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ABSTRACT 1 

Knowledge of pore water pressure in an earth dam is crucial for analyzing its mechanical 2 

stability. In classical calculations of these pressures, great uncertainty exists regarding the 3 

permeability of the materials and the representation of their spatial variability. In this article, a 4 

probabilistic analysis of pore water pressures based on field data is performed to represent the 5 

permeability with a 2D random field established from statistical and geostatistical analyzes. 6 

This random field is introduced in a model based on the Finite Element Method (FEM) and 7 

the influence of the spatial variability of permeability on pore water pressure is then studied 8 

using Monte-Carlo simulations (MCS). 9 

 10 

KEYWORDS: 11 

Earth dam; Finite element; Spatial variability; Pore water pressure; Random fields, Monte-12 
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1 INTRODUCTION 14 

Earth dams are structures subjected to risks and their stability must be guaranteed 15 

throughout their lifecycle. Three main failure mechanisms exist concerning earth dams: 16 

external erosion due to overtopping, internal erosion and sliding of the slope (Foster et al., 17 

2000). The last two failure modes are directly linked to the hydraulic conditions of the flow 18 

inside the earth dam, that influence the structure’s mechanical stability. 19 

The calculation of the flow through an earth dam is generally performed deterministically, 20 

with soil properties considered as constants for a layer of soil of the same type (Gui et al., 21 

2000). However, soils in their natural state are composed of heterogeneous materials with 22 

several scales of description (Cho, 2012) and deterministic methods present limits as they do 23 

not explicitly consider uncertainties linked to the partial engineer’s knowledge of the soil 24 

concerned. 25 

In this context, and for several decades, an increasing number of research works have 26 

focused on taking into account uncertainties related to soils to calculate flows in earth dams. 27 

Researchers tried to improve the methods used to evaluate the reliability of slopes of 28 

geotechnical structures (Vanmarcke, 1983; Bergado and Anderson, 1985; Sivakumar Babu 29 

and Murphy, 2005; Srivastava et al., 2009). Fenton and Griffiths (1993) used the random 30 

finite element method (RFEM) by coupling the finite element method and random field theory 31 

via Monte-Carlo Simulations (MCS) for the flow calculation. Numerous other studies were 32 

then performed on the problem of flow into a soil by considering the spatial variability of a 33 

geotechnical parameter in using random fields (Fenton and Griffiths, 1996, 1997; Griffiths 34 

and Fenton, 1997; Gui et al., 2000; Srivastava et al., 2009; Cho, 2012; Liu et al., 2017). 35 

Modelling the spatial variability of hydraulic properties of soils (e.g. hydraulic conductivity) 36 

could also be meaningful when proceeding coupled hydraulic and mechanical calculation, for 37 

studying consolidation issues for example (Huang et al., 2010). 38 
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All these studies provide important information on both the probabilistic analysis to be 39 

implemented, and the influence of some parameters on the results obtained as outputs. 40 

However, most of these studies mainly deal with theoretical cases considering a hypothetical 41 

homogenous earth dam with simplified geometry. Furthermore, the input data used to 42 

characterize the material properties in these probabilistic studies were hypothetical data that 43 

were not obtained from tests conducted on samples of real soils, except for Smith and Konrad 44 

(2011) who presented probabilistic analysis of the spatial variability of permeability using 45 

field data. These authors used geostatistical methods to describe the spatial variability of the 46 

quantity of fines in the core and predict values at locations into the earth dam where it was not 47 

measured. 48 

Another approach to model the spatial variability of the permeability of the fill of an earth 49 

dam can involve directly the monitoring pressure measurements and inverse analysis methods 50 

(Castelier, 1995). This specific kind of methods does not consider available soil properties 51 

data from laboratory and in-situ tests, and they require significant computational efforts. 52 

Recent studies consider these data for back analysis as prior information in a Bayesian 53 

framework. Zheng et al. (2018) used field measurements to predict the settlement of an 54 

embankment. Another work from Yang et al. (2018) proposes a Bayesian approach to use 55 

field responses (e.g. pore pressure measurements) to estimate spatially varied hydraulic 56 

properties in an embankment. However, this method is applied on an artificial dataset and not 57 

on real data.  58 

Based on a study case, the aim of this article is to present a probabilistic analysis of the 59 

pore water pressure from the available soil properties dataset of an existing dam. The 60 

implemented probabilistic approach incorporates several aspects: i) the analysis of the spatial 61 

variability of the physical soil properties data collected during the dam construction phase 62 

using statistical and geostatistical methods; ii) the characterization of a random field of 63 
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permeability inside the earth dam based on previous analyzes of soil properties; iii) the 64 

development of a probabilistic hydraulic model using the random finite element method to 65 

characterize the variability of the pore water pressures field. 66 

The manuscript is presented as follows. The methods commonly used for the probabilistic 67 

seepage analysis of earth dams are briefly presented in Section 2. Then, Section 3 gives a 68 

description of the case study and the available dataset. Section 4 presents a probabilistic 69 

analysis to obtain a random field representation of the spatial variability of permeability. 70 

Numerical analyzes and results of spatial variability of pore-water pressures are presented in 71 

Section 5, and then discussed in Section 6. Finally, the main conclusions are highlighted in 72 

Section 7. 73 

2 SEEPAGE ANALYSIS 74 

2.1 Deterministic governing equations solved by FEM 75 

The flow through a cross section of an earth dam can be defined from the Richards’ 76 

equation (Richard, 1931):77

where ℎ is the hydraulic head (m), 𝐶 is the hydraulic capacity (m-1), 𝑡 is time (s), 𝜃 is the 78 

volumetric water content (m3.m-3) and 𝐾 and 𝐾 are the hydraulic conductivities in the 79 

horizontal and vertical directions, respectively. 80 

Eq. (1) involves the permeability at saturation of the porous material. A distinction is made 81 

between the horizontal 𝐾 and vertical 𝐾 permeabilities in the case of anisotropy, by noting 82 

𝑟 =  
𝐾

𝐾
  , the anisotropy coefficient. In the hypothesis of a completely saturated soil, the 83 

permeability at saturation is assumed to be constant, which simplifies Eq. (1). The saturated-84 

unsaturated behavior of soils can be represented by several empirical relations between the 85 

𝐶(ℎ)
𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑥
𝐾(𝜃)

