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Abstract Fruit load estimation at plot level before harvest is a key issue in fruit growing. To 

face this challenge, two sampling methods to estimate fruit load in a peach tree orchard were 

compared: simple random sampling (SRS) and ranked set sampling (RSS). The study was 

carried out in a peach orchard (Prunus persica cv. 'Platycarpa') covering a total area of 2.24 ha. 

Having previously sampled the plot systematically to cover the entire area (104 individual trees 

or sampling points), both sampling methods (SRS and RSS) were tested by taking samples from 

this population with varying sample sizes from N = 4 to N = 12. Since RSS requires ancillary 

information to obtain the samples (ranking mechanism), several proximal and remote sensors 
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already used or recently introduced in agriculture were assessed as data sources. A total of 14 

variables provided by 5 different sensors and platforms were considered as potential ancillary 

variables. Among them, RGB images captured by an unmanned aerial vehicle (UAV), and used 

to estimate the canopy projected area of individual trees, proved to be the best of the options. 

This was shown by the high correlation (R = 0.85) between this area and the fruit load, 

providing RSS with the UAV-based canopy projected area the lowest Coefficient of Error (CE) 

for a given tree sample size. Then, comparing relative efficiency between random sampling 

(SRS) and RSS, the latter enables more precise fruit load estimates for any of the considered 

sample sizes. Interest and opportunity of RSS can be raised from two points of view. In terms 

of confidence, RSS managed to reduce the variance of fruit load estimates by about half 

compared to SRS. Sampling errors above the 10% threshold were always produced significantly 

fewer times using RSS, regardless of the sample size. In terms of operation within the plot, 

sample size could be reduced by 50%, from N = 10 for SRS to N = 5 for RSS, and this being 

expected sampling errors less than 10% in practically 70% of the samplings performed in both 

cases. In summary, fruit growers can take advantage of the combined use of appropriate data 

(RGB images from UAV) and RSS to optimize sample sizes and operational sampling costs in 

fruit growing. 

 

Keywords Ranked set sampling · Fruit growing · Sampling efficiency · Yield estimation 

 

List of abbreviations and symbols 
DMSC Digital multispectral camera 
ECa Soil apparent electrical conductivity 
MTLS Mobile terrestrial laser scanner 
NDRE Normalized difference red edge 
NDVI Normalized difference vegetation index 
RSS Ranked set sampling 
SRS Simple random sampling 
TCA Tree canopy projected area 
TCSA Trunk cross-sectional area 
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UAV Unmanned aerial vehicle 
B Number of realizations used (B = 1000) in the bootstrap method 
CE Coefficient of Error 
𝐸"𝑌[%]' Expected yield value corresponding to the order statistic j (coincident with the order 

parameter 𝜇[%]∗ ) 
MSE Mean squared error 
N Sample size 
PR Percentage of individual realizations over the total of B = 1000 with sampling error 

*+,-+.*
+.

× 100 greater than 10% 
RE Relative efficiency 
𝑣𝑎𝑟"𝑌' Variance of the sample mean 𝑌 
𝑌[%] Ranked yield value (fruit load) corresponding to the order statistic j (𝑗 = 1, … , 𝑁) 

within a sample of size N 
𝑌< Sample mean for each of the B = 1000 realizations generated by bootstrap resampling 
𝑌. Average of the total trees sampled within the plot (or better estimate of the population 

mean 𝜇) 
1 − 𝑓 Finite population correction 

 

1. Introduction 

 

Fruit tree crops are considered high value products (Aggelopoulou et al. 2010), but they demand 

more tasks from farmers compared to arable crops. Among the tasks required in peach orchards, 

harvesting is a complex process that, necessarily done by hand, usually also needs to be finished 

in a short time window. Because of that, a large amount of labor is often needed once the quality 

standards demanded by the market have been reached (ripening of the fruit). Hence, obtaining 

a reliable yield estimate in advance would improve the logistics of the entire process (Wulfsohn 

et al. 2012), also contributing to anticipate operational costs more effectively. 

 

In perennial crops, it is known that regular patterns are adopted by planting commercial plots 

with genetically uniform plant material (Miranda et al. 2015). Therefore, it is expected to 

achieve regular growths and certain homogeneity in production and quality. From this point of 

view, making an estimate of the yield should not raise any issue. By randomly choosing a few 

trees, the estimation of yield should be quite accurate knowing the total number of trees within 

the plot. However, perennial plots are not always homogeneous and spatial variability is present 
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due to environmental factors, as it has been shown in different studies (Berman et al. 1996; 

Taylor et al. 2005; Arnó et al. 2012). Moreover, since many of the factors that affect yield (or 

fruit load) are spatial dependent, yield spatial distribution within the orchards usually presents 

patterns and is not random (Aggelopoulou et al. 2013). Under this scenario of structured 

variability with yield potential varying for each tree and for the different productive areas within 

the plot, simple random sampling (SRS) strategy may be inefficient for estimating average crop 

loading per tree. In order to fulfill fruit grower demands, yield forecast should be made by using 

5-6 sampling trees and with maximum error of 10%. Therefore, SRS may not be the best option 

since it does not take into account any spatial organization of the variable to estimate. Moreover, 

a large sample size may be needed to fulfill growers’ constraints (Carrillo et al. 2016). Only the 

simplicity to implement and understand the results of SRS would explain why this method is 

still used in agriculture in forecasting tasks. Therefore, the Precision Agriculture concept allows 

this issue to be overcome since, as a management strategy, it is about gathers, processes and 

analyzes temporal, spatial and individual data and combines it with other information to support 

management decisions according to estimated variability for improved resource use efficiency, 

productivity, quality and sustainability of agricultural production (ISPA Newsletter, 2019).  

