ki,Qi

)
. In this paper, it is assumed that all periods are correctly assigned (k̃i = ki) and that stage errors

are negligible (h̃i = hi). The following error model is used for the gauged discharges:

Q̃i = Qi + 𝜖Q,i with 𝜖Q,i ∼ 
(
0,uQ,i

)
(10)

where the measurement errors
(
𝜖Q,1, … , 𝜖Q,N

)
are assumed mutually independent and the standard devia-

tions
(

uQ,1, … , uQ,N
)

(uncertainty of each gauged discharge) are assumed to be known from an uncertainty
analysis of the discharge measurement process (for more details, see Le Coz et al., 2014, and references
therein).

The true discharge is then written as the discharge predicted by the SPD model plus a structural error:

Qi = 𝑓
(

hi, ki|𝛃)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Q̂i

+ 𝜖𝑓,i with 𝜖𝑓,i ∼ 
(

0, 𝛾1 + 𝛾2Q̂i

)
(11)
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where the structural errors
(
𝜖𝑓,1, … , 𝜖𝑓 ,N

)
are assumed mutually independent and also independent of

the discharge errors
(
𝜖Q,1, … , 𝜖Q,N

)
. The standard deviation of the structural error is modeled as a linear

function of the predicted discharge, with parameters 𝛄 =
(
𝛾1, 𝛾2

)
being unknown and therefore added to

the inference list. For more discussion on these assumptions, we refer the reader to Le Coz et al. (2014).
Note that parameters 𝛄 do not depend on the period: this corresponds to assuming that while the rating
curve changes between periods, the properties of the structural errors remain static. This assumption will
be discussed in section 5.2.

3.2. Likelihood Computation
Combining equations (10) and (11) yields the following equation:

Q̃i = 𝑓
(

hi, ki|𝛃) + 𝜖Q,i + 𝜖𝑓,i with 𝜖Q,i + 𝜖𝑓,i ∼ 

(
0,
√(

𝛾1 + 𝛾2Q̂i

)2
+ u2

Q,i

)
(12)

The distribution of an observed gauged discharge Q̃i, conditional on the unknown parameters 𝜽 = (𝛃, 𝛄)
and on the gauged stage hi and period ki, is therefore Gaussian with mean the SPD-predicted discharge
𝑓
(

hi, ki|𝛃) and a standard deviation combining measurement and structural uncertainties as shown in
equation (12). The following likelihood is obtained:

p
(

Q̃|𝜽,h,k
)
=

N∏
i=1

𝜙

(
Q̃i

|||||| 𝑓
(

hi, ki|𝛃) ,√(
𝛾1 + 𝛾2Q̂i

)2
+ u2

Q,i

)
(13)

where 𝜙(z|m, s) denotes the probability density function (pdf) of a Gaussian distribution with mean m and
standard deviation s, evaluated at some value z.

The likelihood in equation (13) provides a built-in mechanism to associate the rating curve parameters with
the relevant gaugings. Indeed, the static rating curve parameters 𝛃static appear in all N terms of the product
in equation (13). Consequently, the information contained in all the gaugings is used to infer these static
parameters. By contrast, parameters 𝛃(k)period specific to the kth period only appear in the terms of the product
involving gaugings from the kth period. Consequently, only the gaugings made during the kth period are
informative for the period-specific parameters 𝛃(k)period. This is to be contrasted with the standard operational
practice of reusing some high-flow gaugings across several periods, arguing that they remain representative
of the stage-discharge relation at high flows (see section 1). In the SPD model, gaugings are always assigned
to a unique period and are not repeatedly used across periods: instead, the static parameters are used
across periods.

3.3. Prior Specifications
Bayesian inference requires specifying a joint prior distribution for the vector of inferred parameters 𝜽. The
joint prior pdf is factorized as follows:

p (𝜽) = p
(
𝛾1
)

p
(
𝛾2
)

p
(
𝛃static

)
p
(
𝛃period

)
(14)

Since little is known about structural uncertainty before having estimated the model, only
order-of-magnitude considerations can generally be used for parameters 𝛾1 and 𝛾2. Parameter 𝛾1 can be
interpreted as the structural standard deviation for near-zero flows: its prior distribution should span
between near-zero values and values that are of the same order of magnitude as typical low flows in the
studied river. Parameter 𝛾2 can be interpreted as the relative structural standard deviation at high flows: its
prior distribution should therefore have its mass mostly comprised between 0% and 100%; typical values
encountered in our experience are around 5–30%.

Prior distributions for other parameters are case specific: they depend on the physical properties of the con-
trols (geometry, slope, friction, etc.) and the precision with which these properties are measured or estimated
by expert opinion. The prior specification process for these parameters will be illustrated in more detail in the
case studies (section 4); moreover, we refer the reader to Le Coz et al. (2014) for a more in-depth discussion
of general principles.

In the context of changing rating curves, the specification of a joint prior distribution for period-specific
parameters is not straightforward because prior information will typically not be directly available in terms of
inferred parameters 𝛃period. To illustrate this issue, consider the example SPD model of equation (8), schema-
tized in Figure 2. In this example, we consider two types of change. The first type corresponds to the scouring
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(or the filling) of the main channel over the controlling reach (with no change in the channel width). Such
a change would induce a modification of the offset of the main channel control (b2). Moreover, because the
riffle lies on the riverbed, the offset of the first low flow control (b1) should also be affected by the same
change (middle panel in Figure 2). Such a change is therefore referred to as an overall change, noted 𝛿g. In
addition to this overall scouring/filling of the main channel, the controlling riffle may also move longitu-
dinally and its crest elevation with respect to the riverbed may also change. Consequently, the offset of the
first low flow control (b1) may also be affected by a local change (noted 𝛿l), which adds to the overall change
(right panel in Figure 2). However, this local change does not affect the channel controls (main channel and
floodway). This configuration can be formalized as follows:{

b(k)
1 = b(k−1)