𝜕ℎ

𝜕𝑥
 +

𝜕

𝜕𝑧
𝐾(𝜃)

𝜕ℎ

𝜕𝑧
+ 1 (1) 
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degree of saturation 𝑆 and matric suction 𝜓 (Fredlund and Xing, 1994). The closed-form 86 

equations most often used are those proposed by Van Genuchten (Van Genuchten, 1980): 87 

in which 𝜃 and 𝜃 represent the volumetric water content at saturation and the residual 88 

volumetric water content of the soil, respectively. Coefficients 𝛼, 𝑛 and 𝑚 are the parameters 89 

of the retention curve to be fitted. These parameters are necessary for evaluating unsaturated 90 

behavior but they are difficult to obtain as they require specific tests to be performed in 91 

laboratory (Masekanya 2008; Fredlund and Houston, 2009). These tests are rarely carried out 92 

in the framework of designs for the construction of a hydraulic structure. 93 

The saturated-unsaturated flow problem represented by Eq. (1) is generally resolved in the 94 

literature using either the finite difference method or the finite element method. In the present 95 

article, an iterative finite element model was developed by using an open-ended calculation 96 

code which will be presented in the following. 97 

2.2 Spatial variability modelling 98 

The spatial variability of soil properties can be efficiently modelled with random field 99 

theory, which is more and more used in the literature (Fenton and Griffiths, 1996, 1997; 100 

Griffiths and Fenton, 1997; Gui et al., 2000; Srivastava et al., 2009; Cho, 2012; Liu et al., 101 

2017). A detailed development of the theory can be found in Vanmarcke (1983). A random 102 

field is a collection of random variables indexed by a spatial variable 𝒙 depending on one or 103 

more reference directions (Sudret and Der Kiureghian, 2000). A Gaussian random field can be 104 

fully described by knowing the mean 𝜇(𝒙), the standard deviation 𝜎(𝒙), and the 105 

autocorrelation function. A random field is stationary if the following requirements are106

followed (Li et al., 2015; Liu et al., 2017): i) the statistical moments are the same over the 107 

𝑆 (𝜓) =
𝜃 − 𝜃
𝜃 − 𝜃

=  
1

[1 + (𝛼𝜓)]
 𝑚 =

𝑛 − 1

𝑛
,𝑛 > 1 (2) 

𝐾 = 𝐾  𝑆 (𝜓)/ 1 − 1 − 𝑆 (𝜓)/



 (3) 



6 

random field domain; ii) the covariance between two values located at two different locations 108 

is dependent on the absolute distance between the two points but not on their locations. 109 

Stationary random fields are generally used to model the spatial variability of homogenous 110 

soils whereas non-stationary fields are suitable for multi-layered soils (Li et al., 2015; Liu et 111 

al., 2017). A non-stationary random field can also be decomposed into several stationary 112 

random fields. 113 

Theoretical autocorrelation functions are usually used to characterize the spatial correlation 114 

of soil properties because determining such a function with geostatistical methods is not easy 115 

because of the need of a large quantity of statistical data (Li et al., 2015). Nonetheless, these 116 

methods have already been used in the framework of earth dams to estimate hydraulic 117 

conductivity (Castelier, 1995; Smith and Konrad, 2011). Variability is described by a function 118 

of the structure 𝛾(ℎ), called a variogram, representing the semi-variance between the 119 

deviation of the values taken by two points separated by a distance ℎ. In practice, preference 120 

is given to an estimator of the theoretical variogram, often called the experimental variogram 121 

𝛾 
∗(ℎ), and defined by the following expression: 122 

𝑁(ℎ) is the number of pairs of variable 𝑍(𝑥) separated by distance ℎ. 123 

A mathematical model is applied to the points representing the experimental variogram. It 124 

permits representing either the theoretical variogram directly, or the autocorrelation function, 125 

which will allow the generation of the random fields (Vanmarcke, 1983).  126 

In this study, stationary Gaussian random fields with exponential autocorrelation function 127 

were considered to represent the variability of soil properties measured during compaction 128 

𝛾 
∗(ℎ) =

1

2𝑁(ℎ)
 [𝑍(𝑥 + ℎ) − 𝑍(𝑥)]

()



 (4) 
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controls. For the autocorrelation function, the autocorrelation distances in the vertical and 129 

horizontal directions are defined from a geostatistical analysis of field data. 130 

2.3 Uncertainties propagation based on MCS 131 

The finite element method permits a deterministic resolution of the flow equation. The 132 

uncertainties of the input data can be modelled as random variables, or as random fields to 133 

account for spatial variability of soils. Obtaining a probabilistic response using a RFEM 134 

involves a numerical modelling based on the FEM in which one or more input parameters are 135 

modelled as random. It permits evaluating the global probabilistic structure of the finite 136 

element model’s response (Sudret and Der Kiureghian, 2000). 137 

This approach is often used in association with MCS, which remains the only universal 138 

method for treating the strongly non-linear and highly variable problems represented by soil 139 

properties (Cho, 2012). This method requires a large number of realizations in order to obtain 140 

robust statistical characteristics for the output variables. 141 

In this study, MCS is performed to reproduce the deterministic analysis including the 142 

simulation of 2D random fields of permeability. MCS allows characterizing the variability of 143 

pore water pressures inside the embankment. 144 

3 DAM STUDIED AND AVAILABLE DATA 145 

The case studied is an earth dam located in the west of France. It is a pseudo zoned 146 

structure with a maximum height of 23 m. The dam body is composed of a core (COR) made147

of sandy silts which support an upstream shoulder (UPS) and a downstream shoulder (DOS) 148 

made of coarse sands formed by the alteration of schists. The downstream shoulder is 149 

composed of a material slightly coarser than the one of the upstream shoulder. The foundation 150 

is also composed of more or less altered schists whose superficial layers have been purged. A 151 
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chimney drain and horizontal toe drains are installed in the downstream shoulder to collect 152 

flows. The main cross-section of the structure can be seen in Fig. 1. 153 

 154 

Fig. 1. The dam studied: standard cross section and locations of pore water pressure cells.155 

A synthesis of the whole available data for the case study is presented in Table 1.  Three 156 

main datasets are available in this case study: data obtained from the studies phase, before the 157 

construction of the dam; data obtained from a test board realized just before the construction; 158 

and finally data obtained during the construction, when controlling the compaction of the fill.  159 

