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SUMMARY 29 

1. In-stream nitrate removal capacity may be used as a proxy for the ecosystem 30 

service of water quality regulation. It is well known that this natural function is driven 31 

by abiotic and biotic factors in running water environments. With regard to biotic 32 

drivers, most of the literature focuses on the microbial community influences, but 33 

there has been very little emphasis on the relationship with the benthic 34 

macroinvertebrate community. Since this community feeds on microbial assemblages 35 

(autotrophic and/or heterotrophic biofilms) that live on the streambed and in the 36 

hyporheic zone of the river, macroinvertebrates also have the potential to influence 37 

nitrate removal via its influences on microbiological processes.  38 

2. The objective of this study was to examine the potential relationship between the 39 

macroinvertebrate communities and nitrate removal. A dataset of in-stream nitrate 40 

removal rates measured in nine third-order streams was analysed. The simultaneous 41 

influences of abiotic (hydromorphological, physical and chemical characteristics) and 42 

biotic (biofilm and macroinvertebrate) drivers were examined and together explained 43 

56 % of the in-stream nitrate removal variance. An analysis of the independent 44 

contributions of each driver showed that abiotic drivers (e.g. ammonium, dissolved 45 

organic carbon, temperature and transient zone) contributed 40 % of this nitrate 46 

removal variance, while the macroinvertebrate community contributed 39 %. 47 

3. The potential relationship between macroinvertebrates and nitrate removal was 48 

subsequently explored using trait-based approaches of the macroinvertebrate 49 

community. This method allows for the selection of trait modalities assuming a 50 

top-down control of microbial communities by macroinvertebrates, with in-stream 51 

abiotic conditions correlated to nitrate removal (assuming that environmental 52 

conditions affect macroinvertebrate community composition). 53 

4. The main trait modalities positively correlated with nitrate removal were scraper 54 

(feeding habit), flagstones/boulders/cobbles/pebbles (substrate preference), crawler 55 

and interstitial (locomotion) and detritus (food). The main modalities negatively 56 
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correlated with nitrate removal were silt and mud with microphytes (as substrate 57 

preference), and with fine sediment with microorganisms, and dead animals (as food 58 

sources). These results agreed with the hypothesis of top-down control and enhanced 59 

understanding of the influence of hydromorphological factors on nitrate removal. 60 

5. This study highlights the involvement of the macroinvertebrate community in 61 

in-stream nitrate processing, and demonstrates the usefulness of applying a functional 62 

approach to explaining relationships between biodiversity and ecosystem function. 63 

 64 

Introduction 65 

Anthropogenic loading of nitrogen into freshwater ecosystems has increased by 66 

more than one order of magnitude over the past two decades (Vitousek 1997; 67 

Galloway et al., 2004; Ruehl et al., 2007). Streams and rivers are important sinks for 68 

nitrogen (Grizzetti et al., 2015), and about half of the nitrogen input is ultimately 69 

removed by streams and rivers before flowing into coastal waters (Galloway et al., 70 

2004). In-stream nitrogen retention is the set of processes by which nitrogen is stored, 71 

transformed and removed from the water column of streams and rivers or stored in 72 

biota (Alexander et al., 2000). This retention contributes to the regulation of 73 

downstream nitrogen exports. Nitrate is one of the major forms of dissolved inorganic 74 

nitrogen in rivers. Nitrate retention may be used as an ecosystem service indicator of 75 

water quality regulation (Millennium Ecosystem Assessment 2005; Cardinale, 2011).  76 

A number of processes are involved in in-stream nitrate retention, including 77 

abiotic processes such as hydrologic storage (Triska et al., 1989 a, b) and biotic 78 

retention (Gücker et al., 2006). Biotic nitrate removal includes assimilatory processes 79 

via uptake by aquatic plants, algae and fungi, and dissimilatory processes such as 80 

denitrification and dissimilatory nitrate reduction to ammonium (DNRA) (Ranalli and 81 

Macalady, 2010). These biotic processes are driven by microbial assemblages 82 

(bacteria, fungi and algae) as well as by macrophytes in rivers (Pusch et al., 1998; 83 
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Sabater et al., 2002; Battin et al., 2003; Simon et al., 2005; Ensign & Doyle, 2005; 84 

Teissier et al., 2007; Von Schiller et al., 2008). In running-water ecosystems, these 85 

processes mainly occur on the streambed and in the hyporheic zone (Triska et al., 86 

1989a; b; Fellows et al., 2001; Marti et al., 2004; Fischer, 2005; Argerich et al., 87 

2011). Nitrate removal can be estimated by conducting a pulse addition experiment 88 

based on the nutrient spiralling concept (Newbold et al., 1981; Stream Solute 89 

Workshop, 1990).  90 

In-stream biotic nitrate removal is controlled by abiotic factors such as nutrient 91 

concentrations (Bernot & Dodds, 2005; Mulholland et al., 2008) and the 92 

hydromorphological features of the stream channel and the hyporheic zone (Gücker & 93 

Boëchat, 2004; Ensign & Doyle, 2006). In-stream nitrate removal by biota is known to 94 

be regulated by the bottom-up control of resources (such as carbon and nutrient 95 

availability) and environmental conditions (Dodds et al., 2002; Roberts & Mulholland, 96 

2007). However, biotic nitrate removal could also be regulated by top-down controls 97 

from consumers, such as macroinvertebrate communities feeding on biofilms 98 

(Wallace & Webster, 1996; Mermillod-Blondin et al., 2003; Covich et al., 2004; 99 

Karlson et al., 2007; Stief, 2013). This top-down control has rarely been explored as a 100 

biotic driver of in-stream nitrate removal (Lawrence et al., 2002; Sabater et al., 2002; 101 

Law, 2011). The top-down control due to macroinvertebrate grazing could allow the 102 

continuous growth of the microbial community in the hyporheic sediment and thus 103 

help prevent clogging of the porous media of sediments where nitrogen 104 

transformations take place. This influence should favour the transfer of surface water 105 

and nutrients into the hyporheic zone and hence promote the interaction between 106 

nitrate and microbial assemblages responsible for nitrate reduction 107 

(Mermillod-Blondin et al., 2000, 2003; Mermillod-Blondin & Rosenberg, 2006; 108 

Mermillod-Blondin, 2011; Stief, 2013). Additionally, macroinvertebrate microhabitat 109 

occupancy, burrowing and bioirrigation (the flushing of burrows with overlying water 110 

by the peristaltic movements of the invertebrates) (Gerino et al., 2003; 111 
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Mermillod-Blondin et al., 2003; Schaller et al., 2014) in streambed sediments can 112 

change the physical structure of the abiotic microenvironment and modify the spatial 113 

distribution of the redox conditions in sediments (Aller. 2004; Meysman et al., 2006). 114 

The research referred to above has mainly been based on laboratory experiments, 115 

and the relationship between macroinvertebrate communities and nitrate retention in 116 

the field requires further exploration. There are two reasons why examination of the 117 

macroinvertebrate community as a potential driver of in-stream nitrate removal is 118 

warranted:  119 

(i) There is a strong association of many macroinvertebrate taxa with the streambed 120 

and hyporheic substrata, which are recognised as major sites of biogeochemical 121 

reactions in streams (Giere, 2009) 122 

(ii) the sensitivity of macroinvertebrates to in-stream environmental conditions 123 

(Rosenberg & Resh, 1993; Statzner & Bêche, 2010; Menezes et al., 2010) is likely to 124 

affect in-stream nitrate retention via the community compositions.  125 

Although taxonomy-based metrics are widely recognised as being useful as 126 

bio-indicators, they are unlikely to adequately mirror ecosystem functioning (Sandin 127 