1 −
(
𝛿g(k) + 𝛿l(k)

)
(incremental change in low flow control)

b(k)
2 = b(k−1)

2 − 𝛿g(k) (incremental change in channel control)
(15)

or equivalently, by developing this recursive relation up to period 1, used as the reference period:

⎧⎪⎪⎨⎪⎪⎩
b(k)

1 = b(1)
1 −

( k∑
i=2

𝛿g(i) +
k∑

i=2
𝛿l(i)

)
(cumulative change in low flow control)

b(k)
2 = b(1)

2 −
k∑

i=2
𝛿g(i) (cumulative change in channel control)

(16)

An expert of the hydrometric station may be able to provide some information on the possible changes after
a morphogenic flood (overall scouring/filling of the main channel and local change on the low-flow control).
This information is expressed in terms of incremental changes 𝛿g and 𝛿l, which are actually equivalent to the
constant and knee bend shift corrections discussed in section 1.2 (Figure 1). As they are not parameters of
the SPD model, it is necessary to transfer the prior information from incremental changes

(
𝛿g(k), 𝛿l(k)

)
k=2…P

to inferred parameters. A Monte Carlo approach can be used to achieve this, by propagating samples from
the independent prior distributions of

(
b(1)

1 , b(1)
2 , 𝛿g(2), 𝛿l(2), … , 𝛿g(P), 𝛿l(P)

)
through equation (16), yielding

samples from the joint prior distribution of offset parameters
(

b(k)
1 , b(k)

2

)
k=1…P

. A multivariate distribution
can then be fitted to these samples and used as the joint prior. A multivariate Gaussian distribution may typ-
ically be used if all marginal samples of

(
b(k)

1 , b(k)
2

)
k=1…P

are approximately Gaussian. In case non-Gaussian
marginal priors are deemed more appropriate, a Gaussian copula (e.g., Renard & Lang, 2007) may be used
to combine them into a joint multivariate distribution.

3.4. Posterior Distribution and Markov Chain Monte Carlo Sampling
The posterior pdf can be computed up to a constant of proportionality by combining the likelihood
(equation (13)) and the prior pdf (equation (14)) using Bayes' rule:

p
(
𝜽|Q̃,h,k

)
∝ p

(
Q̃|𝜽,h,k

)
p (𝜽) (17)

The posterior distribution is explored by applying a Markov chain Monte Carlo (MCMC) sampler to the
unnormalized posterior (equation (17)). The MCMC sampler used in this paper is an adaptive block
Metropolis sampler described in Renard et al. (2006). In short, this Metropolis sampler updates the param-
eter vector one component at a time and modifies the variance of the (one-dimensional) Gaussian jump
distributions to maintain acceptance rates within user-specified bounds (here, 10% and 50%). In this paper,
100,000 iterations are performed, with the first half being discarded as a burn-in period. The remaining
50,000 iterations are further thinned by only keeping one iteration every 10: this allows restricting comput-
ing time and storage issues, while not resulting in a noticeable loss of information because the raw MCMC
samples are strongly autocorrelated. Convergence is checked visually.

The MCMC sampler hence generates Nsim vectors of inferred parameters
(
𝜽
(i))

i∈[[1;Nsim]]. This set can be used
to describe the marginal and joint properties of the parameter vector 𝜽 (e.g., posterior mean, median, stan-
dard deviation, credibility interval, and parameter correlations). The properties of any quantity derived from
𝜽, such as the incremental changes or the rating curves for each period, can also readily be described. In addi-
tion, the parameter 𝜽̂ corresponding to the largest posterior pdf is extracted from the simulated

(
𝜽
(i))

i∈[[1;Nsim]].
This parameter and any derived quantity are referred to as the “maximum a posteriori” estimates.
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Figure 3. Presentation of the hydrometric stations used in the case studies and interpretation in terms of hydraulic
controls: (a) Ardèche at Meyras, picture taken by Irstea in October 2016; (b) Wairau at Barnett's Bank, Imagery ©2019
DigitalGlobe, Map data ©2019 Google.

4. Case Studies
4.1. The Ardèche River at Meyras, France
4.1.1. Site Description
The case study focuses on the Ardèche River at Meyras hydrometric station (V5004030), Mediterranean
France, which monitors a catchment area of 98 km2. This station has been used by Adamovic et al. (2015)
and Sikorska and Renard (2017) for hydrological modeling purposes, and we therefore refer the reader to
these papers for additional general information on the station and the associated catchment. The gauge is
located just under a bridge (4◦16′11′ ′E, 44◦40′12′ ′N, Figure 3a). Located approximately 50 m downstream
from the bridge, a natural gravel riffle controls the lowest flows. A main channel replaces this riffle as the
flow increases and then two floodways (one on each side) are added to the main channel for very high flows.
The two floodways can be combined into an equivalent single channel control because they are activated at
approximately the same stage. This corresponds to the three-control configuration described in section 2,
and the SPD model of equation (8) can therefore be applied.