 

Although it is fair to mention that one of the pioneering work on sampling in fruit trees was 

published in the forties (Pearce, 1944), sampling methods making use of ancillary information 

provided by high spatial resolution sensors have been proposed in recent years. Previous 

analysis of the within-field variability of such information is often key when designing the 

sampling strategy. Even spatial variability on a smaller scale has also been the option used by 

other authors. So in 1990, Monestiez et al. proposed a geostatistical approach to optimally 

sample within the trees to improve yield estimates. Wulfshon et al. (2012) discussed using 
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images to optimize sample sizes and opted for a multilevel systematic sampling to estimate the 

number of fruits reaching errors of just 10%, then extending this same method to estimate 

quality parameters (Martinez Vega et al. 2013). More recently, stratified sampling based on the 

use of auxiliary information for the spatial stratification of the sample has also shown promising 

results. Examples of this research are shown in Arnó et al. (2017) and Miranda et al. (2015, 

2018). Specifically, trees were stratified using clustered NDVI-based aerial images (NDVI-

Normalized Difference Vegetation Index), either alone or in combination with other 

information layers such as the trunk cross-sectional area (TCSA). In fact, because of the 

increasingly widespread use of remote sensing in fruit growing, there are companies that 

already offer advice for yield estimation based on the use of images in stratified sampling 

schemes. This practice manages to improve efficiency compared to random sampling, although 

sample sizes are still needed above what would be desirable. In addition, obtaining the 

representative NDVI value for an individual canopy or, even more, a manual measurement of 

the trees is not always a simple task (Fountas et al. 2011). 

 

The use of ancillary information to stratify sampling has been favored by the availability and 

rapid access to proximal and remote sensors data. Among the sources of information most used 

for this purpose, it is worth mentioning the NDVI images (Meyers and Vanden Heuvel 2014), 

the apparent electrical conductivity (ECa) of the soil (Mann et al. 2011; Arnó et al. 2017), and 

time series of yield maps provided by manual harvesting or monitored by sensors on harvesters 

(Araya et al. 2017). Other data are also available while other technologies for acquiring crop 

data have been fine-tuned. It refers to RGB and multispectral cameras (Ulzii-Orshikh et al. 

2017), mounted on terrestrial platforms or unmanned aerial vehicles (UAV), and mobile 

terrestrial laser scanners (MTLS) based on 2D LiDAR sensors (Rosell et al. 2009; Escolà et al. 
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2017), offering new possibilities for capturing canopy information from fruit trees. These 

higher resolution data allow the trees to be characterized in greater detail, but possible 

advantages of their use in sampling have not yet been verified. 

 

As already mentioned, SRS is a well-known method in agriculture. It is statistically consistent, 

but not always the most efficient. Moreover, there is a growing interest in developing sampling 

methods that, in addition to provide accurate and unbiased yield estimates, allow small sample 

sizes to be used. Stratified sampling (Cochran 1977) may be an option, because it fulfills the 

characteristics described above. However, to stratify the samples based on ancillary variable 

maps, fruit growers have to define the strata as a preliminary step by choosing between different 

classifications and zoning techniques. How many strata, how the strata are obtained, and how 

sampling points should be allocated in each stratum are decisions to be made. Therefore, this 

combination of subjective factors probably ends up affecting the goodness of yield estimates. 

Another option is using the Ranked Set Sampling (RSS) (McIntyre 1952). This method is 

interesting from the operational point of view because it does not need these preliminary steps. 

To obtain the sample, once the number of sites to sample is set, RSS only requires applying a 

ranking mechanism based on the distribution of an auxiliary variable (Wolfe 2010). This 

ranking mechanism allows the trees (sampling points), previously taken randomly in a first 

iteration from the population, to be ranked from lowest to highest, according to the value that 

in these trees takes an ancillary variable. More details about the ranking mechanism and the 

different iterations of the whole process can be found in the corresponding section below 

(Basics of the sampling methods). With everything, the ancillary information is therefore key 

in the procedure since it has to present high correlation with the variable to estimate (the fruit 
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load, in the case of this work). In short, finding the best ancillary information to perform RSS 

in fruit orchards is a pending issue to solve. 

 

Focusing our research on comparing RSS and SRS, the main objective of the present work was 

to evaluate whether the use of ranked samples significantly improves fruit load estimates in 

fruit growing. To do this, two main issues were addressed: i) to determine the most appropriate 

ancillary information to be used in the ranking process, and ii) to assess the efficiency in terms 

of coefficient of error when comparing RSS to SRS for different sample sizes. 

 

2. Materials and methods 

 

2.1. Study plot 

 

The study was carried out in a commercial peach orchard located in Aitona (45° 94’ 71” N, 0° 

29’ 20” E, ETRS89, 160 m a.s.l., Lleida, Catalonia, Spain). The plot covered an area of 2.24 

ha. It was planted in 2012 with white peach (Prunus persica cv. ‘Platycarpa’) according to a 

regular plantation pattern of 5x2 m (Fig. 1). The total number of trees was 1816, which were 

delimited and counted using an airborne image. 
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Fig 1 Location of the study area and orthophoto (2016) showing the 104 trees sampled within 

the plot. (Orthophoto source: Cartographic and Geologic Institute of Catalonia). 

 

Peach trees were planted in form of “Catalan” vessel shape, which is the most common training 

system in Catalonia. This canopy management system produces some visible gaps between 

trees within the same row, being relatively easy to individualize each tree. Regarding 

agricultural tasks, the plot was managed like many of the commercial orchards in the region. 

Drip irrigation system was used for water and fertilizers supply. 

 

The plot was representative of the so-called Ebro depression area, characterized by the presence 

of broad flat regions resulting from infilled valley bottoms and residual landforms. Climate is 

typical of hot semi-arid areas, with strong seasonal temperature variations and an annual rainfall 

frequently below 400 mm. As a consequence, soils in the region usually have high 

concentrations of calcium carbonate (CaCO3) and low content of organic matter (OM). 

However, as a main feature, within-field soil heterogeneity is prevalent in many plots due to 
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the levelling of original terraces in the eighties to facilitate agricultural mechanization. The plot 

under study resulted from this type of transformation. As for the spatial variability of trees 

within the plot, individualized canopy projected area values for each tree were obtained (see 

section 2.4.2 for more details). The average value was 2.82 m2, with a range between 0.62 m2 

and 5.50 m2, and a Coefficient of Variation (CV) close to 21%, which can be considered a low-

to-moderate variability level for fruit orchards. 

 

2.2. Systematic sampling of the orchard 

 

A regular sampling grid of 15x15 m was defined in 2016 to sample the plot systematically (Fig. 