& Solimini, 2009). Instead, a trait-based approach using multiple biological and 128 

ecological traits of organisms (e.g. mobility, feeding type, size, lifespan of aquatic 129 

macroinvertebrates) is more likely to reflect ecological processes and ecosystem 130 

functioning (Hooper et al., 2005; Bremner et al., 2006; Colas et al., 2013). This 131 

approach allows (i) a description of macroinvertebrate community responses to many 132 

abiotic and biotic stressors, (ii) a reduction in uncertainties related to seasonal effects 133 

by integrating the variations in environmental conditions over time, such as seasonal 134 

variability, and (iii) a more direct and easier detection of the mechanism by which the 135 

community composition influences the ecosystem functioning. Furthermore, the trait 136 

composition of macroinvertebrate communities is comparable across large spatial 137 

scales, and even across ecoregions harbouring communities of a different taxonomic 138 

composition (Dolédec et al., 2006; Feio et al., 2010). Consequently, there is 139 
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increasing interest in trait-based approaches to improve assessments of stream health 140 

and link diversity to ecosystem functions (e.g. McKie et al., 2008; Colas et al., 2013; 141 

2014; Frainer et al., 2014).  142 

The objective of this study was to explore the influence of both abiotic (i.e. 143 

physico-chemical and hydromorphological) and biotic (i.e. biofilm and 144 

macroinvertebrate) drivers on in-stream nitrate removal using a dataset from nine 145 

third-order streams. A variance partitioning approach was used to assess the 146 

independent contributions of biotic and abiotic drivers to nitrate removal, before 147 

focusing on the potential relationship between macroinvertebrate and biotic nitrate 148 

removal using trait-based approaches. It was hypothesised that the biological traits of 149 

macroinvertebrate communities reflect a combination of environmental conditions 150 

(examples of mobility and substrate preferences) and some functional relationships 151 

between macroinvertebrates and biofilm microbes (examples of feeding habits and 152 

food resources) that together influence the local nitrate retention rate. This 153 

information should depict the processes that are controlled by macroinvertebrate 154 

activity and related to nitrate removal according to the top-down control assumption.  155 

Methods  156 

Data collection 157 

The data were collected in situ as part of the EU-funded STREAMES project 158 

(STream REAch Management, an Expert System, 159 

http://cordis.europa.eu/project/rcn/54747_en.html). The objective of this project was 160 

to identify the relationships between in-stream nutrient retention capacity and 161 

potential biotic and abiotic factors in a set of streams in different ecoregions. The 162 

STREAMES project originally involved 11 third-order streams across seven European 163 

countries plus Israel. In each stream, several in situ experimental measurements were 164 

performed to cover contrasting hydrological conditions during 2002. 165 
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For the specific objective of the present study, only the dates on which there 166 

were simultaneous in situ records in the stream reaches of nitrate uptake and physical, 167 

chemical, hydrological, biofilm and macroinvertebrate characteristics were selected. 168 

Only reaches located upstream from wastewater treatment plants (WWTP) were 169 

chosen to avoid disturbance from local outflows into the river water. Finally, after this 170 

data selection, 27 measurements from nine streams (Fig. 1) were included in this 171 

study (see Table 1).  172 

In situ and laboratory measurements followed common procedure guidelines, 173 

ensuring comparability of all data (Gorden et al., 1992; Clesceri, 1998; Gordon et al., 174 

2004; Vellido et al., 2007; Morais et al., 2009). During each in situ study, hydrology, 175 

substrate and macroinvertebrate communities were measured in six equidistant 176 

transects (with an average transect length of 3.5 m). Three water samples were 177 

collected in each transect, immediately filtered through pre-combusted glass 178 

microfibre filters (Whatman GF/F, 0.7µm) and stored in coolers before chemical 179 

analysis. Three surface sediment samples in each transect were also collected (18 180 

samples per reach) for quantification of biofilm chlorophyll a concentration after 181 

pigment extraction from the sediment.  182 

Nitrate removal measurements 183 

Nitrate addition experiments, using the slug addition technique, were conducted 184 

to estimate the retention capacity for nitrate (NO3-
 -N) along each stream reach over a 185 

short period of time, according to the procedure of Gorden et al. (1992) and applied 186 

by Ruggiero et al. (2006) and Sánchez-Pérez et al. (2009). The estimation of the 187 

stream nutrient retention rate for NO3-
 -N were made on each sampling date with a 188 

solute addition of a known quantity of nutrient (NO3-
 -N) into the stream. 189 

Simultaneously, a conservative element (Cl-) was added as a tracer to allow 190 

downstream corrections for any dilution that may occur along the reach. Nitrate (as 191 

NaNO3 or KNO3) and the conservative tracer (as NaCl) were added at the same time 192 
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as a pulse input from a carboy in the mid-channel at the top end of the reaches. The 193 

experimental distances were calculated so as to be dependent on stream discharge (Q) 194 

(Table 1). Water samples were then collected at the downstream end of the reach, 195 

with an increase in sampling frequency during the NaCl solution passage. 196 

Concentration-time curves (mg. L-1 .s-1) of nitrate and NaCl were then used to 197 

calculate the nutrient mass retained (mg). The nutrient uptake rate at experimental 198 

level (Uexp, mg.m-2.min-1) was equal to the nutrient mass retained during the addition 199 

experiment divided by the stream bottom area A (m2) and by time duration (min). 200 

Uptake length Sw (m) was the average distance travelled by a nutrient ion before 201 

uptake, therefore estimated as: 202 

 Sw= ([Nut]b*Q)/(Uexp*w)  203 

where [Nut]b is the nutrient background concentration (mg.L-1), Q is the discharge 204 

(m3.s-1) and w (m) is the average stream width of the reach. The first-order uptake rate 205 

coefficient (Kc, m-1) was calculated by: 206 

Kc=v/Sw 207 

where v is the stream water average velocity (m, s-1). Uptake velocity (Vf, m.s-1; the 208 

vertical velocity at which nutrients move to the stream bottom) was estimated from:  209 

Vf = Kc*d 210 

where d is the mean stream depth. The gross nutrient uptake rate at ambient level (U, 211 

mg.m-2.min-1) was calculated from:  212 

U= Vf*[Nut]b   213 

(see details in Ruggiero et al., 2006). 214 

Uptake rate (U) was selected as the preferred metric for quantifying the benthic 215 

nutrient removal because it is relatively independent of nutrient concentrations and of 216 

the stream’s hydrologic characteristics.“UNO3
-
 -N” denotes the assimilation (uptake by 217 

plant and algae) and dissimilation (mainly denitrification) processes for biotic nitrate 218 

removal. It is a good indicator of variations in biotic nitrate removal and enables 219 

intra-site and inter-site comparisons (Simon et al., 2005; Ensign & Doyle, 2006).  220 
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Abiotic factors  221 

Catchment factors 222 

The catchments of the experimental reaches were characterised for total area, 223 

mean slope and percentage of land uses by means of geographic information system 224 

(GIS) data layers. These data were then combined using ArcGIS (Environmental 225 

Systems Research Institute, Redlands, CA, USA). Land uses (%) were grouped into 226 

natural areas (including forest and open land), agricultural land use (including arable 227 

and grassland) and urban areas (including towns, residential areas and industrial and 228 

commercial zones). 229 

Hydromorphological factors 230 

River depths, widths and current velocities were measured to estimate discharges 231 

according to the velocity-area method, before calculating the Froude number and 232 

Reynolds number according to Gorden et al. (1992). 233 

The Froude number (Fr) represents the relationship between inertial forces (due 234 

to downstream water movement) and gravitational forces, indicating the strength of 235 

the water current. The Reynolds number (Re) represents the relationship between 236 

inertial forces and viscosity forces, indicating the degree of turbulence in the water.  237 