The riverbed around the station changes regularly due to the intensity of flash floods. Over the period
October 2001 to September 2014, the hydrometric service in charge of managing the station developed five
distinct rating curves, and the associated dates of change correspond to major flood events. A total of 104
gaugings is available (mostly performed with Acoustic Doppler Current Profiler and currentmeters), lead-
ing to about 21 gaugings per period on average (minimum: 8, maximum: 33). Note that only three gaugings
have been performed with water flowing in the floodway.
4.1.2. Prior Specification
Prior specification is performed as outlined in section 3.3, and the resulting priors are given in Table 1. Priors
are first expressed in terms of physical parameters (first three columns), that is, parameters having a direct
hydraulic interpretation (see Le Coz et al., 2014, for a more detailed description on this prior elicitation
process). All marginal priors are assumed independent at this stage. Priors on inferred parameters are then
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Table 1
Prior Distributions Used in the Ardèche at Meyras Case Study

Physical parameter Meaning Prior Inferred parameter Prior
Control 1: low-flow riffle
b(1)1 (m) Offset (period 1)  (−0.6; 0.5) b(1)1 (m)  (−0.6; 0.5)

Bw (m) Riffle width  (ln(8); 0.25) a1 (m
3
2 /s)  (2.65; 0.35)

Cr (–) Discharge coefficient  (ln(0.4); 0.25)
g (m/s2) Gravity  (ln(9.81); 0.005)
c1 (–) Exponent  (1.5; 0.025) c1 (–)  (1.5; 0.025)

Control 2: main channel
b(1)2 (m) Offset (period 1)  (−0.6; 0.5) b(1)2 (m)  (−0.6; 0.5)

Bc2
(m) Channel width  (ln(15); 0.2) a2 (m

4
3 /s)  (3.28; 0.33)

KS2
(m

1
3 /s) Strickler coefficient  (ln(25); 0.1)

S02
(–) Bed slope  (ln(0.005); 0.5)

c2 (–) Exponent  (1.67; 0.025) c2 (–)  (1.67; 0.025)
Control 3: floodway
b3 (m) Offset  (1.2; 0.2) b3 (m)  (1.2; 0.2)
Bc3

(m) Channel width  (ln(30); 0.2) a3 (m
4
3 /s)  (3.46; 0.38)

KS3
(m

1
3 /s) Strickler coefficient  (ln(15); 0.2)

S03
(–) Bed slope  (ln(0.005); 0.5)

c3 (–) Exponent  (1.67; 0.025) c3 (–)  (1.67; 0.025)
Incremental changes (2 ≤ k ≤ 5)
𝛿l(k) (m) Local change  (0; 0.5) b(k)1 (m) See text

𝛿g(k)(m) Overall change  (0; 0.5) b(k)2 (m) See text

Structural uncertainty parameters
𝛾1 (m3/s) Intercept  (ln(1); 1) 𝛾1 (m3/s)  (ln(1); 1)
𝛾2 (–) Slope  (ln(0.5); 1) 𝛾2 (–)  (ln(0.5); 1)

Note.  (𝜇, 𝜎) and  (𝜇log, 𝜎log) stand for, respectively, the Gaussian distribution of mean 𝜇 and standard deviation
𝜎, and the lognormal distribution whose logarithm has mean equal to 𝜇log and standard deviation equal to 𝜎log.

obtained using Monte Carlo propagation (last two columns). For instance, the prior for parameter a1 is
derived by propagating 100,000 samples of physical parameters

(
Bw,Cr , g

)
through equation (2).

The following general comments can be made on the specified priors:

1. Lognormal priors are used for positive quantities (widths, slopes, coefficients, and resulting
(

a1, a2, a3
)

parameters).
2. Very precise priors are used for exponents

(
c1, c2, c3

)
because they only depend on the type of control

(here, a rectangular riffle and two large rectangular channels).
3. Informative but not overly precise priors are used for describing the various properties of each control. As

an illustration, the priors used for the main channel correspond to the following 95% uncertainty intervals:
[10; 22] m for the width, [20;30] m

1
3 /s for the Strickler coefficient, and [0.2; 1.3]% for the slope.

4. Structural uncertainty parameters
(
𝛾1, 𝛾2

)
are weakly constrained by order-of-magnitude priors.

As explained in section 3.3, priors for the possible changes affecting offsets
(

b1, b2
)

are expressed in terms
of incremental local and overall changes. Riverbed changes during floods are very unlikely to exceed 1m
at that site, and even though the river has constantly degraded in recent years, it seems more conservative
not to constrain the sign of the elevation changes and therefore set the prior mean to 0. This leads to the
priors expressed in terms of incremental changes 𝛿l(k) and 𝛿g(k) shown in Table 1. These priors need to be
transformed into the joint prior of inferred parameters

(
b(k)

1 , b(k)
2

)
, which is achieved using Monte Carlo

propagation through equation (16).
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Figure 4. Ardèche case study: illustration of the transformation from a prior expressed in terms of local/overall
incremental changes to the final prior for inferred parameters

(
b(k)1 , b(k)2

)
. The upper triangular part of the matrix

shows the correlations between parameters, while the lower triangular part shows scatterplots of Monte Carlo sampled
values.

Figure 5. Ardèche case study: stage-discharge representation of the estimated stage-period-discharge model with
discharge in (a) linear scale and (b) logarithmic scale.
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Figure 6. Ardèche case study. Prior and posterior boxplots of (a) static parameters and offsets of the first two controls for period 1; (b) offsets of the first two
controls for all periods; (c) overall incremental changes; and (d) local incremental changes.

Figure 4 illustrates this prior transformation and shows that it induces strong correlations in the final joint
prior distribution. For a given control, interperiod correlations are particularly strong: for instance, b(5)

2 is
highly correlated with b(4)

2 , which is logical since the former is equal to the latter plus the overall change
𝛿g(5). For a given period, moderate intercontrol correlations also exist: For instance, b(5)

1 and b(5)
2 have a

correlation of 0.6, induced by the fact that they are both affected by the same overall change. These prior
correlations may play an important role in transferring information between periods (as explored in section
4.3) or between controls and are therefore important to account for. In practice this is achieved by using a
multivariate Gaussian distribution as prior, fitted to the Monte Carlo sample of

(
b(k)

1 , b(k)
2

)
.