1). The trees coinciding with the grid nodes were taken as sampling points. Grid size was 

previously defined by variographic analysis of the apparent electrical conductivity (ECa) data 

provided by a Veris 3100 soil sensor (Veris Technologies, Inc., Salinas, KS, USA) from an on-

the-go survey of the plot. Once a strong autocorrelation of the ECa data was verified, half of 

the variogram range (ArcGIS 10.4.1 software) was taken as the optimum distance between 

sampling points (Kerry et al. 2010). On the other hand, to avoid border effect, no sample sites 

were positioned in a buffer zone of 15 meters from the limits that separated other plots (short 

sides of the rectangular shape of the plot). However, this buffer zone was not applied on the 

sides alongside with other fields because the cultivated peach variety and the canopy training 

system were the same in these adjacent plots. 

 

In total, 104 trees (sampling points) were defined (Fig. 1), and the number of fruits was counted 

manually in each tree four weeks before harvest. As proposed by Miranda and Royo (2003), 

yield in fruit orchards is usually measured in terms of fruit load (number of fruits per tree). As 
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yield (kg/tree) basically depends on fruit load, the latter was the variable used in this work. 

Covering the entire plot, these 104 trees were taken as a reference population on which to 

compare two sampling methods. 

 

2.3. Basics of the sampling methods 

 

2.3.1. Simple random sampling (SRS) 

 

The size of the sample was initially set at N = 12 trees or sampling points. Randomly selected 

without replacement, each of the twelve measured fruit load values could be considered 

representative of the population (or parcel under study), and with identical probability of choice. 

Therefore, the mean of the sample allowed the average number of fruits per tree to be estimated 

without bias. However, there was a possibility that such a mean did not provide a truly 

representative picture of the orchard mean (Wolfe 2010). 

 

2.3.2. Ranked set sampling (RSS) 

 

Ranked set sampling is not a new method. Initially developed by McIntyre (1952), the method 

was proved to be effective in improving the efficiency of pasture sampling. In this work, making 

use of adequate ancillary information (necessary for the ranking mechanism as it has been 

previously mentioned), the method was updated to evaluate its use in fruit growing. 

 

Briefly, the method is based on an iterative sampling process (Wolfe, 2010). Following the 

procedure for a sample size N = 12, a first sample of size k = 12 was taken randomly without 
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replacement from the 104 trees initially marked within the plot, and then the 12 selected trees 

were arranged according to some attribute (ranking mechanism). This process of sorting the 

sampled trees allowed a ranking to be established, usually from the lowest to the highest 

presence of the selected attribute. In our case, the attribute used in the ranking mechanism was 

an ancillary variable (or secondary variable) that, being related to the number of fruits per tree 

(as a relevant component of yield), should also be easy to measure and at an affordable cost. 

The individual (tree) with the lowest value in this ranking was finally included as the first item 

in the ranked set sample, and the property of interest (fruit load) was formally considered only 

for this unit and denoted by 𝑌[?]. The remaining k-1 observations were discarded in this without 

replacement strategy first sampling step. 

 

In a second iteration, another sample of k = 12 observations was again selected without 

replacement and ranked following the same procedure as before. The individual (tree) ranked 

as the second smallest attending the attribute (ancillary variable) was now chosen, providing a 

second number of fruits value 𝑌[@] that was added to the sample. The process was repeated until 

obtaining N = 12 measured observations 𝑌[?], 𝑌[@],⋯ , 𝑌[B] that constitutes a balanced ranked set 

sample of size N. 

 

The mean of the N values (ranked set sample mean) is, like SRS, an unbiased estimate of the 

population mean (Takahasi and Wakimoto 1968). However, having applied a ranking 

mechanism, each of the individual sample items in a balanced RSS represented a very distinctly 

different portion of the underlying population. Figure 2 represents this situation. The histogram 

represents the actual distribution of the number of fruits per tree (fruit load) in the plot under 

study (approximately, normal). Obtaining a sample through SRS involves sampling within that 
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normal population (red curve in Fig. 2), and non-representative sample values may be drawn. 

Instead, using a perfect ranking mechanism (since the ancillary variable that provides the 

attribute is well correlated with the fruit load), each of the observations included in the RSS 

behave like mutually independent order statistics, with densities that can be represented by the 

individual marginal density curves in Figure 2 (in this case, k = 6). Therefore, because of this 

extra structure provided by the judgment ranking (Wolfe 2004), RSS observations were much 

more likely to represent the full range of variation to estimate the population mean in a more 

effective way. This procedure is probably better than or equivalent to stratifying according to 

the probability distribution of the ancillary variable (stratified sampling based on the 

distribution of the percentiles). Adopting the previous notation for a sample size N = 12, the 

mean was calculated using (1), 

 

𝑌CDD =
?
B
∑ 𝑌[%]B
%F? . (1) 
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Fig 2 Distribution of the fruit load (histogram of the 104 trees sampled), normal density curve 

(in red) and the individual marginal densities of six order statistics 𝑌[?], 𝑌[@], 𝑌[G], 𝑌[H], 𝑌[I], 𝑌[J] 

(solid curves, in order of peaks, from the minimum, 𝑌[?], on the left to the maximum, 𝑌[J], on 

the right) for a random sample of size 6 from the normal distribution. Figure adapted from 

Wolfe’s (2010). 

 

Regarding the variance, Wolfe (2010) provided the formula (2): 

 

𝑉𝑎𝑟"𝑌CDD' = 𝑉𝑎𝑟"𝑌DCD' −
?
BL
∑ "𝜇[%]∗ − 𝜇'

@B
%F?  (2) 

 

where 𝜇[%]∗ = 𝐸"𝑌[%]', for 𝑗 = 1, … ,𝑁. Since ∑ "𝜇[%]∗ − 𝜇'
@
≥ 0B

%F? , it follows from Eq. (2) that 

the variance of the RSS mean (𝑌CDD) is, at most, equal to the variance of the SRS mean (𝑌DCD). 



POSTPRINT  of  the article: Uribeetxebarria, A., Martínez-Casasnovas, J.A., Tisseyre, B., Guillaume, S., Escolà, A., 
Rosell-Polo, J.R., Arnó, J. 2019. Assessing ranked set sampling and ancillary data to improve fruit load estimates 
in peach orchards. Comput. Electron. Agric. DOI: https://doi.org/10.1016/j.compag.2019.104931	 

 

14 
 

Therefore, the RSS mean is, theoretically, a more precise estimator of the population mean 𝜇 

than the SRS mean based on the same number of measured observations. The reliability of the 

judgment ranking process in separating order statistic expectations 𝜇[%]∗  is a key in improving 

the efficiency of the RSS compared to the SRS, providing the ancillary variable is highly 

correlated with the fruit load. 