The size of the transient storage zone within each reach was estimated by performing 238 

independent additions of conservative tracers (NaCl) (Stream Solute Workshop, 1990). 239 

The following two parameters were included to describe the normalised storage zone 240 

area (As ⁄A), with the transient storage zone cross-section (As, m
2) that accounts for 241 

regions of the stream ecosystem where water moves at a slower velocity than the 242 

average surface velocity. In this estimation, A is the surface of the cross-sectional area 243 

of the stream main channel. The variable was used to estimate the relative importance, 244 

among physical factors that might influence solute transport and retention in stream 245 

reaches, of zones with slow water velocities, such as the hyporheic zone and pools. The 246 
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hydraulic retention factor (HRF, s.m-1) is the transient storage zone (As, m
2) divided by 247 

the uptake length of water (Sw) and this variable reflects the potential transient storage 248 

zone effect (Morrice et al., 1997). 249 

Substrate factors 250 

Substrate size composition was assessed by eye and categorised into percentages 251 

of boulder (>40 cm), rock (20 to 40 cm), cobble (6 to 20 cm), pebble (2 to 6 cm), 252 

gravel (0.2 to 2 cm), sand (0.006 to 20 mm) and silt and mud (< 0.006 mm) (Gorden 253 

et al., 1992). 254 

Physicochemical factors 255 

Water samples were collected and filtered through pre-ashed Whatman GF/F 256 

glass fibre filters. Nutrient concentrations, including ammonium (NH4
+-N), nitrate 257 

(NO3
--N), phosphate (PO4

3--P) and dissolved organic carbon (DOC) concentrations, 258 

were analysed using high-performance ionic chromatography with a DIONEX system. 259 

Temperature, dissolved oxygen, conductivity and pH were measured in situ using 260 

multi-parameter probes (YSI 6920). 261 

Biotic factors 262 

Biofilm biomass  263 

Autotrophic biofilm samples from a known area of substrate were collected. The 264 

type of device used to collect the biofilm samples depended on the size and type of 265 

the dominant stream substrata covered by biofilm. Samples were frozen and stored in 266 

the dark before estimating chlorophyll a concentration following standard protocols 267 

(Steinman et al., 1996). In the laboratory, samples were extracted in 90 % acetone 268 

over 24 h at 4 °C, sonicated or homogenised for 5 min and then centrifuged for 10 269 

min. Chlorophyll a concentrations were then determined by spectrophotometry.  270 
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Macroinvertebrate community 271 

Benthic macroinvertebrates were sampled using a Surber net with a 200 µm 272 

mesh size. Six equidistant transects per reach were investigated in sampling locations 273 

following standard requirements in terms of substrate type selection (Verneaux et al., 274 

1982; Compin & Céréghino, 2003). At each location two replicates were taken with 275 

respect to microhabitat distributions. Samples were preserved in 96 % ethanol before 276 

taxonomic identification. Macroinvertebrate individuals were identified and counted 277 

using stereo dissecting microscopes. The family taxonomic level was used for most 278 

organisms, except for some groups identified at a different taxonomic level (such as 279 

Chironomidae and Oligochaeta at super family level). Taxa densities (individuals.m-2) 280 

were calculated by taking into account the sampled area for each sample. Rare taxa (n 281 

< 3 individuals in all records) were excluded from the analysis (Colas et al., 2013). 282 

Densities were then log (x+1) transformed to stabilise variances and normalise the 283 

dataset, producing a ‘taxa by measurement’ matrix (27 measurements x 71 taxa). 284 

Macroinvertebrate functional trait profile 285 

The biological and ecological traits of benthic macroinvertebrates were used to 286 

determine the functional structure of the assemblage (Tachet 2000; Statzner et al., 287 

2001). Each trait was described by a set of modalities. Four biological traits including 288 

morphology (‘maximum size’), feeding behaviour (including ‘food’ sources and 289 

‘feeding habits’) and locomotion (‘locomotion and substrate association’) and one 290 

ecological trait (‘substrate preference’) were chosen (following Usseglio-Polatera et 291 

al., 2000; Castella et al. 2012; Gallardo et al., 2014; Szöcs et al., 2014; see Table 2) in 292 

order to reflect the possible influence of macroinvertebrates on nitrate removal by 293 

biofilm. The biological trait ‘feeding habit’ includes eight modalities describing the 294 

regular functional feeding groups and was intended to indicate the top-down effects of 295 

macroinvertebrates on the biofilm with the modalities of scrapers for surface biofilm 296 
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and deposit feeders for interstitial biofilm (Statzner & Bêche, 2010). The ‘food’ 297 

modalities supply additional information about the feeding habits, with the modalities 298 

‘fine sediment and micro-organisms’ being associated with deposit feeders that ingest 299 

sediment. The modalities of microphytes are related to microscopic algae, such as 300 

diatoms, that can live in surface biofilm covering large or fine particles and may be 301 

ingested by scrapers or deposit feeders respectively. The ‘locomotion and substrate 302 

association’ trait was selected to reveal the type of movement of macroinvertebrates 303 

above the streambed or inside the hyporheic sediment. The ‘body size’ trait was also 304 

included since large animals can have a more significant effect on ecosystem function 305 

than smaller ones (Basset et al., 2004; Badosa et al., 2006; Brucet et al., 2006; Gascón 306 

et al., 2009). The ecological trait ‘substrate preference’ was included to encompass 307 

potential microhabitat occupancy by macroinvertebrates. All these macroinvertebrate 308 

traits have already been reported as responding to chemical and hydromorphological 309 

conditions (Kearney et al., 2010, Colas et al., 2014).  310 

Statistics 311 

Several centred-normed principal component analyses (PCA) were performed for 312 

each group of abiotic factors (i.e. catchment properties, physicochemical 313 

characteristics of water, substrate size and hydrological characteristics). The 314 

coordinates of each measurement from the main axis (i.e. axes 1 and 2) were extracted 315 

and used as synthetic variables for each group of abiotic factors. Correspondence 316 

analysis (CA) was used for log-transformed densities of macroinvertebrate taxa. 317 

Similarly, the coordinates of each measurement from the main axis of CA were 318 

extracted and used as synthetic variables of macroinvertebrate assemblages.  319 

Generalised linear models (GLMs) with the ‘Gaussian family’ followed by a 320 

stepwise procedure based on the Akaike information criterion (AIC) were carried out 321 

to assess the abiotic and biotic drivers that were significantly correlated with UNO3
--N. 322 

The coordinates of all measurements from axes 1 and 2 of each PCA or CA were 323 
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combined as predictors. A total of 11 predictors were used (i.e. Catch 1+ Catch 2 + 324 

Phy-che 1+ Phy-che 2+ Sub 1 + Sub 2 + Hydro 1 +Hydro 2+ Biofilm Chl-a + 325 

M.Inv1+ M.Inv2; see Table 3 and Fig. 2 for details). UNO3
--N as a dependent variable 326 

was previously log-transformed to fulfil normality.  327 

The D2 of each model was calculated to account for the amount of deviance 328 

according to the formula proposed by Guisan and Zimmermann (2000) (Eq. (1)): 329 

D2 = (model$null · deviance − model$deviance )/model$null · deviance (1) 330 

The D2 of GLMs is the equivalent of the R-squared value of linear models that 331 

measures the proportion of variation accounted for by the model. Model checking 332 

included homogeneity of variance and normal distribution of model residuals.  333 