4.1.3. Results
Figure 5 shows the estimated rating curves as stage-discharge representations with 95% uncertainty
envelopes, for the five periods. The rating curves agree well with gaugings and are estimated precisely, due to
the high number of gaugings for all the periods. They are also in close agreement with official rating curves
(not shown). The largest rating change occurs between periods 3 and 4 (around 0.4 m), while rating changes
between other periods are much smaller. Note that the hydraulic assumptions made in this case study, and
more precisely the fact that the main channel control is changing, lead to nonconvergent rating curves at
high flows (Figure 5a; beware of the visual artifact induced by the log scale in Figure 5b).

Figures 6a and 6b show the estimated parameters behind these rating curves. They are in general precisely
estimated, especially for the first two controls. However, the parameters a3 and b3 of the third control are
much less precisely estimated (the posterior is similar to the vague prior) due to the scarcity of high-flow
gaugings in this range. Figure 6b focuses on the evolution of offsets across the five periods. All offsets are
very precisely estimated (due to the availability of many gaugings), and an upward tendency is discernible
(corresponding to a tendency to scouring as time advances, since periods are numbered from the most recent
to the oldest). This figure also confirms that the largest change occurs between periods 3 and 4.

Figures 6c and 6d show the changes expressed in terms of local and overall incremental changes (which
can be computed by inverting equation (15)). The rating changes are almost entirely explained by overall
changes (Figure 6c), with the local changes being always precisely identified close to 0 (Figure 6d). In other
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words, the rating changes are mostly explained by changes affecting the whole main channel, while the
changes affecting the low flow riffle appear to play a negligible role. This matches with the knowledge we
have of this station: Scouring of the whole channel has indeed been observed. However, we stress that the
SPD model inferred this from the gaugings only, since the prior distribution we specified is the same for
local and overall changes and hence does not favor any of them.

4.2. The Wairau River at Barnett's Bank, New Zealand
4.2.1. Site Description
The Wairau River at Barnett's Bank station (60109) in the northern South Island of New Zealand moni-
tors almost the entire Wairau catchment area of 3,825 km2. It is one of the case studies of McMillan and
Westerberg (2015). The gauge (173◦57′35′ ′E, 41◦26′13′ ′S) is located 500 m upstream from a road bridge
(cf. Figure 3b). The Wairau River is a braided/wandering river with highly mobile bed. A low-flow chan-
nel meanders between scarcely vegetated gravel bars; during floods, the bars are inundated and a wider
high-flow channel confined by stopbanks takes over. Both channel controls are assumed to have wide,
rectangular cross-sectional shapes. Overbank flows in the floodplain are not considered here.

This hydraulic approximation of this site is convenient and parsimonious; however, it is questionable
because the actual hydraulic conditions for intermediate flows when the bars begin to be inundated are
much more complex than the transition from a rectangular channel control to another one. A three-control
approximation (cf. equation (4)) as applied to the Meyras case was applied to the Wairau case by Mansanarez
(2016), but there was no empirical evidence that a low-flow section control is really active. Also, the divided
channel approach is questionable for such a wandering channel with alternate gravel bars.

The low-flow channel is a highly mobile gravel bed and frequently changes with floods. Changes in both the
bed elevation and the width of the low-flow channel have been observed: consequently, both parameters b(k)

1
and a(k)

1 of the first control are assumed period specific. By contrast, the high-flow channel is more stable,
and we therefore make the assumption that parameters

(
b2, a2, c2

)
are static. As an aside, we also tested

the assumption that the high-flow channel offset b(k)
2 is period specific; however, the results came with very

large uncertainties and were not convincing. They are hence not reported here.

The hydraulic assumptions discussed above lead to the following SPD rating curve equation. Given the com-
plexity of the site, we acknowledge that this formulation has scope for improvement; however, we consider
that it is a reasonable first approximation in order to demonstrate the properties of the proposed approach.

Q(h, k) =

{
a(k)

1

(
h − b(k)

1

)c1
, if 𝜅(k)

1 ≤ h < 𝜅(k)
2 (low-flow channel)

a2
(

h − b2
)c2 , if h ≥ 𝜅(k)

2 (high-flow channel)
(18)

Barnett's Bank is a frequently gauged station: 270 gaugings are available between 11 August 1999 and 7 April
2015, corresponding to more than 17 gaugings per year on average. However, the low-flow control changes
frequently: the station managers defined 60 stability periods, corresponding to only 4.4 gaugings per period.
Thus, stable periods are seldom gauged on average despite the large number of gaugings.
4.2.2. Prior Specification
Prior specification is based on the same process as that described for the Meyras case study (section 4.1.2),
and the resulting priors are given in Table 2. The only difference is the definition of incremental changes.
Indeed, only the first control is assumed to change, but it can change it terms of both channel elevation and
width. Incremental changes for channel elevation

(
𝛿b(k)) and width

(
𝛿B(k)

c

)
are therefore introduced, and

their relation with inferred parameters b(k)
1 and a(k)

1 are given by the following equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

b(k)
1 = b(1)

1 −
k∑

i=2
𝛿b(i)

B(k)
c1

=
B(1)

c1
k∏

i=2
𝛿B(i)

c

⇒ a(k)
1 = a(1)1

k∏
i=2

𝛿B(i)
c

(19)

Note that a multiplicative formulation is used for parameter a(k)
1 in order to ensure its positivity. As in the

Meyras case study, a Monte Carlo propagation through equation (19) is used to transfer the independent
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Table 2
Prior Distributions Used in the Wairau at Barnett's Bank Case Study

Physical parameter Meaning Prior Inferred parameter Prior
Control 1: low-flow channel
b(1)1 (m) Offset (period 1)  (2; 0.5) b(1)1 (m)  (2; 0.5)

B(1)
c1

(m) Width (period 1)  (ln(50); 0.1) a(1)1 (m
4
3 /s)  (3.86; 0.26)

KS1
(m

1
3 /s) Strickler coefficient  (ln(25); 0.2)