 

2.4. Ancillary variables in the ranking mechanism 

 

In this section, the most relevant characteristics of the ancillary variables used to rank sampled 

trees are shown. Both terrestrial and remote sensors, whether used or recently introduced in the 

framework of precision agriculture, were considered to provide these data. Table 1 shows the 

platforms and sensors tested with additional indication of the ancillary information provided as 

well as a first assessment of the technical difficulty to obtain and process the data. 
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Table 1 Sensors and ancillary information that were evaluated for the ranking of sampled 
trees in the RSS method. 

Acquisition 

platform 

Sensor View of the 

canopy 

Ancillary 

information 

Geometry-

based 

Reflectance-

based 

Obtaining 

process 

ATV Veris 3100 Soil sensor (B) shallow ECa    ME 

(C) deep ECa ME 

ATV OptRx Lateral view (D) NDRE   X ME 

(E) NDVI X ME 

UAV RGB 

camera 

Nadir (F) Tree canopy 

perimeter   

X  ME 

(G) Tree canopy 

projected area   

X  ME 

Airplane 

 

DMSC Nadir 

 

(H) NDVI   X ME 

(I) NDVIC  X X HG 

RGB 

camera  

(J) Tree canopy 

perimeter 

(K) Tree canopy 

projected area  

X 

 

X 

 ME 

 

ME 

Terrestrial 

platform 

 

MTLS 

 

Lateral view 

 

(L) Canopy impacts  X  HG 

(M) Canopy volume  X  HG 

(N) Canopy volume  X  HG 

(O) Canopy volume  X  HG 

ATV (All-Terrain Vehicle); UAV (Unmanned Aerial Vehicle); DMSC (Digital MultiSpectral Camera); MTLS 

(Mobile Terrestrial Laser Scanner); ECa (apparent electrical conductivity); NDRE (Normalized Difference Red 

Edge); NDVI (Normalized Difference Vegetation Index); NDVIC (corrected value of the NDVI); ME (moderately 

easy); HG (hard to get) 
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2.4.1. Apparent electrical conductivity (ECa) 

 

Soil apparent electrical conductivity (ECa) was measured using a Veris 3100 (Veris 

Technologies, Inc., Salina, KS, USA). The soil survey was conducted on March 1st, 2016, when 

the soil had moisture content close to field capacity. Passing through all the alleyways within 

the plot, two simultaneous measurements of ECa were recorded: shallow ECa (0-30 cm) and 

deep ECa (0-90 cm). ECa measurements were georeferenced using a Trimble AgGPS332 GPS 

with SBAS differential correction (EGNOS system). An acquisition frequency of 1Hz was used 

giving approximately 750 sampling points per hectare. 

 

Two ECa raster maps (shallow and deep) were then obtained by ordinary kriging interpolation 

on a 1 m grid. By superimposing the layer of 104 polygons corresponding to the 104 trees 

within the plot, the respective values of shallow ECa (variable B, Table 1) and deep ECa 

(variable C, Table 1) were extracted. The mean ECa value was calculated for each tree at each 

surveying depth. 

 

2.4.2. Tree canopy projected area and tree canopy perimeter 

 

Tree canopy projected area and tree canopy perimeter were obtained by processing two images 

acquired from two different platforms: airplane and unmanned aerial vehicle (UAV). Both 

images were acquired on May 16, 2016, approximately at mid-day and under clear sky 

conditions. 

 

Each platform had its own camera. For the UAV, images were grabbed with a 16 MP Panasonic 
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GX 7 camera (Panasonic Corporation, Osaka, Japan) with a 20 mm “pancake” lens coupled on 

a Mikrokopter Oktokopter 6S12 XL eight rotor UAV (HiSystems GmbH, Moomerland, 

Germany). The UAV was handled in manual configuration at constant speed of 18 km·h-1 and 

constant altitude up to 100 m. Pitch and roll movements were minimized using MK HiSight 

SLR2 gimbal support equipped with two servo motors. The camera was configured to take an 

image every two seconds during the flight, being the autofocus activated and the exposure fixed. 

Nadir images were pre-selected to obtain an orthomosaic image with a spatial resolution of 2 

cm per pixel using Agisoft Photoscan Professional software (Agisoft LLC, St. Petersburg, 

Russia). 

 

Regarding the airplane image, a 4-band digital multispectral camera (DMSC) was used 

allowing images centred at 450 nm (blue), 550 nm (green), 675 nm (red) and 780 nm (near 

infrared) to be acquired. The images were pre-processed by SpecTerra (SpecTerra Services Pty 

Ltd, Leederville, Western Australia) to correct lens aberration, and adjust scene brightness by 

the bidirectional reflectance distribution function (BRDF). At the moment of photographing the 

plot, the airplane was flying at an altitude of 2000 m. The spatial resolution of the pre-processed 

image was 25 cm per pixel. The aircraft used was a CESSNA 1725 Sky Hawk operated by RS 

(RS Servicios de Teledetección SL, Lleida, Spain). 

 

In both cases, images were processed by manually delimiting each of the 104 individual trees 

sampled within the plot. The polygons used to delimit the projected canopies to the ground 

allowed the area and the perimeter of each tree canopy to be calculated. Table 1 shows the four 

variables (symbolized with a capital letter) that were used as ancillary information on the 

canopy's geometry: airplane-based canopy perimeter (J), airplane-based canopy projected area 
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(K), UAV-based canopy perimeter (F), and UAV-based canopy projected area (G). 