The relative importance of each predictor in the best-fitted model was then 334 

examined using hierarchical partitioning (HP). A randomisation test, which was based 335 

on the upper 0.95 confidence limit, was then run on the hierarchical partitioning 336 

results to provide statistical significance (Nally, 2002). HP determined the 337 

independent contribution of each predictor to the response variable and separated it 338 

from the joint contribution resulting from the correlation with other variables. This 339 

enabled a ranking of the importance of the covariates in explaining the response 340 

variable independently of the other covariates.  341 

For trait-based analyses, the mean functional trait profiles of the communities 342 

were calculated from taxonomic data for each measurement using fuzzy-coded 343 

biological and ecological traits (Chevenet et al., 1994) described for each taxon from 344 

the literature. Fuzzy coding uses positive scores (between 0 and 3 or 5) to describe the 345 

affinity of a species for different modalities of a given trait, accounting for phenotypic 346 

and ecological preference variability among taxa. The fuzzy coding procedure helps 347 

to extract different types and levels of information available for different taxa 348 

(Chevenet et al., 1994), addressing spatial or temporal differences in the traits of a 349 

given taxon (Statzner & Bêche, 2010). The mean weighted (by log-transformed 350 

densities) trait profiles of community assemblages were then calculated for each 351 
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measurement and expressed as relative density distributions of trait categories within 352 

the assemblages (Thioulouse et al., 1997). Partial least squares (PLS) regressions 353 

(Abdi, 2003) were then carried out to identify macroinvertebrate trait modalities that 354 

significantly predicted UNO3
--N. PLS was particularly suitable for this case because (i) 355 

there were few replicates (n=27) and several predictors (n=21) and (ii) many 356 

predictors showed high collinearity (Carrascal et al., 2009). PLS reduced a set of 357 

predictors to a few components that had maximum covariance with the response 358 

variable. These components were defined as a linear combination of original variables, 359 

so the original multi-dimensionality was reduced to a smaller number of components. 360 

PLS analysis generated variable importance in projection (VIP) values, as well as the 361 

variance (R2) explained by each of the two components. VIP values reflect the 362 

importance of each predicted variable of the model, with VIP > 0.7 indicating 363 

important predictors (Eriksson, 1999).  364 

For all steps in the statistical analysis, ‘ade’ (Chessel et al., 2012), ‘MASS’, 365 

‘hier.part’ (Walsh et al., 2013) and PLS (Mevik & Wehrens, 2007) packages in R 366 

software (R development Core Team, 2011) were used. 367 

Results 368 

Nitrate uptake rate (UNO3
--N) and environmental characteristics 369 

Taking all the measurements into consideration, UNO3
--N ranged from 0.04 to 10.75 370 

mg.m-2.min-1, with a mean value equal to 1.64 ± 2.39 mg.m-2.min-1 (standard 371 

deviation) (Table 1). The catchment size of the investigated streams ranged from 11.2 372 

to 480.0 km2 (Table 1). The average catchment slope was 10 %. The studied 373 

catchments included wide ranges of natural (20-87 %) and agricultural (11-79 %) land 374 

uses. Urban land use accounted for less than 20 % in all the catchments (Table 1). The 375 

first axis of the PCA performed on catchment variables accounted for 44 % of the 376 

variance and indicated a gradient from natural to agriculture-dominated catchments. 377 
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The second axis (34 % of the variance) indicated a gradient from urban to 378 

agriculture-dominated catchments (Table 3). 379 

Concentrations (min - max) of phosphate (0.003-8.2 mg PO4
3--P. L-1), nitrate 380 

(0.05-8.98 mg NO3
--N. L-1), dissolved organic carbon (0.55-21.9 mg C. L-1) and 381 

ammonium (0.003-0.18 mg NH4
+-N. L-1) spanned wide ranges. Water temperature 382 

and conductivity ranged from 5.2 to 22.0 °C and 164 to 1258 uS.cm-1 respectively 383 

(Table 2). The first axis (Phy-che 1) of the PCA, performed on the water 384 

physicochemical variables and explaining 37 % of the variance, was negatively 385 

related to NO3
--N, PO4

3--P and conductivity. The second axis (Phy-che 2 explaining 386 

24 % of the variance) was positively related to NH4
+-N (0.7), DOC (0.7) and 387 

temperature (0.5) (Table 3). 388 

Depth (0.02-0.32 m), velocity (0.02-0.50 m3. s-1) and Froude (0.03-0.43) varied 389 

by over an order of magnitude between the studied streams. Discharges (0.001-0.267 390 

m3. s-1), As ⁄A ratios (0.04-63.70), HRF (0.4-975.0) and Reynolds (358-73077) 391 

spanned wide ranges (Table 1). The first axis of the hydrological PCA (Hydro 1) was 392 

representative (49 % of the variability) of a gradient of hydromorphological features 393 

(Reynolds, velocity, Q and Froude). The second axis (Hydro 2), accounting for 24 % 394 

of the variability, was negatively related with the transient storage zone variables (i.e. 395 

HRF and As/A) (Table 3). 396 

 The substrata in these streams had different compositions (Table 1), as depicted 397 

by the substrate size PCA. The first axis, which accounted for 40 % of the total 398 

substrate variability, indicated the gradient of sediment granulometry (Table 3).  399 

The third components in each PCA accounted for less than 20 % of the variance 400 

and are not shown here. 401 

Large variations in the concentration of biofilm chlorophyll a were observed 402 

between the streams (1 - 484 mg. m-2) (Table 1). 403 
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Taxonomic structure of macroinvertebrate assemblages  404 

Macroinvertebrate densities, richness and diversity (Shannon index) exhibited 405 

wide variations between the different streams and within the same stream (Table 1). 406 

The first (M. Inv 1) and second (M. Inv 2) axes of the correspondence analysis 407 

performed on macroinvertebrate densities explained 15 % and 12 % respectively of 408 

the variation in the taxonomic composition of the streams (Fig. 2).  409 

Relationship between UNO3
--N and abiotic and biotic drivers 410 

The components listed in Table 4 were selected as the best predictors of UNO3
--N 411 

by the step-wise GLM analysis. These results indicate that biotic and abiotic factors 412 

together explained 56 % of the total deviance of UNO3
--N distribution. Hierarchical 413 

partitioning (HP) allowed the identification of the independent influences of these 414 

seven selected components on UNO3
--N and simultaneously ranked these influences. 415 

The best predictors were the abiotic factors (Hydro 2 and Phy-che 2) and the biotic 416 

factors (M.Inv 2 and M.Inv 1), with independent contributions varying from 23 % to 417 

16 % of UNO3
--N variance.  418 

For the two abiotic factors, Phy-che 2 was positively related with UNO3
--N so that 419 

higher values of UNO3
--N were found in sites with a high temperature and high 420 

concentrations of NH4
+-N and DOC (with the positive loading on Phy-che 2, Table 3). 421 

Hydro 2 was negatively related with UNO3
--N and PCA results (Table 3), which 422 

indicated that Hydro 2 was negatively loaded by As/A and HRT. As a result, UNO3
--N 423 

was higher with higher values of As/A and HRT.  424 

 For the biotic factors, M.Inv 2 had a significant positive correlation with UNO3
--N. 425 

The following taxa had positive loadings of M.Inv 2: e.g. Helophoridae, 426 

Odontoceridae, Crambidae Aeshnidae, Stratiomyidae and Atyidae (Fig. 2). The GLM 427 

result therefore indicated a positive relationship between UNO3
--N and the occurrence of 428 

these taxa. M.Inv 1 had a significant negative correlation with UNO3
--N. Since M.Inv 1 429 
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also had a negative loading in the CA results with some other taxa, it was concluded 430 

that the combination of these two negative correlations led to positive influences. 431 

Thus the higher UNO3
--N was positively related with the occurrence of taxa such as 432 

Culicidae, Mesoveliidae, Nemouridae, Limnephilidae and Planorbidae. These results 433 

suggested the occurrence of a particular influence of some macroinvertebrate taxa on 434 