S01
(–) Bed slope  (ln(0.00143); 0.25)

c1 (–) Exponent  (1.67; 0.025) c1 (–)  (1.67; 0.025)
Control 2: high-flow channel
b2 (m) Offset  (2.5; 0.5) b2 (m)  (2.5; 0.5)
Bc2

(m) Width  (ln(200); 0.1) a2 (m
4
3 /s)  (5.24; 0.26)

KS2
(m

1
3 /s) Strickler coefficient  (ln(25); 0.2)

S02
(–) Bed slope  (ln(0.00143); 0.25)

c2 (–) Exponent  (1.67; 0.025) c2 (–)  (1.67; 0.025)
Incremental changes (2 ≤ k ≤ 60)
𝛿b(k) (m) Offset change  (0; 0.2) b(k)1 (m) See text

𝛿B(k)
c (m) Width change  (ln(1); 0.25) a(k)1 (m

4
3 .s−1) See text

Structural uncertainty parameters
𝛾1 (m3/s) Intercept  (ln(1); 1) 𝛾1 (m3/s)  (ln(1); 1)
𝛾2 (–) Slope  (ln(0.5); 1) 𝛾2 (–)  (ln(0.5); 1)

Note.  (𝜇, 𝜎) and  (𝜇log, 𝜎log) stand for, respectively, the Gaussian distribution of mean 𝜇 and standard deviation
𝜎, and the lognormal distribution whose logarithm has mean equal to 𝜇log and standard deviation equal to 𝜎log.

priors expressed in terms of incremental changes to a correlated joint prior on inferred parameters(
b(k)

1 , a(k)
1

)
.

4.2.3. Results
Figure 7 shows the estimated rating curves for a few selected periods. A video available as supporting infor-
mation shows the evolution of the rating curve across all 60 periods. Unlike in the Meyras case study, all
curves converge to a common high-flow rating curve, due to the hydraulic assumption that the high-flow
channel does not change across periods. The curves agree well with gaugings for all periods. They are also
in close agreement with the official ratings established by station managers (not shown): as an illustration,
for the periods shown in Figure 7, the stages corresponding to discharge values of 10, 100, and 1,000 m3/s
differ by less than 4% between official and SPD ratings.

This high-flow rating curve is precisely estimated because its parameters are assumed static: Gaugings from
all periods hence directly contribute to their estimation. By contrast, the lower part of the rating curve is
affected by numerous and sometimes large changes. The precision of its estimation strongly depends on the
number of available gaugings. Well-gauged periods such as periods 25 or 29 yield a precise estimate; during
poorly gauged periods such as periods 51 or 52, the low-flow rating curve is mostly constrained by the prior
distribution and is hence much more uncertain.

Figure 8 shows the evolution of period-specific parameters a1 and b1 across all the 60 periods, and the result-
ing activation stages for the high-flow control 𝜅2. It confirms that the number of available gaugings plays a
key role in controlling the precision of the estimated parameters. Although there is no clear long-term trend
in the evolution of parameters across periods, successive phases of continuous aggradation or degradation
are discernible. In addition, periods of narrowing channel (decreasing a1) tend to correspond to channel
deepening (decreasing b1). The figure also shows that parameters remain fairly stable during, for example,
periods 3 to 8 or 41 to 48. This suggests that the number of periods might be too large and that merging some
of them would be sensible according to the gaugings. However, one has to keep in mind that the station
manager's decision to start a new period might be based on information beyond the gaugings (e.g., a visual
observation that the low-flow channel has changed).
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Figure 7. Wairau case study: stage-discharge representation of the estimated stage-period-discharge model for a few
selected periods with discharge in (a) linear scale and (b) logarithmic scale.

4.3. Ability of the Method to Transfer Information Between Periods
In this section, we evaluate whether the SPD model is able to transfer information from well-gauged periods
to poorly gauged ones. To this aim, data from the Meyras case study are used, and the SPD model is estimated
using only the gaugings of the first period. This mimics a situation in which a period is well gauged but
other periods are not gauged at all. We then evaluate whether the information gained from these gaugings
transfers to the subsequent periods. In order to illustrate more clearly this transfer of information across
periods, we slightly modify the prior distributions by setting the prior standard deviation of incremental
change parameters (overall and local) to 0.25 (instead of 0.5 in section 4.1.2).

Figure 9a compares the prior and posterior rating curves for all the periods. For the first period, the rating
curve is estimated very precisely as the posterior interval is much smaller than the prior one. This is not
surprising given the high number of gaugings used for estimation in this period. The information identified
on the first period propagates to subsequent periods: Posterior intervals remain smaller than prior ones for
periods 2 to 5. This can be explained at least partly by the fact that some parameters are assumed static across
periods: Once such parameters have been precisely identified using the gaugings of the first period, they
remain precisely identified for all subsequent periods. However, Figure 9a also suggests that the propagation
of information tends to fade away as the period k is further away from the first period: For the fifth period
the posterior interval is much closer to the prior one than for the second period.

This can be further explained by analyzing posterior densities of the offset b(k)
1 (Figure 9b). For the second

period, the posterior density is still more precise than the prior one. When the period is further away from
the first well-gauged period, information propagates less efficiently: The posterior distribution of the offset
parameter tends to become similar to its prior distribution (see the fifth period in Figure 9b). This behavior
might appear surprising at first sight: Since no gaugings from the second period were used to estimate the
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Figure 8. Wairau case study: posterior boxplots for period-specific parameters a1 and b1, and resulting activation
stages 𝜅2.

SPD model, how can the period-specific parameter b(2)
1 gain information beyond that contained in the prior?