During the studies phase, about thirty samples had been taken from borrow pits for the 160 

materials composing the structure. They were subjected to grain size distribution analyzes, 161 

and other laboratory tests (Atterberg limit measurements, triaxial tests, etc.) were performed 162 

on some of them. Permeability tests were also performed, but only on three samples. 163 

A test board was defined before the construction of the dam making it possible to identify 164 

the behavior of the shoulder material on the basis of seven grain size distribution analyzes and 165 

compaction tests. 166 

During the construction of the dam, others grain size distribution analyzes were performed 167 

on some samples (see Table 1). The entire set of grain size distribution analyzes available is 168 

shown in Fig. 2. The band distinguishing the materials used for the UPS/DOS shoulders (in 169 

black) can be distinguished from that used for the core (COR) (in red), which had a higher 170 
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proportion of fines. The dashed lines curves corresponding to the construction phase include 171 

the data obtained from the test board and from the compaction control.  172 

 173 

Fig. 2. The dam studied: grain size distribution curves. 174 

Table 1 Case study - synthesis of available data. 175 

Soil Type* Number Mean CoV (%) Min Max
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Samples 
UPS&DOS 11 11 16 38  - - - - 

COR 13 0 14 27  - - - - 

Grain Size 
Distribution  

UPS 10 11 9 30  - - - - 

DOS 10 11 7 28  - - - - 

COR 13 0 14 27  - - - - 

Plasticity Index 
(%)

UPS&DOS 3 0 0 3  14.2 30 11 19 

COR 12 0 0 12  14.3 16 10 17.5 

Liquid Limit 
(%) 

UPS&DOS 3 0 0 3  48.3 13 42 55 

COR 12 0 0 12  38.2 10.3 33 44 

Laboratory 
saturated

permeability 
(m.s-1) 

UPS&DOS 1 0 0 1  5.0×10-7 - 5.0×10-7 5.0×10-7 

COR 2 0 0 2 
 

3.8×10-8 - 5.0×10-9 7.0×10-8 

Dry density 
(kg/m3) 

UPS 0 0 376 376  1991 3.2 1730 2190 

DOS 0 0 333 333  2045 3.3 1679 2196 

COR 0 0 419 419 1831 3.2 1655 1979 

Water content 
(%) 

UPS 0 0 376 376  9.5 18 5.6 15.9 

DOS 0 0 333 333 8.3 21.6 4.7 14.5 

COR 0 0 419 419  15.3 13.3 9.6 21.7 

* UPS&DOS: Coarse sands (shoulders material); COR: Sandy silt (core material) 176 
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The dry density and water content after compaction were controlled during the 177 

construction of the dam. The dry density was measured in situ with a gamma-densimeter. In 178 

all, more than a thousand measurements were performed in the three zones (UPS: 376, COR: 179 

419, DOS: 333, respectively). The control measures were compared to the results of the 180 

Proctor tests performed periodically during construction. 181 

An additional system was installed for the dam studied during its construction to locate the 182 

compaction control measurements in space (according to the three axes). Therefore, a large 183 

number of dry density measures with relatively precise localization in space is available. 184 

Despite the fact that not all the measures were geo-located, a large sample was nonetheless 185 

available (UPS: 248, COR: 381, DOS: 272, respectively). Fig. 3 shows the location of data in 186 

different planes. 187 

Finally, the hydraulic behavior of the dam is monitored by different devices that include 188 

cells for measuring pore water pressure installed in the earth fill and into the foundation, and 189 

piezometers located on the banks and the downstream toe. The pressure cells are mainly 190 

arranged in three profiles, each profile comprising seven cells as described in Fig. 1. The cells 191 

are denoted PX/Y; with X=1 to 3 corresponding to the profile index, and Y=1 to 7 192 

corresponding to the location of the cell on one profile (see Fig. 1).  193 
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 194 

Fig. 3. Location of compaction control measurements. 195 

4 MODELLING OF THE SPATIAL VARIABILITY OF THE CASE STUDY 196 
SOIL PROPERTIES 197 

This section presents an overview of the probabilistic modelling of permeability applied on 198 

the case study using available soil properties data. After collecting and analyzing the available 199 

data on the dam, the modelling of the spatial variability of the permeability was carried out in 200 

this study according to the following steps: 201 
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- choose a suitable method for predicting permeability according to the specific soils 202 

forming the different zones of the embankment and the quantity and type of data 203 

available. 204 

- perform a statistical analysis of available data in order to model the different 205 

parameters taking part into the chosen prediction method by random variables. 206 

- perform a geostatistical analysis of the compaction control measurements (especially 207 

on the dry density of the materials) to obtain experimental variograms on the 208 

horizontal and vertical directions. 209 

- use previous statistical and geostatistical analyzes to obtain a random field of 210 

permeability. 211 

4.1 Choice of a method for predicting permeability 212 

Very few permeability measurements are available to characterize its variability. In this 213 

study, spatial variability will be analyzed using a permeability prediction method from the 214 

available data. A review of several methods published in the literature for predicting the 215 

permeability has been established by Chapuis (2012). Theses prediction methods are mostly 216 

specific to a type of soil, either plastic (clays) or non-plastic (sands). 217 

The analysis of the data presented above (see Table 1) shows that the soils used to 218 

construct the shoulders (UPS and DOS) and core (COR) of the dam under study have a 219 

certain plasticity (𝐼 between 10 and 20) and they are composed of both fine particles and 220 

coarse elements.  221 

Then, the prediction method chosen in this application is the one described by Eq. (5), 222 

corresponding to a method developed by Chapuis and Aubertin (2003) based on the Kozeny-223 

Carman equation. This method is beneficial because it can be used for soils presenting 224 
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fractions of fine and coarse materials. In addition, its input parameters can be estimated from 225 

the available data. 226 

log(𝐾) = 0.5 + log 
𝑒

(1 + 𝑒)𝐺
𝑆


 (5) 