UNO3
--N intensity. At the same time, it also showed the relative contribution of the 435 

macroinvertebrate community in the nitrate retention capacities estimated by UNO3
--N, 436 

with an influence comparable to that of the abiotic drivers (39 % and 40 % 437 

respectively).  438 

Relationship between UNO3
--N and macroinvertebrate trait modalities 439 

In the outcome of the PLS regression model, the first extracted component 440 

accounted for 42 % of the variance of the macroinvertebrate functional profile and 441 

contributed to 28 % of the variation in UNO3
--N (Table 5).  442 

The modalities identified as having a significant positive association with UNO3
--N 443 

were coarse sediment (i.e. flagstones/boulders/cobbles/pebbles) for the substrate 444 

preference trait, crawler and ‘interstitial’ for the locomotion trait, detritus and 445 

microphytes for the food trait, and scraper for the feeding habit trait. The association of 446 

these modalities is typical of a riverbed with large particle size sediment that forms the 447 

hyporheic zone and allows interstitial invertebrates to colonise this macroporous zone. 448 

Along with crawlers and scrapers preferentially live on the surface of this coarse 449 

sediment where microphytes make up part of the autotrophic biofilm. The modalities 450 

exhibiting a negative association with UNO3
--N were silt or mud with microphytes 451 

(substrate preference trait) and fine sediment and detritus (food trait). The association 452 

of these modalities describes the habitat of riverbeds or stream beds with low 453 

hydrodynamism, where fine sediment accumulates with microphytobenthos in the 454 

upper layers and detritus make up part of the deposits.    455 

The second component accounted for 36 % of the macroinvertebrate functional 456 
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profile variance. This is not shown here since it selected similar important modalities as 457 

predictors of UNO3
--N as the first component. This second component explained 20 % of 458 

the UNO3
--N variation.  459 

Modalities of the ‘maximum potential body size’ trait were not selected as 460 

important predictors of UNO3
--N (VIP < 0.7) and were consequently excluded from the 461 

final PLS results. 462 

These PLS results identified the macroinvertebrate trait modalities, related 463 

positively and negatively to UNO3
--N, that allow identification of the community 464 

functional profile and substrate composition that have significant influences on nitrate 465 

removal and thus on the nitrate removal efficiency of the water quality service. 466 

Discussion 467 

The values of nitrate removal rates in the present stream study fall within ranges 468 

that have previously been reported (Mulholland et al., 2008). This includes streams 469 

with mainly natural land uses and agriculture and few urban areas, which are the same 470 

three land-use types that occur in the watersheds of the reaches in the present study. 471 

The focus here was on predictors of gross nitrate uptake rate over a short period, and 472 

thus the present study did not consider the specific effect of macroinvertebrate N 473 

excretion on it nor the detailed influence of varying macroinvertebrate traits on N 474 

release and net uptake rates.  475 

Relative contribution of biotic and abiotic drivers to nitrate removal 476 

The slug addition method was used to quantify the in situ short-term nitrate 477 

removal. It includes all the possible in-stream microbial processes that occurred 478 

during the experimental period, such as short-term assimilative uptake and permanent 479 

removal by denitrification and anammox. UNO3
--N was found to be strongly regulated 480 

by the combination of physicochemical and hydrological factors and by some 481 

macroinvertebrate groups. Previous studies of UNO3
--N drivers have demonstrated the 482 
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influence of nitrate concentration, temperature and discharge, as well as the biotic 483 

influence of microbial community composition and biomass (Simon et al., 2005; 484 

Mulholland et al., 2008; Von Schiller et al., 2008). However, none of these studies have 485 

combined both types of biotic and abiotic influences together in the same analyses. 486 

Furthermore, the biotic drivers generally considered the biofilm and macrophyte 487 

composition of the biotic assemblages, without including macroinvertebrate 488 

community composition. This study showed an additional independent and significant 489 

contribution by the macroinvertebrate community to the microbial processes at the 490 

source of the nitrate removal, as quantified by UNO3
--N. This offers a complementary 491 

insight into the organisms possibly involved in relationships with the microbial 492 

community responsible for nitrogen processing.  493 

Abiotic drivers of nitrate removal 494 

DOC and NH4
+ concentrations and temperature were positively correlated with 495 

UNO3
--N. DOC is an important source of carbon for stream heterotrophs and occasionally 496 

for autotrophs (Bernhardt & Likens, 2011). Previous research has demonstrated how 497 

DOC concentrations significantly control nitrate removal, in particular through the 498 

in-stream denitrification process (Meyer et al., 2005; Gücker & Pusch, 2006; Peyrard et 499 

al., 2011). High water temperature may accelerate metabolic processes and 500 

consequently nitrate removal (Ortiz et al., 2005).  501 

Nitrate concentration was not selected as a predictor of UNO3
--N by the final model, 502 

probably due to the high NO3
- concentrations in this study (2.2 mg.L-1 on average). 503 

Under high nitrate concentrations, the microbial pool may become saturated with N, 504 

resulting in decreased N-absorbing capacity (Garcia-Ruiz et al., 1998; Kemp & Dodds, 505 

2002; Arango et al., 2008; Mulholland et al., 2008). The nitrate concentrations in some 506 

reaches in this study might therefore have been too high to allow the microbial 507 

communities to sequester additional nutrients.   508 

A wide range (0.04-63.7) and relatively high values of As/A (mean= 17.5) were 509 

Page 20 of 51Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

Macroinvertebrate traits and in-stream nitrate removal 

observed in this study across different streams. As/A and HRF were found to positively 510 

influence UNO3
--N. The transient storage zone has been widely regarded as an important 511 

geomorphological feature that has a positive influence on UNO3
--N of streams (Valett et 512 

al., 1996; Gücker & Boëchat, 2004; Hall et al., 2009). The spiralling process, which 513 

characterises the water flow in the transient zone, facilitates the contact of reactive 514 

solutes with a high biotic capacity for biogeochemical processing (Mulholland & 515 

DeAngelis, 2000; Runkel, 2007). The significant contribution of transient storage to N 516 

removal has also been demonstrated by modelling efforts at reach and watershed scales 517 

(Stewart et al., 2011). In contrast, several studies reported no relationship between 518 

solute removal and transient storage parameters (e.g. Webster et al., 2003; Niyogi et al., 519 

2004; Meyer et al., 2005), probably due to the relatively low values and small range of 520 

transient storage in these studies.  521 

Biotic drivers of nitrate removal 522 

No significant independent influence of Chl-a on UNO3
--N was found, although 523 

autotrophic biofilm organisms (macro- and microphytes) were likely to contribute to 524 

this process. In the same studied reaches, heterotrophic biofilm biomass supported by 525 

large transient storage zones may also suggest considerable heterotrophic 526 

contributions to the nitrate retention process (Marmonier et al. 2012). Thus, it is 527 

difficult to detect a probable relationship between surface and autotrophic biofilm 528 

biomass alone and nitrate removal.  529 

Hierarchical partitioning helped to identify the significant independent influences 530 

of the macroinvertebrate community on UNO3
--N in these streams. Previous laboratory 531 

experiments (Mermillod-Blondin et al., 2000; 2003; 2002; Mermillod-Blondin & 532 

Rosenberg, 2006; Navel et al., 2011) have already demonstrated a large decrease in 533 

nitrate concentrations with sediment depth in down-welling flow-through columns 534 

colonised with Oligochaetes or other interstitial macroinvertebrates. The fact that this 535 

depletion was more accentuated in the columns with macroinvertebrates than in the 536 
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columns without fauna suggests the possible enhancement of microbial denitrification 537 

under the influence of macroinvertebrate activities. These laboratory experiments 538 

using intact macroinvertebrate and microbial assemblages from natural streams 539 

sediments may reflect the set of processes that occur in the stream and involve 540 

interactions between the two assemblages (Marshall & Hall, 2004). These previous 541 

demonstrations allow the examination of the role of macroinvertebrates as possible 542 

ecological engineers exerting top-down control on nitrate removal. Stief (2013) 543 

explains the effect of benthic macrofauna on nitrate removal by animal-microbe 544 

interactions due to sediment burrowing, grazing or symbiosis. 545 

In the present study, which was undertaken in natural conditions, the direction of 546 

the relationship between macroinvertebrate communities and nitrate removal is hard 547 

to demonstrate and may occur simultaneously in several directions. The selected trait 548 

profile of the macroinvertebrate community could provide a better understanding of 549 

the links that relate the macroinvertebrate community to nitrate removal. These links 550 

are summarised in a conceptual model shown in Figure 3 and imply the following: 551 