This is simply due to the fact that offsets of the first and the second periods are linked through the overall
+ local incremental change between periods 1 and 2: b(2)

1 = b(1)
1 −

(
𝛿g(2) + 𝛿l(2)

)
. Since b(1)

1 is precisely esti-
mated thanks to the many gaugings of period 1, its posterior variance is much smaller than its prior one.
Consequently, the posterior variance of b(2)

1 is also smaller than its prior variance. The same reasoning holds
for subsequent periods, since b(k)

1 = b(1)
1 −

(
𝛿g(2) + 𝛿l(2)

)
− … −

(
𝛿g(k) + 𝛿l(k)

)
. However, as more terms rep-

resenting incremental changes are added, the relative importance of the precisely estimated parameter b(1)
1

tends to fade away. Note that for the same reason, prior uncertainty intervals also widen as the period is
away from the first period, as can be seen in Figures 9a and 9b.

4.4. Comparison With a Stage-Discharge Model Separately Applied to Each Stability Period
In this section, a comparison is made between the SPD model and a stage-discharge (SD) model separately
applied to each stability period. Data from the Meyras case study are used for this purpose. In order to
simulate poorly gauged situations, both SPD and SD models are applied considering only four gaugings per
period (scarcely gauged), eight gaugings per period (reasonably gauged), or all available gaugings (very well
gauged). The four and eight gaugings are evenly split between the first two controls (e.g., two gaugings for
the riffle control and two gaugings for the main channel control). For the SPD model we use the same priors
as in section 4.1.2. For the SD model, prior specification is made as to ensure the equivalence with the prior
information used by the SPD model.

Figure 10 shows the results for the static parameters ai ci, i ∈ ⟦1; 3⟧, and b3. Irrespective of the number of
gaugings, both SPD and SD models yield similar results for exponent parameters c1, c2, and c3 because their
respective prior distributions are precise. Similar results are also found for parameters a3 and b3 of the third
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Figure 9. Ardèche case study: prior and posterior results from the SPD model using only gaugings of the first period
(red) for estimation: (a) rating curves for the five periods; (b) densities of the first control offset for periods 2 to 5 with
the same axis scales for all the plots. Gaugings in periods 2 to 5 (colored in black) are shown for verification but have
not been used for estimation. SPD = stage-period-discharge.

control: both posterior distributions are similar to the priors. There is indeed not enough high-flow gaugings
to precisely identify these parameters (see section 4.1.1).

When the station is scarcely gauged (four gaugings per period), important differences between SPD and
SD models can be seen for coefficients a1 and a2. Estimations made by the SPD model are much more
precise (Figure 10) as these parameters are assumed constant across periods. Their estimation is therefore
informed by all the gaugings of the five periods (20 gaugings) instead of only four gaugings for the SD model.
Similar differences between SPD and SD models are observed as the number of gaugings increases. As an
aside, Figure 10 also supports the assumption made by the SPD model that these parameters are constant
across periods. Indeed, for all static parameters, posterior distributions obtained with the SD model are
consistent across periods. This is the case for rating curve parameters (ai , ci, i ∈ ⟦1; 3⟧ and b3) as well
as for parameters of the structural error model (𝛾1 and 𝛾2). Moreover, the SPD model yields more precise

MANSANAREZ ET AL. 2892



Water Resources Research 10.1029/2018WR023389

Figure 10. Ardèche case study: comparison between SPD and SD models for static parameters, using only four gaugings per period, eight gaugings per period,
and all available gaugings. SPD = stage-period-discharge; SD = stage-discharge.

estimations of the structural error model as its parameters are estimated with more gaugings (5 times as
many for this comparison) than for the five separate applications of the SD model.

5. Discussion
5.1. Estimating the Times of Rating Changes
The SPD model presented in this paper assumes that the stability periods are known. This is admittedly a
strong assumption that requires some preliminary analyses to define these periods. We stress however that
methods do exist for this purpose (see the literature review in section 1). They are mostly based on some
statistical analysis of the available gaugings. While this is indisputably a valuable source of information,
gaugings do not directly relate to the hydraulic processes that caused the change—instead, gaugings expose
the consequences of these processes. We claim that the stage record may be another valuable source of
information (see also the discussion in Reitan & Petersen-Øverleir, 2011) and has the advantage of being
more directly related to the hydraulic processes causing the changes. More precisely, the stage record could
be used in two distinct ways: (i) A marked change affecting the low flow control is often clearly visible in
the lowest part of the stage record, and (ii) an analysis of the cumulative sediment transport capacity of the
river (e.g., Meyer-Peter & Müller, 1948) may provide a threshold above which bed evolution may be initiated.
Interestingly, such approaches could be used not only to detect changes but also to provide a prior estimate
of their magnitudes.

In addition, we stress that assuming known stability periods does not exempt from exerting a critical eval-
uation of their definition and does not prevent from modifying them if empirical evidence suggests it.
For instance, in the Meyras case study of section 4.1, the differences between periods 4 and 5 are very
small, with barely distinguishable rating curves and near-zero change parameters: It would be sensible
to merge these two periods into a single one. A similar observation was made for the Wairau case study
of section 4.2.

An interesting avenue would be to develop a probabilistic treatment of the periods, that is, assuming that a
change occurs with some probability, to be estimated. Such approach would be particularly relevant to the
context of real-time estimation of rating curves and streamflows.
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5.2. Extensions of the SPD Model
The SPD model proposed in this paper makes a few restrictive hypotheses that could be generalized. For
instance, the rating curve equation is based on the basic power law control equation Q(h) = a(h − b)c:
This could be extended to consider different functions of stage h, for example, the Manning-Strickler
equation derived for a narrow rectangular channel or a trapezoidal channel. Moreover, complex rat-
ing curves taking other inputs in addition to stage could be made period dependent, so as to develop
stage-fall-period-discharge models from stage-fall-discharge models for sites influenced by variable back-
water (Mansanarez et al., 2016; Petersen-Øverleir & Reitan, 2009) or stage-gradient-period-discharge
models from stage-gradient-discharge models for hysteresis during unsteady flows (Mansanarez, 2016;
Petersen-Øverleir, 2006). Thus, complex hydraulic controls and their potential shifts across successive
periods of time could be estimated through a unique model.