Thus, this predictive method needs to give a probabilistic modelling of two parameters: 227 

the void ratio 𝑒 and the specific surface 𝑆. This is done in the next step. 228 

4.2 Statistical analysis of available data 229 

The probabilistic modelling of the void ratio is directly done in linking the void ratio with 230 

the dry density by a basic soil mechanics formula, 𝑒 =  𝜌 𝜌⁄ − 1, introducing the solid 231 

density of the grains 𝜌 which can be considered constant for soils of the same nature. As 232 

compaction control measurements (dry density) are available in sufficient number, as seen in 233 

the previous section, the statistical analysis can be easily performed. The statistic parameters 234 

of the dry density distributions in the three zones are also shown in Table 1. The average of 235 

the dry densities for the shoulder materials is close to 2000 kg/m3, but is lower for the core 236 

material (1830 kg/m3). These distributions can be represented by a normal distribution (𝜒 237 

test). However, a truncated normal distribution is adopted in order to avoid erroneous values 238 

and to get realizations which stay within the range of measured values. 239 

Concerning the specific surface, the representation as a random variable is less easy 240 

because no measurement is available in this particular case. Methods have been developed to 241 

estimate this parameter based on either the grain size distribution curve (GSDC) (Chapuis and 242 

Legare, 1992; Fooladmand; 2011) or the liquid limit (Chapuis and Aubertin, 2003; Dolinar, 243 

2009) depending on the type of soil. In the case of the studied dam, the shoulder and core 244 

soils were composed of both fine particles and coarse elements, with proportions differing 245 

according to whether the silty sands of the core (COR) or the coarse sands of the shoulders 246 
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(UPS and DOS) were considered. Thus, the specific surface of these materials is calculated in 247 

this study by combining both approaches.  248 

Firstly, a specific surface 𝑆_  is estimated with the method proposed by Chapuis and 249 

Legare (1992) based on the grain size distribution curves available for the studied dam. Fig. 2 250 

shows however that not all the curves were evaluated with the same number of sieves.  251 

A methodology proposed by Fredlund et al. (2000) allows homogenizing and standardizing 252 

the grain size distribution curves in giving two mathematical representations (unimodal and 253 

bimodal) of these curves. In order to homogenize the number of passing percentages for each 254 

diameter, these two forms were fitted to each available grain size distribution curve. Fig. 4 255 

shows an example of fit to a grain size distribution curve obtained from sample F05 of sandy 256 

silt. 257 

 258 

Fig. 4. Example of fitting the two forms of the Fredlund et al. (2000) equation – Test F05. 259 

Then, a set of 24 diameters between 0.2 µm and 300 mm is chosen (see Fig 5.). It makes it 260 

possible to represent the full range of grain size distribution. The sieve passing percentages 261 

were calculated for each of the 24 diameters and for each fitted grain size distribution curve. 262 

In the case of the shoulder materials (UPS&DOS), the sample of grain size distribution 263 
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analyzes was divided into two groups according to whether the samples were taken from the 264 

UPS or the DOS during the construction phase. Among the grain size distribution analyzes 265 

available for the shoulder materials (see Table 1), 30 (resp. 28) are used to described the grain 266 

size distribution of UPS (resp. DOS). Regarding COR, the 27 available grain size distribution 267 

curves were directly used. 268 

By calculating the mean and the standard deviation of the distributions obtained for each 269 

diameter for the three zones, and by assuming that they all followed a truncated normal 270 

distribution for reasons explained above, it was possible to represent each passing percentage 271 

by a random variable. The results obtained for diameters d = 2 mm, d = 80 µm, d = 2 µm and 272 

d = 0.2 µm are described in Table 2. 273 

Table 2 Statistical properties considered in the probabilistic approach. 274 

 Soil Type* Distribution Mean CoV (%) Min Max 

Percent Passing 
d = 2 mm (%) 

UPS 

Truncated Normal 

28.6 37.4 11.5 49.3 

COR 71.5 11.3 48.5 84.2 

DOS 23.2 40.0 11.5 43.2 

Percent Passing 
d = 80 µm (%) 

UPS 

Truncated Normal

12.6 52.6 2.2 23.2 

COR 51.6 17.8 32.0 71.6

DOS 8.6 65.8 1.11 22.0 

Percent Passing 
d = 2 µm (%) 

UPS 

Truncated Normal 

7.4 67.2 0.9 15.8 

COR 39.9 41.1 12.0 71.5 

DOS 4.7 74 0.3 13.1 

Percent Passing 
d = 0.2 µm (%) 

UPS 

Truncated Normal 

1.0 67 0.09 2.1 

COR 5.6 48.1 1.2 10.9 

DOS 0.6 73.6 0.00 1.7 

Coefficient α
UPS&DOS  0.194    

COR  0.238    

Coefficient n 
UPS&DOS 1.441

COR  1.332    

Coefficient m 
UPS&DOS  0.306    

COR  0.249    

Anisotropy coefficient 
𝑟 =  𝐾 𝐾⁄  

UPS&DOS 
Truncated Normal 

2‡ 50.0 1 15 

COR 5 50.0 1 15 

* UPS&DOS: Coarse sands (shoulder materials); COR: Sandy silt (core material)  ‡ Gray-colored italic values: non measured values. 275 

Finally, this treatment permitted performing the random sampling of a grain size 276 

distribution curve corresponding to the materials composing the three zones of the studied 277 
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structure. By applying random sampling to the passing percentages relating to each of the 278 

diameters and by conforming to the increasing slope of the curve, it was possible to build a set 279 

of grain size distribution curves for the materials of each zone. Fig. 5 shows the bands in 280 

which these curves could be sampled. 281 

 282 

Fig. 5. Bands obtained for the random sampling of GSDC for the materials of each zone 283 

(UPS, DOS and COR). 284 

Secondly, a specific surface 𝑆_ is estimated based on the liquid limit with the empirical 285 

relation developed by Chapuis and Aubertin (2003). Regarding the liquid limit, Table 1 shows 286 

that they were only measured for a very small number of samples for each type of soil in the 287 

case study. However, theirs values were relatively homogeneous. It is assumed that the liquid 288 

limit could be represented for each soil (UPS&DOS and COR), here again by a truncated 289 

normal distribution whose statistical characteristics are presented in Table 1. 290 

The two values of specific surface 𝑆_  and 𝑆_ obtained were then weighted as a 291 

function of the fraction of fines 𝑝 corresponding to the passing percentages for a diameter of 292 

0.2 µm. This limit corresponds to the physical limit separating the granular phase from the 293 

colloidal phase (Pilot et al., 1970). 294 
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4.3 Geostatistical analysis of compaction control measurements 295 