(1) a direct influence of macroinvertebrates on nitrate removal via macroinvertebrate 552 

feeding on autotrophic and heterotrophic biofilms, promoting top-down control on the 553 

microbial community  554 

(2) an indirect physical effect by the activities of macroinvertebrates dwelling on or in  555 

the sediments, limiting sediment clogging and changing the abiotic interstitial 556 

microenvironment  557 

(3) an indirect link due to some abiotic conditions (including water quality) that may 558 

influence both macroinvertebrate composition and nitrate removal.   559 

This last indirect linkage could be the result of the initial improvement in water 560 

quality due to natural water quality regulation. Furthermore, macroinvertebrate 561 

diversity and nitrate removal may have been controlled by the same abiotic drivers, 562 

such as discharge and pollutants, that lead to confounding effects on retention 563 

processes and the related biodiversity.   564 
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Relationships between macroinvertebrate trait profile and nitrate 565 

removal  566 

The macroinvertebrate community positively associated with UNO3
--N was 567 

characterised by relatively high densities of organisms that live in coarse sediment 568 

and exhibit locomotion as crawlers or through interstitial movements in their habitats. 569 

In these communities, the organisms positively related to nitrate removal were mainly 570 

scrapers using autotrophic biofilm on the surface of the sediment, but also consuming 571 

the heterotrophic biofilm and detritus of the interstitial matrix in the sediment column 572 

as their main foods (Merritt & Cummins, 2007). These traits are illustrated by the 573 

gastropod Physella with a positive loading on M.Inv 2 and nemourid stoneflies with a 574 

negative loading on M.Inv 1. These results revealed a potential top-down control of 575 

scraper macroinvertebrates on biofilm microbes. Indeed, scrapers primarily shear 576 

attached algae from autotrophic biofilms, the main food source of macroinvertebrate 577 

communities identified as microphytes. Furthermore the potential association of fine 578 

and coarse detritus with all types of biofilm agreed with the occurrence of such food 579 

sources in the diet of these macroinvertebrates. Both types of autotrophic and 580 

heterotrophic biofilm consumption by macroinvertebrates were likely to influence 581 

UNO3
--N, although it was difficult to draw conclusions about the main direction of the 582 

cross-community relationships between microbial and macro-invertebrate 583 

communities that probably exist in both directions: a top-down control of the 584 

macroinvertebrates on the biomass and composition of the microbial community and, 585 

inversely, a bottom-up effect of available microbial food for the macroinvertebrates. 586 

Many arguments can be found to support the indirect contribution of scrapers on 587 

nitrate removal by biofilm through the top-down aspect. Indeed, scraping can build 588 

and maintain galleries in the biofilms matrix itself (Stief, 2013), as well as in the 589 

interstitial sediments, and maintain the microbial diversity mosaic 590 

(Mermillod-Blondin et al., 2000; 2003; Law, 2011). Feeding on the biofilm 591 
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components also prevents the biofilm from clogging the sediments’ interstitial pores 592 

and fuels the productivity and activity of microbes by favouring nutrient penetration 593 

in the whole sediment column (Covich et al., 2004; Stief, 2013). It has been reported 594 

that, to some degree, scraping effects may stimulate biofilm regrowth with a high 595 

productivity and metabolism (Gasol et al., 2002; Cheever et al., 2011). This differs 596 

from some studies in which intense scraping has been shown to substantially decrease 597 

biofilm biomass and its nitrate removal capacity (Sabater et al., 2002; Law, 2011).  598 

The macroinvertebrate assemblages positively related with nitrate removal prefer 599 

to live in coarse sediment instead of silt and muddy substrates. In contrast with coarse 600 

sediment, fine sandy sediment and mud was negatively correlated with nitrate 601 

removal. This can be explained by the fact that low hydraulic conductivity limits 602 

opportunities for water exchange and is a supplementary source of interstitial clogging 603 

(Morrice et al., 1997). Moreover, coarse sediment suggests strong hydrological 604 

connections between running surface water and interstitial water (advection-dominate 605 

system). This allows macroinvertebrate colonisation at depth in the sediment column 606 

and enhances the zone of biological influences (Gerino et al., 2003; 607 

Mermillod-Blondin & Rosenberg, 2006; Piscart et al., 2011).  608 

 The locomotion trait modality associated with interstitial macroinvertebrates 609 

living in the hyporheic zone was also selected as an important predictor of UNO3
--N. 610 

This agreed with previous studies, showing that hyporheic macroinvertebrate 611 

assemblages have small but significant effects on nutrient and organic matter 612 

processing by changing flow patterns in the interstitial water and associated solute 613 

concentrations (Mermillod-Blondin et al., 2000; 2001; Mermillod-Blondin & Gérino, 614 

2002; Marshall & Hall, 2004). 615 

In summary, the results of this functional trait approach suggest a possible 616 

relationship between nitrate removal and macroinvertebrates via their top-down 617 

feeding control effect on biofilms as well as their dwelling activities in the hyporheic 618 

zone that influence microbial capacities. The substrate preferences of 619 
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macroinvertebrate communities are also confirmed to be macro-porous sediment, 620 

where interstitial invertebrate communities and the heterotrophic biofilms may 621 

contribute to the UNO3
--N processes, such as in the hyporheic zone. Moreover, these 622 

results provide additional information about the influence of hydromorphological 623 

factors on UNO3
--N. For example, a higher UNO3

--N was observed in sites with higher 624 

densities of macroinvertebrates that preferred coarse substrates, potentially suggesting 625 

that a higher UNO3
--N was indirectly associated with coarse sediments in these streams.  626 

Conclusions and perspectives 627 

 Both abiotic and biotic factors were examined in this study as the main drivers 628 

simultaneously of in-stream biotic nitrate removal quantified as UNO3
--N in in situ 629 

conditions. Physicochemical factors (e.g. NH4
+, DOC and temperature) and 630 

hydromorphological factors (transient zone) as abiotic drivers and macroinvertebrate 631 

assemblages as biotic drivers had both significant and independent influences on 632 

UNO3
--N. These results suggest that further studies of the macroinvertebrate 633 

communities, in addition to other compartments of the riverine biota, may be 634 

necessary to explain the variability of in situ nitrate retention. The development of 635 

experimental studies in laboratory conditions has previously been required to explore 636 

the different hypotheses and links behind the functional relationship between 637 

invertebrate diversity and nutrient retention. The present trait-based approach 638 

highlighted the potential contribution of macroinvertebrates, such as biofilm grazers, 639 

to in situ microbial nitrate removal. In particular, invertebrates with specific trait 640 

modalities, such as scraping and living in coarse sediment, are likely to make the 641 

greatest contribution to this process.  642 

The present study suggests that in-stream biodiversity, which contributes to the 643 

processes underpinning the ecosystem service of water purification, should not only 644 

be confined to the microbial community, but should be seen as a consortium of 645 

ecological engineers comprising microbes and macroinvertebrates. Hyporheic zones 646 
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with coarse sediments would appear to be key habitats for biodiversity and the 647 

biogeochemical processes that support nitrate removal as a regulating ecosystem 648 

service in streams. 649 
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Tables 1009 