Other hypotheses of the SPD model are more challenging to generalize. In particular, the creation or deletion
of controls is difficult to consider within a fully general framework because it modifies the structure of the
rating curve equation. Moreover, we also made the assumption that the properties of structural errors do
not change across periods. In principle, this could be avoided by defining period-specific parameters for the
structural errors. However, in the absence of precise prior information on these parameters, a relatively high
number of gaugings in all periods would be necessary to identify them, as illustrated in section 4.4. This may
be problematic in cases where some periods are poorly gauged or even not gauged at all, which is a typical
case in gravel bed rivers such as the Wairau River (see section 4.2).

5.3. Using Alternative Sources of Prior Information for Rating Changes
In this paper, expert's knowledge was used to specify prior distributions on the parameters controlling
incremental changes between two successive periods. Several alternative sources of prior information could
be used for this purpose. For instance, channel bathymetry profiles provide direct prior information on
period-specific parameters of the rating curve. Ideally, such profiles would result from topographic cam-
paigns; however, the gaugings themselves contain bathymetry information that could be useful, although
it should be used with caution since the gauging cross section is not necessarily representative of the aver-
age channel geometry. Alternatively, the stage record also contains useful information. Indeed, large rating
shifts are often visible in the stage record, and materialize as a step change in the lowest stage values. In the
Meyras case study of section 4.1, for instance, the large shift between periods 3 and 4 is clearly visible as a
step change in the stage record (not shown); moreover, the amplitude of this step change corresponds quite
closely to the change estimated by the SPD model from the gaugings (≈ −0.4 m). This suggests that the stage
record might be a valuable source of information to specify more informative priors on the change magni-
tude. Finally, an analysis of the sediment transport capacity may provide some information on the possible
change in the main channel after a morphogenic flood.

5.4. Comparison With Existing Approaches
The SPD model introduced in this paper may be seen as a more general and more hydraulically based expres-
sion of the shift corrections (cf. section 1.2) manually implemented by several hydrometric agencies around
the world. The typical constant, knee bend, and truss shift curves can be reproduced through this model,
as well as other types of corrections such as changes in the coefficients. Usefully, the assumed rating cor-
rections are directly related to physical parameters of the controls, and their estimation using limited prior
knowledge and uncertain gaugings can be done in a formal, automated, and reproducible way, as opposed to
manually. As a consequence, the resulting rating curves and streamflow data (and their uncertainty bounds)
are easier to defend and to review.

The SPD model shares the notion of static versus varying parameters with several existing methods
(Guerrero et al., 2012; Juston et al., 2014; Reitan & Petersen-Øverleir, 2011). In the SPD model, the choice of
static parameters is linked with specific hypotheses about which properties of hydraulic controls are subject
to change (see also the discussion in Reitan & Petersen-Øverleir, 2011), whereas this choice was rather based
on goodness-of-fit considerations in the above mentioned papers. While both approaches are perfectly legit-
imate in our opinion, we stress that the expertise of a station manager may be sufficient to make this choice
without even looking at the gaugings. For instance, a station manager is in general able to tell whether or
not the width of the main channel has changed after a morphogenic flood, and this information can be used
to build the adequate SPD model.
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The use of static versus varying parameters has several decisive advantages compared to other approaches in
our opinion. First of all, it simplifies the use of gaugings: all gaugings are always assigned to a unique period,
and no gauging is repeatedly used across periods. High-flow gaugings remain informative for high-flow
controls of all periods as long as these controls comprise static parameters, but this is a built-in property
and it does not require making any assumption beyond the hydraulic assumptions made to build the SPD
model. Likewise, the high-flow convergence (or lack thereof) of rating curves from all periods is a direct
consequence of these hydraulic assumptions. As illustrated in the cases studies, an SPD model assuming
that only the low-flow control is subject to change will naturally lead to convergent rating curves; however,
an SPD model assuming that a main channel is also varying will not.

Finally, the SPD model is specific to sudden changes and cannot be generalized to continuous changes
for which dynamic approaches are probably more appropriate. As already mentionned by Reitan and
Petersen-Øverleir (2011), combining dynamic and SPD-like models may lead to a more realistic description
of rating changes. In particular, such a combination could be of interest to describe the transient change
occurring during a morphogenic flood, thus making the transition between two stability periods. This would
circumvent the difficulty related to the definition of the precise beginning of a stability period (during the
rising limb, the falling limb, or at the flood peak?).

6. Conclusion
The main objectives of this paper were to derive, estimate, and evaluate a SPD model adapted to unstable
rivers (see section 1.3). The SPD model assumes that the dates of change have been preliminarily identified
and therefore uses the period index as input variable (in addition to stage). Based on the prior knowl-
edge a field hydrologist usually has on her/his hydrometric station, the model can be built from simple
hydraulic equations. The user also specifies which parameters are static and which parameters may vary
across periods, and what might be the magnitude of their changes. This results in a single model that is
valid over all periods: Estimation can therefore be performed in one go, instead of period after period.
Bayesian inference is used for this purpose, which allows incorporating existing prior knowledge on the
properties of the hydraulic controls and their changes; it also yields a natural and built-in quantification
of uncertainties.

The generality of the method was demonstrated through two contrasting case studies. They were selected
because the corresponding hydrometric stations differ in several key aspects: (i) distinct hydraulic configu-
rations (riffle then main channel + floodway vs. succession of two channels); (ii) distinct types of changes
(change in offsets only vs. change in both offset and channel width); (iii) distinct rating curve properties
(nonconvergent vs. convergent rating curves); and (iv) different numbers of stability periods (5 vs. 60). In
addition, specific experiments demonstrated the ability of the SPD model to transfer information across peri-
ods. Consequently, rating curves are more precisely estimated than by separately estimating SD models for
each period.