 

2.4.3. Tree canopy reflectance 

 

The aerial image provided by the multispectral camera (NDVI image, Rouse Jr et al. 1974) was 

post-processed according to the following procedure. First, and having eliminated the NDVI 

pixels with values lower than 0.45 to discard other land covers (i.e. bare soil) that were not tree 

canopy, all the trees (or canopies) within the plot were then easily delimited by using 

automatically defined polygons. Specifically, 1816 trees were individualized this way. Then, in 

a second step, NDVI pixels within each polygon (or canopy) were extracted by overlapping the 

NDVI image and the polygon layer. The average value of NDVI was then calculated and 

assigned to the centroid of each polygon. The third step consisted in creating a continuous map 

(or surface map) by interpolation (ordinary kriging) of the average NDVI values of the 

centroids. By superimposing this new NDVI map (1 m pixel resolution) with the polygons 

corresponding to the 104 trees, an average value of NDVI for each tree was obtained. This 

ancillary information was denoted with the letter H (Table 1). As with the previous maps for 

the other sensors, ArcMap 10.4.1 (ESRI, Redlands, CA, USA) performed spatial data analysis. 

 

On the other hand, it is worth mentioning that the single information of the NDVI could be 

inconsistent with the expected fruit load of a tree. The bigger the canopy, the higher the 

expected fruit load (Mann et al. 2011). However, average NDVI could take similar values in 

trees of different sizes. With this in mind, formula (3) was used to correct values of the NDVI 

to be obtained for each tree (variable I, Table 1), 
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𝑁𝐷𝑉𝐼Q = 𝑁𝐷𝑉𝐼 × RQS
RQSTUV

 (3) 

 

where NDVI and NDVIC were the initial value and the corrected value of the NDVI, 

respectively, TCA was the tree canopy projected area obtained from the airplane image, and 

TCAmax was the largest tree canopy projected area within the plot. 

 

Apart from the remote sensor, a terrestrial OptRx sensor (Ag Leader Technology, Ames, IA, 

USA) was also used to acquire canopy reflectance data using an all-terrain vehicle (ATV) as a 

platform. Since the readings were taken sideways passing through the alleyways of the orchard, 

data referred to the lateral reflectance of the canopy. Specifically, the sensor was maintained at 

a distance of approximately 1 m from the canopy and moved at a constant speed of 5 km·h-1. 

With the OptRx, only one side of each row was measured. Three different wavelengths were 

acquired every second (1 Hz) in the ranges of red (670 nm), red edge (728 nm), and near infrared 

(775 nm). So, the Normalized Difference Vegetation Index (NDVI) and the Normalized 

Difference Red Edge (NDRE) were finally obtained and georeferenced by also acquiring the 

position using a Trimble AgGPS332 GPS with SBAS differential correction (EGNOS system). 

An average of 169 data per row was obtained. Then, following the same procedure as before, 

the NDVI and NDRE data were interpolated by ordinary kriging to obtain two surface maps 

with a final resolution (grid) of 1 m for each vegetation index. By superimposing the surface 

maps with the layer of 104 polygons, the average values of NDVI and NDRE were obtained 

and denoted as variables E and D, respectively (Table 1). The date of the terrestrial sensor 

measurements was May 17th, 2016. 
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2.4.4. Tree volume 

 

The use of a MTLS allowed four different ancillary variables to be obtained. The sensor used 

was a UTM30-LX-EW time-of-flight LiDAR (HOKUYO, Osaka, Japan) that could perform 40 

scans per second (40 Hz). In addition to this 2D LiDAR sensor, the MTLS integrated a 

GPS1200+ (Leica Geosystems AG, Heerbrugg, Switzerland) RTK-GNSS system (a real-time 

kinematics global navigation satellite system receiving GPS and Glonass constellation signals). 

So, after processing all data, the MTLS provided measurements of the position of the impact 

points produced between the laser beam and the canopy. These georeferenced impacts formed 

a point cloud that was then analyzed to calculate the canopy volume. A more detailed 

description of features, components for acquisition and field use methodology can be found in 

Escolà et al. (2017). 

 

Like the OptRx sensor, the MTLS laterally scanned the canopies of all the rows within the plot, 

but in this case, each row was measured from both sides to obtain a point cloud representative 

of the entire canopy. Point cloud visualization and specific computations were performed with 

CloudCompare (CloudCompare [GPL software] v2.6.1 2015). In short, the 3D point cloud was 

first classified into canopy and ground points. Points located at a height less than 0.4 m above 

the ground were discarded to eliminate weeds and ridges. The remaining points were then 

processed to individualize each tree trying to eliminate possible impacts (outliers) that were 

clearly outside the canopy (presenting positions more than 2.5 standard deviations away from 

6 neighboring points). 

 



POSTPRINT  of  the article: Uribeetxebarria, A., Martínez-Casasnovas, J.A., Tisseyre, B., Guillaume, S., Escolà, A., 
Rosell-Polo, J.R., Arnó, J. 2019. Assessing ranked set sampling and ancillary data to improve fruit load estimates 
in peach orchards. Comput. Electron. Agric. DOI: https://doi.org/10.1016/j.compag.2019.104931	 

 

21 
 

Once the cloud of impact points for each tree was delimited (in our case, 104-point clouds), the 

first variable that was obtained was the number of canopy impacts (variable L, Table 1). 

CloudCompare ‘octree’ allowed the cubical initial volume including the entire canopy for each 

tree to be recursively divided into smaller cubes until visually adjusting the actual volume of 

the canopy. Adding the unit volume of each adjusted cube or voxel (VOlumetric piXEL), the 

final volume of the canopy in m3 was obtained. Depending on either how the voxel size was 

set, manually or automatically, two different volumes could be obtained. The variable M (Table 

1) referred to manually adjusted voxels, while the variable N (Table 1) estimated volume by 

adjusting a voxel size given by default parameters of the software. 

 

The last volume (variable O, Table 1) was calculated using the '2.5D Volume' tool in the 

CloudCompare software. Having projected the point cloud for a specific tree on the XY plane 

(Z-axis projection direction), this tool allowed the volume between the 2D rasterized cloud and 

the ground surface (taken as arbitrary plane) to be computed. As multiple points of the canopy 

could fall inside each cell, the maximum height was taken for calculation. 

 

Obviously, other methods could have been used to calculate the volume from LiDAR point 

clouds (Escolà et al. 2017). However, the special structure of the 'Catalan' vessel training 

system, open with branches in different directions and large gaps inside the canopy, could make 

it more convenient to use the voxelization procedure as proposed by Underwood et al. (2016) 

in almond. The readings with MTLS system were made on May 17th, 2016. 
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2.5. Evaluating the efficiency of sampling methods 

 

To compare the SRS versus the RSS, B (B = 1000) realizations of selecting a sample with size 

N, with N ranging from 4 to 12 were resampled each time and for each method, with the 

sampling population being the 104 trees systematically sampled within the plot. By calculating 

the sample mean (average number of fruits per tree) for realization i, 𝑌<, the variance of the 

distribution of means for the SRS scheme was computed according to Nane and Kooijman 

(2018) using expression (4), 

 

𝑣𝑎𝑟"𝑌DCD' =
?
W
∑ "𝑌< − 𝑌.'