At this stage, the saturated permeability of the materials composing the earth dam could be 296 

randomly modelled from the available data as a random variable. Its spatial variability within 297 

the earth dam can be obtained from that of the dry density, which is measured layer by layer 298 

by the compaction controls performed during its construction. In this case study, a large 299 

number of these measures were available and most of them were clearly located in space, 300 

thereby enabling a geostatistical analysis (cf. section 3). 301 

A geostatistical analysis was then performed on the density measures of each zone of the 302 

dam (UPS, COR and DOS). The experimental variograms were calculated in the horizontal 303 

and vertical directions through the cross-section of the dam. A variographic model was then 304 

fitted to the six (3 zones × 2 directions) calculated experimental variograms. The exponential 305 

model was chosen from the models analyzed by associating a nugget effect. Fig. 6 shows the 306 

experimental variogram calculated for the downstream shoulder (DOS) in the horizontal and 307 

vertical directions, as well as the theoretical variograms fitted to them. 308 

309 
Fig. 6. Experimental variograms in the horizontal (left) and vertical (right) directions for the 310 

downstream shoulder (DOS). 311 
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The fitted model could be used to calculate the range of each directional variogram, which 312 

can be likened to the correlation length between the measures. Table 3 details the results 313 

obtained from the geostatistical analysis. 314 

Table 3 Results of the geostatistical analysis of compaction control measurements (dry 315 

density). 316 

𝝆𝒅 (t/m3) Mean Variance 
Nugget 
effect 

Correlation 
length 𝒍𝑿 (m)

Correlation 
length 𝒍𝒁 (m)

UPS 2.00 3.5×10-3 1.6×10-3 78.1 7.8 

COR 1.83 3.6×10-3 8.6×10-4 13.0 1.5 

DOS 2.05 2.8×10-3 1.0×10-3 4.9 1.9 

 317 

The correlation lengths in the horizontal direction (X) are significantly longer than in the 318 

vertical direction (Z). A more important continuity appears in UPS with longer correlation 319 

lengths of about 80 m horizontally and 10 m vertically. This lower variability could be 320 

explained by a better selection of material composing the UPS and to particular attention 321 

being made to the construction of this zone of the dam. 322 

The nugget effect corresponded to about half the variance for the upstream shoulder (UPS) 323 

and to a slight lower fraction for the downstream shoulder (DOS) and the core (COR). The 324 

nugget effect can be attributed to the mixture of the materials during their excavation from the 325 

borrow pits. In this case, it is considered as a microstructure whose scale is less than the 326 

sampling step. 327 

4.4 Random field of permeability modelling  328 

The results of the geostatistical analysis were then used to simulate a random field of dry 329 

density. An exponential correlation function was used. Gaussian random fields of dry density 330 

were generated for each of the zones of the dam (UPS, COR and DOS) on the basis of means, 331 

standard deviations and correlation lengths calculated from the distributions of compaction 332 

control measures described in previous section. The simulation was performed using directly 333 
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the turning bands method with an internal generator of the finite element code Cast3M, which 334 

is briefly presented in the next section. 335 

Once the random field of dry density is generated over the nodes of the finite element mesh 336 

of the structure, Eq. (5) is used to transform the dry density random field into the permeability 337 

random field. The specific surface is then modelled as a random variable according to the 338 

methodology described in the previous subsection. 339 

Fig. 7 illustrates one realization of a random field of permeability obtained using the 340 

procedure explained above. 341 

 342 

Fig. 7. Example of realization of a random field of permeability (in m/s). 343 

5 NUMERICAL CALCULATIONS OF THE PORE WATER PRESSURE AND 344 
RESULTS 345 

5.1 Deterministic analysis results 346 

The deterministic seepage analysis is done using the FE code Cast3M. This code allows 347 

the integration of user-developed procedures which is highly beneficial for probabilistic 348 

analysis. 349 

Thus, before considering the probabilistic model, it was necessary to verify that the 350 

developed hydraulic model based on FEM gave acceptable results during a deterministic 351 

seepage calculation in which the permeability was considered constant. This is here done with 352 

the commercial seepage analysis software SEEP/W (GeoStudio). 353 
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The values of the vertical permeability chosen for each of the materials corresponded to 354 

orders of magnitude of permeabilities measured in the different zones, with values of 5×10-355 

9 m.s-1 for the core, 5×10-6 m.s-1 for the upstream shoulder and 5×10-5 m.s-1 for the 356 

downstream shoulder, respectively. Anisotropy coefficients of 2 and 5 are respectively taken 357 

for the shoulders material (UPS and DOS) and the core material (COR). Regarding the 358 

foundation, the permeability considered was taken as equal to 1×10-6 m.s-1. A sensitivity 359 

analysis showed that a variation of this value with a factor from 1 to 10 influenced slightly the 360 

phreatic surface. Regarding the drain, a value of 1×10-4 m.s-1 was taken, corresponding to the 361 

permeability of a coarse material. In this application, an unsaturated behavior of the materials 362 

was considered with the Van Genuchten model described by Eqs. (2) and (3). The 363 

deterministic values of the parameters 𝛼 and 𝑛 are listed in Table 2. These values are obtained 364 

from the available GSDC using the methodology described by Gupta and Larson (1979). Here 365 

again, a sensibility analysis was performed to show that the location of the phreatic surface is 366 

not significantly influenced by the range of values of 𝛼 and 𝑛 obtained from the GSDC. 367 

The geometry used in the hydraulic model is presented in Fig. 8. The meshing of the 368 

structure and the foundation was composed of 12 666 triangular elements. Each element is 369 

composed of 7 nodes: three arranged at the corners of the element, three in the center of the 370 

faces and one on the center of the element.371

 372 

Fig. 8. Deterministic analysis – Pore water pressures field (Cast3M). 373 
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The upstream boundary condition corresponds to the normal water level of the reservoir. 374 

The results obtained from the deterministic analysis are shown in Fig. 8. The pressure profiles 375 

plotted in Fig. 9 confirm that the results obtained from model developed with Cast3M are 376 

very similar to those obtained using SEEP/W, which permitted validating the FE model. 377 

 378 

Fig. 9. Deterministic analysis – Comparison of Cast3M/SEEP pressure profiles. 379 

5.2 Monte-Carlo simulation results 380 

In this application, the reliability open-source software OpenTURNS is used to perform the 381 