Table 1. Values of UNO3
--N and the main characteristics of the study sites, including 1010 

catchment, physicochemical characteristics, substrate, hydrology and biofilm factors. 1011 

† Percent data were normalised prior to analysis by arcsine √ (x) transformation.  1012 

* For the denitrification rate, only 15 out of 27 measurements had data records. This is 1013 

shown here as a reference, but was not used in the subsequent analysis    1014 

       9 streams (n=27) 

       Minimum Mean Maximum Standard 
deviation 

Nitrate uptake 

rates 

UNO3
--N 

(mg.m-2.min-1) 
0.04 1.64 10.75 2.39 

Catchment†  Catchment area 
(Km2) 

11.2 53.2 480.0 88.3 

Slope (%) 0.0 11 24 10 
Natural (%) 20.0 51.7 87.4 21.7 
Agricultural (%) 10.8 45.6 79.0 20.4 
Urban (%) 0.0 2.7 20.0 3.9 

Physicochemical 

characteristics 

NH4
+-N  

(mg N.l-1) 
0.003 0.039 0.18 0.048 

NO3
--N  

(mg N.l-1) 
0.05 2.66 8.98 2.60 

PO4
3--P  

(mg P.l-1) 
0.003 0.112 0.590 0.163 

DOC   
(mg C.l-1) 

0.68 3.40 7.75 2.04 

Conductivity 
(uS.cm-1） 

163.9 646.4 1257.5 323.6 

Temperature 
(°C) 

5.20 13.19 22.30 4.13 

Substrate size† Boulders (%) 0 23.5 64.8 18.1 
Cobbles (%) 0 17.0 42.5 13.0 
Pebbles (%) 0 14.1 35.0 11.4 
Gravel (%) 0 29.0 81.5 21.6 
Sand (%) 0 10.1 45.0 11.9 
Silt and mud 
(%) 

0 6.3 76.5 14.8 

Hydrological Depth (m) 0.02 0.11 0.32 0.07 
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characteristics As/A 0.04 17.45 63.70 17.37 
HRF 0.39 188.16 974.96 220.57 
Discharge  
(Q, m3.s-1) 

0.001 0.063 0.267 0.073 

Velocity (m.s-1) 0.02 0.17 0.50 0.13 
Froude 0.03 0.16 0.43 0.10 
Reynolds 358 17526 73077 18763 

Biofilm Chl-a (mg. m-2) 1.00 67.0 483.8 96.4 
Denitrification 

rate * 
Macroinvertebr

ates 

mg N2O.m2.min-1 

 
Total density 

(number of 

individuals per m2) 

0 
 
548 

1.17 
 
9205 

4.02 
 
64912 

1.29 
 
12955 

 Richness 5 17 38 8 
 Shannon index 0.35 1.24 2.5 0.58 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 
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Table 2. Selected trait modalities (26 modalities of four biological traits and one 1032 

ecological trait) and the rationale (see detailed rationale in the text). Concerning the 1033 

modality trade-off, some rare or similar modalities were pooled together into the same 1034 

trait (as example ‘≤0.25 cm’ and ‘>0.25-0.05 cm’ were pooled in ‘≤0.5 cm’) 1035 

Trait Modalities Rationale 

Feeding 
habits 

Deposit feeder  
Shredder  
Scraper  
Filter-feeder  
Predator 

Indicating top-down controls of 
invertebrates on 
micro-organisms (mostly inside 
autotrophic and heterotrophic 
biofilm) or other invertebrates.   

Food Fine sediments and microorganisms  
Fine detritus (< 1mm)   
Coarse detritus (> 1mm) 
Microphytes  
Macrophytes  
Dead animal (>= 1mm) 
Microinvertebrates 
macroinvertebrates + vertebrates 

Indicating main food sources 
and adding complementary 
information on the top-down 
control mechanism. Fine and 
coarse detritus, as FROM and 
CPOM, are grouped together 
with “dead animal” under the 
general term of detritus in the 
text. Microphytes are 
microscopic algae that grow at 
the top of the sediment.  

Maximum 
potential 
size 

≤0.5 cm 
> 0.5-1 cm 
> 1-2 cm 
> 2-4 cm 
> 4 cm 

The size for consideration 
corresponds to the final step in 
the life cycle when the 
invertebrate is still in the aquatic 
environment 

Locomotion 
and 
substrate 
association 

Crawler  
Burrower 
  
Interstitial 

Describes dwelling activities: 
crawler moves slowly with thin 
legs, more likely on the surface 
of the sediment, while burrowers 
dig permanent galleries and live 
there with bioirrigation.  
Interstitial refers to one 
organism that lives and moves in 
the interstitial medium of the 
sediment without digging 
permanent galleries.  

Substrate 
(preference) 

Flagstones/boulders/cobbles/pebbles 
Gravel  
Sand  

Indicating microhabitat 
compositions, with microphytes 
being living microscopic algae 
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Silt and mud 
Macrophytes  
Microphytes  
Organic detritus/litter 

that develop on the surface of 
the sediment layer as 
microphytobenthos when 
associated with fine sediment or 
biofilm when associated with 
coarser particles such as 
boulders.  

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 
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Table 3. Results of principal component analysis (PCA) for catchment, 1059 

physicochemical characteristics, substrate and hydrological factors. The percentage 1060 

values on each axis represent the amount of variance explained by each PCA 1061 

component. Only important factors are included (loading >0.5). See Table 1 for a 1062 

more detailed description of the factors included in each PCA 1063 

Extracted 
component 

Code 
Variance 
explained  

Positive (+)  
loading 

Negative (-)  
loading 

Catchment 
axis 1 

Catch 1 44 % Agricultural 
(0.8), 
urban (0.7), 
catchment area 
(0.5) 

Natural (-0.9) 

Catchment 
axis 2 

Catch 2 34 % Catchment 
area (0.7), 
urban (0.5) 

Slope (-0.6), 
agricultural (-0.6) 

     
Physicochemi-
cal axis 1 

Phy-che 1 37 % Temperature 
(0.5) 

NO3
--N (-0.9),  

PO4
3--N (-0.8), 

conductivity (-0,6) 
     
Physicochemi-
cal axis 2 

Phy-che 2 24 % NH4
+-N (0.7), 

DOC (0.7), 
Temperature 
(0.5) 

 

     
Substrata  
axis 1 

Sub 1 40 % Silt (0.9), 
Sand and mud  
(0.8) 
 

Cobbles (-0.8)                                     

Substrata  
axis 2 
 

Sub 2 24 % Pebbles (0.6) Gravel (-0.9) 

Hydrological 
axis 1 

Hydro 1 49 %   Reynolds (-1.0), 
velocity (-0.9), 
Q (-0.8),  
Froude (-0.8) 

      
Hydrological 
axis 2 

Hydro 2 24 %   HRF(-0.9),                                       
As/A (-0.9) 
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Table 4. Step-GLM coefficients and P-values for seven components selected from 11 1064 

initial components resulting from PCA and CA analyses. This outcome model is based 1065 

on the most representative components that were used as independent variables and on 1066 

UNO3
--N as a dependent variable. D2 is the total variance of UNO3

--N explained by this 1067 

model. Hierarchical partitioning quantifies the independent influences of each selected 1068 

component on UNO3
--N; * indicates statistically significant influences of HP results 1069 

 1070 

Selected 

components 

Step-GLMs 

D
2
=0.56 (n=27) 

Hierarchical partitioning 

Estimate P value Independent influence (%) 