@
× (1 − 𝑓)W

<F?  (4) 

 

where B = 1000 was the number of realizations in the resampling method, 𝑌< was the sample 

mean of the fruit load, and 𝑌. was the average fruit load for the 104 trees previously sampled 

covering the entire area of the plot (𝑌. = 144.7 fruits per tree). The latter was considered the 

representative value of the plot (or best estimator of the population mean), and it was practically 

coincident in all the resampling processes with the average of the 1000 means (data not shown). 

The finite population correction factor was given by 1 − 𝑓, with 𝑓 = 𝑁 104⁄  defining the 

sampling fraction. 
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The variance of the mean (𝑌CDD) of a ranked set sample from a finite population was obtained 

by the formula (5) (Kowalczyk, 2004), 

 

𝑣𝑎𝑟"𝑌CDD' =
?
B
Z[1 − ?

?\H
] 𝑆@ − ?

B
∑ "_𝐸"𝑌[𝑗]'` − 𝑌.'

@B
%F? a (5) 

 

where N and 𝑌. had the same meaning as before, and 𝑆@ was the known variance of the total 

trees (104) sampled within the plot. To estimate each of the expected values, 𝐸"𝑌[%]', the mean 

over B = 1000 bootstrap realizations for each of the corresponding ranked yield values j 

(𝑗 = 1, … , 𝑁) was applied. 

 

Both sampling methods (SRS and RSS) provided an unbiased estimate of the population mean 

(in this case, of the average of the 104 trees used as a representative measure of the plot mean). 

So, in both cases, the mean squared error (MSE) equals the variance. The inverse of the variance 

is a measure of the precision, thus for a given sample size N the two sampling methods were 

compared using the so-called relative efficiency, RE (6), 

 

𝑅𝐸 = cdd<e<fgeh	"+jkk'
cdd<e<fgeh	"+kjk'

= lmn"+kjk'
lmn"+jkk'

  (6) 

 

once obtained 𝑣𝑎𝑟"𝑌DCD' and 𝑣𝑎𝑟"𝑌CDD' by (4) and (5). RE values greater than 1 would be 

expected (Chen, Bai and Sinha 2004), showing that RSS would be more precise (or more 

efficient) than SRS. At worst (Webster and Lark 2013), 𝑅𝐸 = 1 when the ranking process is 

completely imperfect, that is, there is no correlation between the fruit load and the ancillary 

variable used to rank the realizations. Also, as Wolfe (2010) points out, good concomitant 
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information is necessary to avoid error-prone ranking. 

 

Two additional efficiency indicators were computed. First, a predicted Coefficient of Error (CE) 

for each method was obtained using equation (7), 

 

𝐶𝐸"𝑌' =
plmn"+'

+.
× 100  (7) 

 

being p𝑣𝑎𝑟(𝑌), the standard deviation of the mean. Having formulated the sampling error of 

one realization as 𝜀"𝑌<' =
*+,-+.*
+.

× 100, being 𝑌< the mean of the realization and 𝑌. the 

aforementioned reference mean for the plot, the last indicator allowed the number of 

realizations of a given sampling design and sample size N with sampling error greater than 10%, 

𝑛_𝜀"𝑌<' > 10%`, to be computed in percentage terms over the total of the 1000 realizations 

(8), 

 

𝑃𝑅 = g_v"+,'w?\%`
W

× 100. (8) 

 

Note that this procedure was also used to test the optimal ancillary information to run the RSS. 

For this, the resampling of B = 1000 realizations of size N = 12 using each auxiliary variable 

shown in Table 1 was used. Indices defined by equations (7) and (8) were used to compare the 

different auxiliary variables used in the ranking mechanism to provide an estimate of the fruit 

load. In all cases, resampling was performed by programming in R software, version 3.3.2. 
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3. Results and discussion 

 

3.1. Relationship between fruit load and the acquired ancillary variables 

 

Figure 3 shows the scatter plot defined by the first two factors of a principal component analysis 

(PCA) showing the correlation between the ancillary variables altogether and fruit load. By the 

two factors, 65.9% of variability is explained. In summary, many of the ancillary variables were 

well summarized by the two first components of the PCA allowing two sets of variables to be 

discriminated. 

 

The variables with the highest correlation to the first component, apart from the fruit load 

(variable A), were those obtained using remote sensing (UAV and airplane using RGB and 

multispectral cameras) and MTLS. So, the first component was basically related to the 

geometry and vigor of the trees. The soil apparent electrical conductivity (shallow and deep 

values) was correlated to component 2 instead of component 1. In short, component 2 should 

be interpreted as related to soil variability. Finally, NDVI and NDRE vegetation indices 

obtained from the OptRx proximal sensor were not clearly included in any of the previous 

groups (therefore, they showed a weak correlation with both components). As has been 

mentioned before, "Catalan" vessel is the adopted training system which favours open canopies 

to improve solar exposure in detriment of the lateral side. In short, a vegetation wall is not easily 

measurable from the lateral side of the canopy. Because of that, the field of view of the canopy 

varies between sensors (lateral from terrestrial platform and nadir from aerial platform), and 

NDVI readings are surely affected. Probably, the best correlation with nadir vision is due to 

better cover the full size of the canopy. 
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Fig 3 Scatterplot showing the correlation between the ancillary variables and fruit load (variable 

A) with respect to the two principal components of PCA. 