MCS from the FE model developed with Cast3M. 382 

Firstly, the grain size distribution curve and the liquid limit of the two materials are 383 

randomly generated with OpenTURNS. The specific surfaces 𝑆_
  and 𝑆_

  and the 384 

fraction of fines 𝑝 are calculated using the sampled values. The weighted specific surfaces of 385 

the shoulder and core materials could then been computed. 386 

Secondly, a realization of the random field of dry density is generated with FE code 387 

Cast3M. Then, this random field is coupled with the weighted specific surface values to 388 

deduce the random field of permeability. 389 



22 

Concerning the anisotropy, the data available in the case study did not permit using a 390 

random procedure to characterize the anisotropy coefficients of the materials. In order to 391 

consider a significant range of uncertainty, these coefficients are therefore represented by 392 

truncated normal distributions as described in Table 2. The lower limit of these distributions is 393 

1 in order to ensure that the horizontal permeability is always higher than the vertical 394 

permeability. The upper limit is chosen to avoid excessive contrasts between these two 395 

permeabilities, according to the literature (Smith and Konrad, 2011; Leroueil et al., 2002). 396 

The flow equation is resolved by the FE model and a pore-water pressure field is obtained. 397 

The pressures calculated at the same locations that the pressure cells on the real structure are 398 

extracted to be compared to the monitoring measurements made in the field. The coordinates 399 

of the phreatic surfaces are also obtained. 400 

5000 simulations are performed in this study. Convergence of the statistics (mean and 401 

standard deviation) of pore water pressure is obtained on each location of the pressure cells. 402 

Fig. 10 shows the convergence for the pore water pressure computed on cell PX/2. 403 

 404 
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Fig. 10. Convergence of the mean and the standard deviation of the pore water pressure 405 

calculated at cell PX/2. a. Mean vs. number of simulations. b. Standard deviation vs. number 406 

of simulations. 407 

5.3 Comparison of pore water pressure modelling VS monitoring data 408 

Fig. 11 shows the distribution of phreatic surfaces obtained as the outcome of the MCS. 409 

The blue dashed line represents the mean phreatic surface, whereas the blue area illustrates 410 

the ranges of variation of the phreatic surfaces between two lines representing the percentiles 411 

at 5% and 95% of the modelled distribution. Finally, gray dashed lines represent the extrema 412 

of the distribution of phreatic surfaces. 413 

 414 

Fig. 11. Distribution of the phreatic surfaces as model outputs. 415 

Fig. 12 represents the statistical properties (mean and standard deviation) of pore pressures 416 

obtained by Monte-Carlo simulations. A sample of pore pressures is calculated on each node 417 

of the mesh. Fig. 12 is obtained by computing the mean and the standard deviation of each of 418 

these samples. 419 
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 420 

Fig. 12. Mean and standard deviation of pore water pressures obtained by Monte-Carlo 421 

simulations. 422 

Finally, Fig. 13 allows the comparison between measured and calculated distributions of 423 

pore water pressures on the different cells in representing theirs means and the percentiles at 424 

5% and 95%. The distributions of the measured pressures on cells PX/Y correspond to the 425 

aggregation of the measurements realized on the three monitoring profiles when the height of 426 

the reservoir was close to its normal operating level, in order to be consistent with the 427 

boundary conditions of the model. The blue color is dedicated to the measured values whereas 428 

the red color is specific to the calculated values. 429 
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 430 

Fig. 13. Comparison between measured (monitoring) and calculated (model) distributions. 431 

6 DISCUSSION 432 

6.1 Discussion on probabilistic modelling of pore water pressures 433 

A probabilistic modelling for representing the spatial variability of pore water pressure was 434 

carried out in this study for the case of an existing earth dam. 435 

The probabilistic modelling of pore water pressures implemented for this case study uses a 436 

large number of soil properties data available on the dam (including numerous compaction 437 

control measures). In the probabilistic methodologies available in the literature, probability 438 

laws are fitted to data when the latter are considered, but in the more usual case, they are 439 

taken arbitrarily from reference sources. The implemented procedure makes use of both the 440 

available data stemming from abundant measures performed during construction, and design 441 

data from the laboratory. This article shows that it is possible to give a relatively consistent 442 

probabilistic modelling of the pore water pressures in an earth dam with soil properties dataset 443 

available on the structure. 444 
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The quantity of soil properties data available on the dam considered nonetheless influences 445 

the quality of the results obtained using the probabilistic approach. The internal spatial 446 

variability of the earth dam can be evaluated by parameters subject to a large number of 447 

measures in the field, as in the case of soil compaction control measures. For the other 448 

parameters measured (liquid limit, grain size characteristics, etc.), the values available are 449 

often relatively rare, which makes statistical quantification difficult. 450 

The probabilistic modelling of pore water pressures implemented on this case study does 451 

not directly involve the variables of interest (i.e. the permeability of the materials), because 452 

they are not available in enough quantities to perform a geostatistical analysis. Therefore, the 453 

use of empirical relations is required to evaluate these variables of interest on the basis of 454 

variables measured in the field, for which numerous data can be supplied. For example, in the 455 

case study considered here, the assumption made on the estimation of the specific surface 456 

provided consistent values but they were not validated by precise measures performed in the 457 

laboratory by gas adsorption or with compounds like methylene blue (Konrad and Gabezas, 458 

2008), since these tests are rarely carried out in earth dam projects. Besides, the use of 459 

empirical relations, as the Kozeny-Carman equation described by Eq. (5), involves errors due 460 

to transformation uncertainty and this issue has not been broached in this article. Taking into 461 

account the uncertainties inherent to model errors is therefore a possible path for this research 462 

work, on the basis of the work proposed by (Phoon and Kulhawy, 1999) for example.  463 