Phy-che 2 0.54 0.03 18 * 

Hydro 1 -0.19 >0.1 5 

Hydro 2 -0.45 0.05 22 * 

Biofilm Chl-a -2.61 0.06 14 

M.Inv 1 -1.0 0.02 16 * 

M.Inv 2 0.81 0.07 23 * 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

Page 43 of 51 Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

 43 

 

Table 5. Loadings of variable importance in projection (VIP) of the first component 1083 

extracted from partial least squares (PLS) regression analysis performed for the nine 1084 

streams (n=27), with UNO3
--N as dependent variables and selected modalities of 1085 

macroinvertebrates as independent variables (i.e. 21 modalities of four traits). 1086 

Y-weights correspond to loadings of UNO3
--N. VIP >0.7 are in bold. Italicised values 1087 

were correlated positively with UNO3
--N 1088 

  Loading VIP Component 1 

 (R
2
 =42%) 

Y-weights    +0.28   

Traits Variables 

Selected modalities 
  

Substrate 

(preference) 
Flagstones/boulders/cobbles/pebbles 0.89 0.20 

Gravel 0.31 0.07 

Silt and mud 0.93 -0.20 

Sand 0.30 0.06 

Macrophytes 0.55 0.12 

Microphytes 0.76 -0.17 

Organic detritus/litter 0.13 -0.03 

Locomotion 

and 

substrate 

association 

Crawler 2.15 0.47 

Burrower 0.34 0.07 

Interstitial 2.11 0.46 

Food Fine sediment +microorganism 1.12 -0.24 

Detritus  0.92 0.20 

Microphytes 1.17 0.25 

Macrophytes 0.19 0.04 

Dead animals 2.07 -0.45 

Microinvertebrates, macro- 
invertebrates and vertebrates 

0.10 0.02 

Feeding 

habits 
Deposit feeder 0.42 0.09 

Shredder 0.63 -0.14 

Scraper 0.74 0.16 

Filter-feeder 0.42 0.09 

Predator 0.06 0.01 

 1089 
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Figures 1090 

 1091 

Figure 1. The locations of the nine streams investigated 1092 

 1093 

  1094 

Figure 2. Factorial plane of correspondence analysis (CA) performed on 1095 

log-transformed densities. Only species with loadings > 0.5 are shown in this figure.  1096 
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The black circle represents taxa with loadings below 0.5 in axes 1 and 2. Grey 1097 

rectangles group together different taxa with similar loadings. The inset box shows the 1098 

scales of the axes. See detail in the appendix 1099 

 1100 

 1101 

 1102 

 1103 

Figure 3. Schematic of the potential links between macroinvertebrates and in-stream 1104 

nitrate removal (the lines in grey are explored in this study) 1105 

  1106 
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Appendix 1107 

Table 1A. Results of the correspondence analysis (CA) for macroinvertebrate species; 1108 

the first component of CA explained 15 % of the variance and the second component 1109 

of CA explained 12 % of the variance; only important species are included 1110 

(loading >0.5) 1111 

Order Family Genus/species 
Axis 1 

loading 

Diptera Culicidae   -2.40 
Hemiptera Mesoveliidae   -2.40 
Diptera Dixidae    -2.26 
Gastropod Planorbidae Gyraulus sp. -2.19 
Isopod Asellidae   -1.93 
Hemiptera Notonectidae   -1.74 
Plecoptera Nemouridae   -1.55 
Plecoptera Taeniopterygidae   -1.53 
Gastropod Physidae Physa sp. -1.20 
Trichoptera Limnephilidae   -1.04 
Coleoptera Dytiscidae   -0.93 
Diptera Tipulidae Tipula -0.86 
Amphipod Gammaridae   -0.67 
Oligochaeta     -0.59 
Diptera Empididae   0.51 
Ephemeroptera Ephemerellidae   0.51 
Gastropod Bythinellidae   0.61 
Ephemeroptera Caenidae                         0.65 
Coleoptera Elmidae   0.67 
Trichoptera Polycentropodidae   0.88 
Coleoptera Hydrophilidae   1.14 
Nematomorpha     1.18 
Odonata Gomphidae   1.30 

Coleoptera 
Haliplidae 
(larvae) 

  1.57 

Ephemeroptera     1.63 
Trichoptera Helicopsychidae   1.73 
Diptera Tabanidae   1.73 
Ephemeroptera Polymitarcidae   1.73 
Trichoptera Ecnomidae   1.84 
Heteroptera Corixidae                 1.91 
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Order Family Genus/species 
Axis 2 

loading 

Trichoptera Helicopsychidae 
 

-2.70 
Diptera Tabanidae 

 
-2.70 

Ephemeroptera Polymitarcidae 
 

-2.70 
Trichoptera Ecnomidae 

 
-2.51 

Heteroptera Corixidae 
 

-2.38 
Diptera Culicidae 

 
-1.88 

Hemiptera Mesoveliidae 
 

-1.88 

Coleoptera 
Haliplidae 
(larvae)  

-1.63 

Diptera Dixidae 
 

-1.47 
Ephemeroptera Ephemeridae 

 
-1.45 

Gastropod Planorbidae Gyraulus sp. -1.40 
Odonata Gomphidae 

 
-1.28 

Hemiptera Notonectidae 
 

-1.27 
Amphipod Gammaridae 

 
-1.20 

Isopod Asellidae 
 

-1.14 
Nematomorpha 

  
-1.05 

Coleoptera Hydrophilidae 
 

-0.92 
Plecoptera Nemouridae 

 
-0.76 

Plecoptera Taeniopterygidae 
 

-0.73 
Trichoptera Limnephilidae 

 
-0.59 

Diptera Tipulidae Tipula -0.57 
Gastropod Lymnaeidae 

 
0.53 

Ephemeroptera Heptageniidae 
 

0.57 
Gastropod Ancylidae Ancylus sp. 0.59 
Trichoptera Hydropsychidae 

 
0.59 

Ephemeroptera Leptophlebiidae 
Leptophlebiidae 
Gen. sp. 

0.60 

Plecoptera Capniidae Capnioneura 0.61 
Diptera Rhagionidae Rhagionidae 0.62 
Turbellaria Dugesiidae Dugesia 0.62 
Gastropod Physidae Physella acuta 0.63 
Gastropod Hydrobiidae Potamopyrgus 0.64 
Trichoptera Beraeidae Beraea sp. 0.64 
Odonata Lestidae Lestes sp 0.65 
Gastropod Hydrobiidae Bythiospeum 0.66 
Plecoptera Perlodidae Perlodidae 0.67 
Odonata Cordulegasteridae Cordulegaster 0.67 
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Macroinvertebrate traits and in-stream nitrate removal 

Crustacean Atyidae 
Atyaephyra 
desmarestii 

0.67 

Hirudinea Erpobdellidae 
 

0.71 
Diptera Stratiomyidae 

 
0.75 

Lepidoptera Crambidae Cataclysta sp 0.79 
Coleoptera Hygrobiidae Hygrobia sp 0.82 
Odonata Aeshnidae Boyeria irene 0.85 

Trichoptera Odontoceridae 
Odontocerum 
albicorne 

0.90 

Coleoptera Helophoridae Helophorus sp. 0.90 
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Figure 1. The locations of the nine streams investigated  
 

297x209mm (300 x 300 DPI)  

 

 

Page 50 of 51Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

  

 

 

Figure. 2. Factorial plane of correspondence analysis (CA) performed on log-transformed densities. Only 
species with loadings > 0.5 are shown in this figure. The black circle represents taxa with loadings below 0.5 
in axes 1 and 2. Grey rectangles group different taxa with similar loadings. The inset box shows the axes 

scales. See detail in the appendix  
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Figure 3. Schematic of the potential links between macroinvertebrates and in-stream nitrate removal (the 
lines in grey are explored in this study)  
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