 

Relevant information about the relationship between fruit load and all other variables was 

contrasted visually by the scatterplot of a PCA (Fig. 3). The surprising weak correlation 

between the number of fruits (variable A) and component 2 made it unwise to use the Veris 

sensor and the ECa as ancillary information in RSS schemes. This weak correlation was not 

expected when systematic sampling was designed, according to the findings of other authors in 

fruit growing (Käthner and Zude-Sasse 2015). In spite of this, variability at plot scale was also 

captured by covering the whole area of the orchard. The weak correlation could be due to drip 

fertigation allowing roots to grow in a controlled environment with little final soil influence 

(taking ECa readings in the alleyways outside the wet bulb) on canopy and fruit load 

(Uribeetxebarria et al. 2018). There being little correlation between ECa and fruit load, the 

ranking process may not be optimal to obtain a sample with the additional information needed 

for a more efficient estimation of the mean. Figure 3 also shows a nearly zero relationship 

between fruit load and variables D and E obtained by the OptRx sensor. For this reason, its use 



POSTPRINT  of  the article: Uribeetxebarria, A., Martínez-Casasnovas, J.A., Tisseyre, B., Guillaume, S., Escolà, A., 
Rosell-Polo, J.R., Arnó, J. 2019. Assessing ranked set sampling and ancillary data to improve fruit load estimates 
in peach orchards. Comput. Electron. Agric. DOI: https://doi.org/10.1016/j.compag.2019.104931	 

 

27 
 

in RSS was rejected. However, the variables correlated to component 1 could be of interest. In 

short, the options for ancillary data to be used were limited to three data sources, i) RGB 

cameras mounted on remote acquisition platforms (UAV and airplane, variables F, G, J and K), 

ii) airplane images supplied by DMSC (variables H and I), and iii) MTLS point clouds 

(variables L, M, N and O). The close spatial arrangement within component 1 (Fig. 3), including 

fruit load, helped in this interpretation. 

 

Going into detail (Fig. 3), variable H (airplane-based NDVI) was the ancillary information with 

apparently the weakest correlation to fruit load among the variables of component 1. While 

variable H was only based on reflectance, the other variables were mainly based on geometric 

parameters. Even so, all the variables that were grouped as mostly correlated with component 

1 were selected in order to analyze their convenience as ancillary variables in the next section. 

With respect to the volume of the canopy, only the data calculated with the tool 'Volume 2.5D' 

(variable O) were considered to avoid redundant information 

 

3.2. Ancillary information to be used in RSS to improve fruit load estimates 

 

Table 2 shows the results of linear correlation between the number of fruits per tree (variable 

A) and the most relevant ancillary variables within component 1. As expected, the best 

correlation was obtained using the UAV-based canopy projected area (variable G) with a value 

of the linear correlation coefficient of 0.85. The worst result (coefficient of 0.21) corresponded 

to the airplane NDVI (variable H). The rest of the variables ranging between these two extreme 

values (Table 2).  
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Table 2 Assessment of RSS efficiency according to the ancillary variables used in the  
ranking mechanism. Variables are ordered according to their correlation with fruit load. 

 R 𝑴𝑺𝑬"𝒀' 𝑪𝑬"𝒀' PR 

UAV-based canopy projected area (G) 0.85 69.10 5.74 10.1 

LiDAR-based canopy volume (O) 0.68 92.62 6.65 16.4 
LiDAR-based canopy impacts (L)  0.60 120.04 7.57 21.3 

Airplane-based canopy projected area 
(K) 

0.55 130.59 7.89 21.1 

Airplane-based canopy perimeter (J) 0.54 131.51 7.92 22.8 
Airplane NDVIC (I) 0.52 133.56 7.98 17.3 

UAV-based canopy perimeter (F) 0.49 140.97 8.20 22.1 
Airplane NDVI (H) 0.21 167.23 8.93 26.9 

R - Pearson’s linear correlation coefficient 
MSE – Mean squared error (or mean variance) 
CE – Coefficient of error 
PR – Percentage of realizations exceeding the error threshold of 10% 
 

As expected, Table 2 shows that MSE values follow exactly the same order as the correlation 

coefficient showing that the higher the correlation, the lower the error in fruit load prediction 

with the RSS. The trend of the Coefficient of Error (𝐶𝐸) was similar, going from 5.74% when 

the ancillary variable was the UAV-based canopy projected area to 8.93% using the airplane 

NDVI to rank items within the samples. Since a CE of 10% may be acceptable in the fruit 

production sector, any of the ancillary variables could be candidates to be used in RSS schemes. 

However, it is also true that the sample size used in the comparison (N = 12) is not usual in 

practice, and has undoubtedly contributed to improve the efficiency in fruit load estimates 

above what is expected. Hence, it is necessary to check how the efficiency varies by reducing 

the sample size closer to the usual sizes used by fruit growers. 

 

Table 2 also shows the percentage of times the sampling error exceeded the 10% threshold 

considering 1000 realizations with a sample size N = 12. This probability is a way of knowing 
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the risk assumed by fruit growers since they usually perform a single sampling. Values ranged 

from 10.1% (variable G) to 26.9% (variable H), and corroborate the results of MSE and linear 

correlation. The maximum difference between ancillary variables was 166% for this parameter 

(PR), being 55% for the CE. 

 

On the other hand, the results shown in Table 2 were in accordance with what was noticed by 

Nahhas et al. (2002) and Stokes (2007) when applying RSS. The better the correlation between 

the variable to be estimated (number of fruits per tree, in our case) and the concomitant variable 

(or ancillary variable) used in the ranking process, the better the sampling efficiency. 

 

Apart from good efficiency results, the ancillary variable to be used must be easily measurable. 

RGB cameras embedded in UAV meet this requirement. The use of UAV in precision 

agriculture is a booming and low-cost technology as suggested by Lelong et al. (2008). For this 

reason, the UAV-based canopy projected area (variable G, Tables 1 and 2) was finally chosen 

as the optimal ancillary variable to use in RSS schemes in fruit growing. The advantage of this 

variable is the high resolution of the images compared to other remote data sources. 

 

3.3. Resolution of ancillary variables in RSS: the key factor 

 

In peach orchards, fruit production and quality are clearly influenced by canopy lighting 

conditions (Tang et al. 2015; Minas et al. 2018). Seeking to enhance floral induction and fruit 

growth, fruit growers adopt canopy open-center training systems (such as the typical 'Catalan'   

peach vessel) to maximize exposure to solar radiation. In this way, peach trees with larger 

canopy projected area usually have a greater number of larger fruits (Marini 2002). In addition, 
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the incidence of unproductive interior branches is lower, avoiding what usually happens in 

canopies formed into traditional or spherical vessels (Marini et al. 1995). In RSS, an ancillary 

information system that manages to individualize the canopy of trees in a precise manner will 

be essential, i) to ensure an optimal and accurate ranking process of the auxiliary variable, and 

ii) to cover all the variability of the objective variable (number of fruits) (Fig 2). 