Another hypothesis is made about the choice of the autocorrelation function used to model 464 

the spatial variability. In our case, if Gaussian or spherical models are chosen instead of the 465 

exponential model, the vertical and horizontal autocorrelation lengths will be respectively 466 

equal to 𝑙= 6.7 m or 4.7 m and 𝑙= 1.6 m or 1.2 m instead to 𝑙= 4.9 m and 𝑙= 1.9 m in the 467 

exponential case. These results from different autocorrelation functions are of the same order468

of magnitude and these differences could slightly affect the pore pressures obtained. A large 469 
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amount of data is necessary to obtain relevant variograms which will give the best 470 

autocorrelation function to be used by fitting different models. 471 

Finally, the use of truncated distribution may be questioned. This hypothesis is made in 472 

this specific case in order to be as much as possible within the variation range of each 473 

parameter. However, this choice may have an impact on the results. More calculations are 474 

needed to evaluate this influence. Indeed, in this article, the implemented methodology 475 

prevails over the results. 476 

6.2 Discussion on the results 477 

As seen on Fig. 11, the variation of the modelled phreatic surfaces is logical: the mean 478 

phreatic surface corresponds to the one expected on this type of dam. The variation area 479 

between the 5% and 95% percentiles (colored in blue) is relatively narrow and stays 480 

consistent with the permeability variation. The fluctuation is logically larger into the core of 481 

the dam rather than into the downstream shoulder because of the drainage system which tends 482 

to concentrate the phreatic surfaces. 483 

Fig. 12a shows that the mean field of pore pressures obtained after Monte-Carlo 484 

simulations is, as expected, close to the deterministic one (see. Fig. 8). Fig. 12b gives 485 

interesting information about the spatial variability of pore water pressures within the dam, 486 

expressed in standard deviations. The areas of highest variability of pore water pressures (i.e., 487 

with the highest standard deviations) are mostly located on the upper part of the core, where 488 

the phreatic surfaces are the more fluctuant, as shown by Fig. 11. This is due to the gradient of 489 

hydraulic conductivity between the upstream shoulder and the core which can be important or 490 

not, depending on the values of hydraulic conductivities obtained during the simulations. The 491 

standard deviation values decrease towards the edges with boundary conditions (where 492 



28 

logically the standard deviation becomes zero) as well as towards the downstream shoulder of 493 

the dam where the phreatic surfaces are lowered by the drains. 494 

The variations observed in the pore water pressures calculated from the probabilistic model 495 

depended on the MCS performed on the liquid limits and the grain size distribution curves for 496 

the three materials specific to each zone of the dam. These simulations provided values of 497 

specific surfaces of the grains and then hydraulic conductivities in order to calculate the pore 498 

water pressure field. Despite the uncertainties brought by the procedure, the results obtained 499 

for the case study after completing the probabilistic modelling of pore water pressures are 500 

globally consistent with the monitoring measurements recorded for the structure, as illustrated 501 

by Fig. 13. This comparison is here made only to show that the probabilistic modelling gives 502 

the same order of magnitude of pore water pressure than that could be observed when 503 

monitoring the dam. Indeed, the variability of the measured pore pressure is due to several 504 

factors like inherent variability, climatic conditions, measurement protocol, local effects 505 

around the cell, etc. These uncertainties are not taken into account in the probabilistic 506 

modelling and the uncertainties relative to measured and calculated datasets are so different.  507 

The means of the pore water pressure distributions resulting from the model were slightly 508 

higher than those stemming from the monitoring measures (excluding cell PX/3). The 509 

distributions obtained by the model appeared moreover less spread than those measured when 510 

monitoring the dam. Apart from two cells (PX/1 and PX/5), the variation ranges of the 511 

calculated distributions of pore water pressures are globally included into those measured. 512 

The difference observed on cells PX/1 and PX/5 can be explained by: the possible 513 

malfunction of the pressure cells, and their location into the fill. For PX/5, the cells of the 514 

three monitoring profiles give incoherent measurements. Indeed, on the three cells, the means 515 

of the measured pressures are below the laying elevations of the cells. As for cell PX/1, this 516 

cell is located into the foundation beneath the horizontal drain: the modelled pore water 517 
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pressure at this point is more affected by the hypothesis made on the permeability of the 518 

foundation than on the seepage itself. 519 

7 CONCLUSIONS 520 

This article presents a probabilistic approach for modelling the spatial variability of the 521 

pore water pressure of a case study of earth dam. In this approach, the spatial variability of the 522 

permeability of the materials is evaluated from statistical and geostatistical analyzes of 523 

available soil properties data. Its originality consists in basing the entire probabilistic process 524 

on the data measured in the field. 525 

The spatial variability of the permeability was determined using the physical parameters of 526 

the materials modelled as random variables and using the spatial variability of dry density 527 

measured for the structure during compaction controls. 528 

A finite element hydraulic model of the dam studied was developed using the FE code 529 

Cast3M to calculate the pore water pressure field on the basis of the hydraulic conductivity 530 

random field obtained after treating the available data. MCS were then performed to evaluate 531 

the spatial variability of the pore water pressure field. 532 

The probabilistic analysis gives distributions of pore water pressure and phreatic surfaces. 533 

These distributions were compared to those of the monitoring measures performed on the dam 534 

in the case study. The probabilistic analysis gives the pressures and phreatic water surfaces 535 

within a range of variation in agreement with the field measurements. 536 

Improvements to this probabilistic approach can be considered. Indeed, the errors of the 537 

model can be integrated in a permeability evaluation process to take into account uncertainties 538 

linked to the calculation hypotheses. Otherwise, the methodology implemented on the case 539 
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study could also be adapted to a large number of earth dams as a function of the type and 540 

number of data available. 541 

Finally, this work is part of a wider study aimed in coupling hydraulic calculations with 542 

those of the mechanical stability to determine the reliability of the structure. In this 543 

perspective, the mechanical model will integrate the pore-water pressure field obtained 544 

according to the approach described in this article. 545 

AKNOWLEGMENTS 546 

The authors gratefully acknowledge the engineers of the Compagnie d’Aménagement des 547 

Coteaux de Gascogne (CAGC) for having graciously supplied the monitoring data of the dam 548 

studied in this article. Irstea and Clermont-Auvergne University are also thanked for funding. 549 

REFERENCES 550 

Bergado DT, Anderson LR. Stochastic analysis of pore pressure uncertainty for the551
probabilistic assessment of the safety of earth slopes. Soils Found, 1985; 25(2):87-105. 552 

Castelier E. Estimation of a permeability field from piezometric head measurements (in 553 
French). PhD Thesis, Ecole des Mines de Paris, France; 1995. 554 

Chapuis RP, Legare PP. A simple method for determining the surface area of fine aggregates 555 
and fillers in bituminous mixtures. Effects of aggregates and mineral fillers on asphalt mixture556
performance. ASTM STP 1992; 1147:177-86. 557 