We claim that the proposed method brings a practical solution for developing hydrometric rating curves in
unstable rivers. The underlying approach, based on simple hydraulics equations, is more transparent and
actually easier to specify than the empirical and graphical approaches traditionally followed (see section
1). It does not require going beyond a few explicit hydraulic assumptions on the elementary controls of
the rating curve. In particular, the convergent/nonconvergent nature of rating curves is just a consequence
of these assumptions; the management of gaugings is straightforward since a gauging is always assigned
to a single period and is used only once. Finally, Bayesian parameter estimation is also easier and more
transparent than manual fits constrained by informal expert knowledge. It also provides a simple way to
compute uncertainty intervals from the large number of parameter sets simulated through MCMC sampling
of the posterior distribution.

The SPD model provides a firm basis for building a more complete approach in which the times of changes
would be inferred in addition to their magnitude. This would be particularly useful for long-term retrospec-
tive analysis of streamflow records at unstable sites, as well as real-time applications such as flood forecasting
or hydraulic structure operation.
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Appendix A: Analysis of multiple solutions for the continuity equation
When a control j replaces an existing control j − 1, the continuity equation has no explicit solution. In order
to simplify notations, and without loss of generality, we may assume that j = 2. The continuity condition
between the two segments of the rating curve can be written as follows:

a1
(
𝜅2 − b1

)c1 = a2
(
𝜅2 − b2

)c2 (A1)

Taking the logarithm of each side of equation (A1) for computational convenience, activation stage 𝜅2 is
therefore solution of the following equation:

𝑓 (𝜅2) = 0 with 𝑓 (x) = c2 log(x − b2) − c1 log(x − b1) − log(a1∕a2) (A2)

Equation (A2) is only defined for x > max(b1; b2) and therefore has to be solved on the interval
]max(b1; b2); +∞[. In practice, since a numerical method (e.g., Newton-Raphson) is used to solve the
equation, an upper bound needs to be specified as well. For the highest control, this is taken as hmax, the
upper bound of the range of validity of the rating curve; otherwise, this is taken as the activation stage of the
next control.

When c1 = c2 (case I), the continuity equation has a unique, explicit solution:

𝜅2 =
b2a1∕c1

2 − b1a1∕c1
1

a1∕c1
2 − a1∕c1

1

(A3)

Likewise, when b1 = b2 (case II), the unique, explicit solution is

𝜅2 = b1 +
(

a1

a2

) 1
c2−c1

(A4)

In other cases, the variation of function f(x) depends on the sign of its derivative 𝑓
′ (x):

𝑓 ′(x) ≥ 0 ⇐⇒
c2

x − b2
−

c1

x − b1
≥ 0 ⇐⇒

{
x ≥

c2b1−c1b2
c2−c1

= x0 if c2 > c1

x ≤ x0 if c2 < c1
(A5)

If x0 ≤ max(b1; b2) (case III), f(x) is monotonic and equation (A2) has a single solution in ]max(b1; b2); +∞[,
as shown in the following variation table (obtained with c2 > c1, the case c2 < c1 being symetric):

If x0 > max(b1; b2), the variation table of f(x) is as follows (with c2 > c1, the case c2 < c1 being symetric):
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Figure A1. Continuity functions f(x) for different values of b2 and realistic values of other rating curve parameters for
the Ardèche River at Meyras (cf. equations (2) and (3)): a1 = 21.26 (Bw = 12 m; Cr = 0.4; g = 9.81 m/s2); b1 = −0.6;
c1 = 1.5; a2 = 25.15 (Bc = 15 m; S0 = 0.0045 m/m; KS = 25 m1/3/s); c2 = 1.67; b3 = 1.2. The box in the lower right
corner zooms in on the transition between one-solution case III and two-solution case IV, illustrating the continuity of
the largest case-IV solution with respect to b2.

If f(x0) < 0 (case IV), equation (A2) has two solutions, one in ]max(b1; b2); x0[ and the other in ]x0; +∞[.

If f(x0) = 0 (case V), equation (A2) has a single solution 𝜅2 = x0.

If f(x0) > 0 (case VI), equation (A2) has no solution.

Figure A1 shows continuity functions f(x) computed using realistic values of rating curve parameters for the
Ardèche river at Meyras. Increasing values of b2 make the resulting functions go through cases VI, V, IV,
II, and III with 0, 1, 2, 1, 1 solutions, respectively. Case IV is the only problematic case with two solutions.
However, the smallest solution can be rejected using the following continuity argument. The transition
between case III (single solution) and case IV (two solutions) occurs when b2 becomes smaller than b1.
When b2 = b1 − 𝜀 for some small positive 𝜀, the largest of the two case IV solutions is very close to the
unique case II solution obtained for b2 = b1 (see zoomed-in box in Figure A1). By contrast, the smallest
solution suddenly appears much farther away, creating a discontinuity that makes no physical sense. In
hydraulics terms, a tiny lowering of the channel should not drastically modify its activation stage, as the
smallest solution does. Hence, as a general rule for case IV, the smallest solution is rejected and the greatest
solution is retained as the correct solution. The same rule holds for the case c2 < c1, which is symmetric to
the case c2 > c1 illustrated above.

It is important to account for potential multiple solutions for the activation stage from the discharge conti-
nuity equation (equation (A1)) and to establish the general selection rule to ensure the physical consistency
of the results. In practical cases, however, the occurrence of multiple solutions may be negligible: For
the Meyras case study, cases with two solutions occur in 0.4% of the MCMC samples from the posterior
distribution.
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