Chapuis RP, Aubertin M. On the use of the Kozeny Carman equation to predict the hydraulic 558 
conductivity of soils. Can Geotech J 2003; 40(3):616-28. 559 

Chapuis RP. Predicting the saturated hydraulic conductivity of soils: a review. B  Eng Geol 560 
Environ 2012; 71(3):401-34, doi: 10.1007/s10064-012-0418-7.561

Cho SE. Probabilistic analysis of seepage that considers the spatial variability of permeability 562 
for an embankment on soil foundation. Eng Geol 2012; 133-134:30-39, doi: 563 
10.1016/j.enggeo.2012.02.013. 564 

Dolinar B. Predicting the hydraulic conductivity of saturated clays using plasticity-value 565 
correlations. Appl Clay Sci 2009; 45(1-2):90-4, doi: 10.1016/j.clay.2009.04.001.566

Fenton GA, Griffiths DV. Statistics of block conductivity through a simple bounded 567 
stochastic medium. Water Resour Res 1993; 29(6):1825-30. 568 

Fenton GA, Griffiths DV. Statistics of free surface flow through stochastic earth dam. J 569 
Geotech Eng 1996; 122(6):427-36. 570 



31 

Fenton GA, Griffiths DV. Extreme hydraulic gradient statistics in stochastic earth dam. J 571 
Geotech Geoenviron Eng 1997; 123(11):995-1000.  572 

Fooladmand HR. Estimating soil specific surface area using the summation of the number of 573 
spherical particles and geometric mean particle-size diameter. Afr J Agric Res 2011; 574 
6(7):1758-62. 575 

Foster M, Fell R, Spannagle M. The statistics of embankment dam failures and accidents. Can 576 
Geotech J  2000; 37(5):1000-24. 577 

Fredlund DG, Xing A. Equations for the soil-water characteristic curve. Can Geotech J 1994; 578 
31(4):521-32. 579 

Fredlund MD, Fredlund DG, Wilson GW. An equation to represent grain-size distribution. 580 
Can Geotech J 2000; 37(4):817-27. 581 

Fredlund DG, Houston SL. Protocol for the assessment of unsaturated soil properties in 582 
geotechnical engineering practice. Can Geotech J 2009; 46(6):694-707. 583 

Griffiths DV, Fenton GA. Three-dimensional seepage through spatially random soil. J 584 
Geotech Geoenviron Eng 1997; 123(2):153-60. 585 

Gui S, Zhang R, Turner JP, Xue X. Probabilistic slope stability analysis with stochastic soil 586 
hydraulic conductivity. J Geotech Geoenviron Eng 2000; 126(1):1-9. 587 

Gupta SC, Larson WE. Estimating soil water retention characteristics from particle size 588 
distribution, organic matter percent, and bulk density. Water Resour Res 1979; 15(6):1633-35 589 

Huang J, Griffiths DV, Fenton GA. Probabilistic analysis of coupled soil consolidation. J 590 
Geotech Geoenviron Eng 2010; 136(3):417-430. 591 

Konrad JM, Gabezas FAV. Caractérisation des particules fines d'un matériau granulaire de 592 
fondation par l'essai au bleu de méthylène: GCT-2008-01; Québec: Université Laval; 2008. 593 

Leroueil S, Le Bihan JP, Sebaihi S, Alicescu V. Hydraulic conductivity of compacted tills 594 
from northern Quebec. Can Geotech J 2002, 39(5):1039-49. 595 

Li DQ, Jiang SH, Cao ZJ, Zhou W, Zhou CB, Zhang LM. A multiple response-surface 596 
method for slope reliability analysis considering spatial variability of soil properties. Eng 597 
Geol 2015; 187:60-72. 598 

Liu LL, Cheng YM, Jiang SH, Zhang SH, Wang XM, Wu ZH. Effects of spatial 599 
autocorrelation structure of permeability on seepage through an embankment on a soil 600 
foundation. Comput Geotech 2017; 87:62-75.  601 

Masekanya JP. Stabilité des pentes et saturation partielle-Etude expérimentale et modélisation 602 
numérique. PhD Thesis, Liège University, Belgium, 2008. 603 

Phoon K.K., Kulhawy FH. Evaluation of geotechnical property variability. Can Geotech J, 604 
1999; 36(4):625–39. 605 

Pilot G, Amar S, Le Roux A. Relations entre la composition minéralogique et les 606 
caractéristiques mécaniques de quelques sols argileux français. Bull. de Liaison de 607 
Laboratoires Routiers 1970, Ponts et Chaussées, 43.  608 

Richards LA. Capillary conduction of liquids through porous mediums. J Appl Phys 1931; 609 
1(5):318-33. 610 

Sivakumar Babu GL, Murthy DS. Reliability analysis of unsaturated soil slopes. J Geotech 611 
Geoenviron Eng 2005; 131(11):1423-28. 612 



32 

Smith M, Konrad JM. Assessing hydraulic conductivities of a compacted dam core using 613 
geostatistical analysis of construction control data. Can Geotech J 2011; 48(9):1314-27, doi: 614 
10.1139/t11-038. 615 

Srivastava A, Babu GLS, Haldar S. Influence of spatial variability of permeability property on 616 
steady state seepage flow and slope stability analysis. Eng Geol 2010; 110(3-4):93-101, doi: 617 
10.1016/j.enggeo.2009.11.006. 618 

Sudret B, Der Kiureghian A. Stochastic finite element methods and reliability: a state-of-the-619 
art report: Department of Civil and Environmental Engineering, University of California; 620 
2000. 621 

Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of 622 
unsaturated soils. Soil Sci Soc Am J 1980; 44(5):892-98.  623 

Vanmarcke EH. Random Fields: Analysis and Synthesis, MIT Press, Cambridge, MA; 1983. 624 

Yang HQ, Zhang L, Li DQ. Efficient method for probabilistic estimation of spatially varied 625 
hydraulic properties in a soil slope based on field response: a Bayesian approach. Comput 626 
Geotech 2018; 102:262-272.  627 

Zheng D, Huang J, Li DQ, Kelly R, Sloan SW. Embankment prediction using testing data and 628 
monitored behaviour: A Bayesian updating approach. Comput Geotech 2018; 93:150-162.  629 