 

Continuing the thread of the previous paragraphs, variables that best meet previously mentioned 

characteristics are those based on geometrical properties of the canopy (Table 2). UAV-based 

canopy projected area (variable G) was the best rated ancillary variable. In contrast, LiDAR-

based canopy volume (O) or impacts (L) and airplane-based canopy projected area (K) obtained 

less satisfactory sampling efficiency results. What could be the reason for this difference? 

Probably, the lack of resolution (57528 impacts per tree) is not the main reason for a lower 

correlation of LiDAR derived variables with fruit load. The lowest correlation comes from the 

different orientation of each sensor. While the RGB camera mounted on UAV (variable G) 

provides a top view of the canopy, MTLS provides a lateral view of the trees. The top view 

allows the area exposed to sunshine to be more precisely delimited. The efficiency when 

intercepting the sunrays is the key factor for transpiration and photosynthesis, therefore it is 

strongly related to the fruit load (Da Silva et al. 2014). 

 

Figure 4A shows the canopy of a peach tree as it is captured with an aerial image from airplane 

(0.25 m per pixel), and the same canopy when it was captured using UAV and resolution of 

0.02 m (Fig. 4B). The difference is obvious. While the delimitation of the canopy projected 

area was more difficult using the airplane image, the UAV-based canopy projected area allowed 

the actual canopy projected area to be better defined. This would explain why the use of higher 
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resolution images should lead to more accurate tree ranking processes and more efficient fruit 

load estimates. To provide an explanatory example, 45 pixels were needed on average to 

characterize the canopy projected area using the airplane image instead of the 6500 pixels for 

the UAV image. In other words, the average area of 2.60 m2 per tree using the higher resolution 

image became an area of 2.81 m2 when a larger pixel size was used. The difference was 

therefore 8%, although large deviations for some trees could be obtained (maximum differences 

of up to 53% between UAV and airplane were found). Because of that, the use of images of 

poor resolution can alter the ranking process. In fact, ranking of individuals varied (data not 

shown) according to the resolution of the ancillary variable that was used (for example, G or 

K). The moderate Spearman correlation coefficient (0.71) between both variables allowed this 

property to be concluded. 

 

 

 

Fig 4 Comparison of tree canopy projected area delimited for the same peach tree, A) using an 

airplane-based image of 0.25 m per pixel (top view), B) using an UAV-based image of 0.02 m 

per pixel (top view), C) 3D reproduction of the same canopy using an MTLS (side view). 
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MTLS are another different technology that allows canopy of trees to be characterized with 

high operative resolution. Figure 4C shows the point cloud obtained from a lateral LiDAR-

based scan of the same tree. Then, by 3D processing of all the data, a canopy volume expression 

can be obtained (variable O, Table 2). However, this parameter did not provide results as good 

as those obtained using the simplest UAV-based tree canopy projected area (variable G). 

Finding an explanation is not easy. Probably, sunlight penetration is optimal in trees with more 

open canopy resulting in a larger projected area. Conversely, bulky trees with smaller projected 

areas could have grown in height instead of laterally and more openly. This could hinder the 

interior lighting of the canopy and negatively affect the amount of viable fruits and yield. 

 

Figure 5 helps to understand this phenomenon. While the two trees shown (number 104 and 

number 45) have similar canopy volume (3.91 m3 and 3.83 m3, respectively), the canopy 

projected area (3.92 m2 and 2.40 m2) and fruit load (201 fruits and 124 fruits) are very different. 

In fact, the correlation between canopy projected area (variable G) and fruit load is higher (R = 

0.85) than the correlation between canopy volume (variable O) and fruit load (R = 0.68). 

 

  

Fig 5 Aerial projection of tree 104 (left) and 45 (right) obtained from the LiDAR-based MTLS 

system. 
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The use of NDVI showed acceptable results when adjusting the value of the vegetation index 

according to the tree canopy projected area. However, the exclusive use of the airplane NDVI 

(variable H, Table 2) was the least recommended option. The resolution of the airplane images 

was lower than that of UAV images or MTLS point clouds and, in addition, the reflectance 

alone does not account for any geometrical parameters of the canopy. In any case, the weak 

correlation between fruit load and NDVI is also noted in other sampling studies (Arnó et al. 

2017; Miranda et al. 2018). 

 

Concluding, resolution of acquired ancillary data was the main constraint in reliably delimiting 

canopy of trees (Fig. 4). UAV-based RGB images offered high resolution at competitive costs, 

and good correlation with the fruit load (Table 2). Therefore, RSS was only tested with UAV-

based tree canopy projected area as the ancillary information. Comparison of sampling 

efficiency against SRS is addressed in the next section. The pending issue is to test the method 

in other orchards trained under systems that are more intensive forming a fruiting wall structure. 

Probably in this case, sections of wall vegetation rather than individualized trees should be 

delimited using an appropriate algorithm and a more automated method. 

 

3.4. RSS versus SRS: sampling efficiency and sample size 

 

Table 3 shows the mean squared error (MSE), and the relative efficiency (RE) of RSS versus 

SRS for different sample sizes (4 to 12 points or trees sampled within the plot). A resampling 

of 1000 realizations allowed such statistics to be calculated in order to compare the sampling 

methods. RSS was run in all cases using the UAV-based tree canopy projected area as ancillary 

variable to drive the ranking mechanism. 
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Table 3 Mean squared error (MSE) and relative efficiency (RE) of the sampling methods for 
different sample sizes. 

  Mean squared error (MSE) 

 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 

SRS 472.54 310.49 283.20 269.30 225.88 204.38 177.65 159.76 148.38 

RSS 305.32 178.20 168.90 132.53 111.21 104.61 97.87 81.24 69.10 

  Relative efficiency (𝑅𝐸 = 𝑣𝑎𝑟"𝑌DCD' 𝑣𝑎𝑟"𝑌CDD'}  

 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 

RSS vs. SRS 1.55 1.74 1.68 2.03 2.03 1.95 1.82 1.97 2.15 

SRS (Simple random sampling), RSS (Ranked set sampling) 

 

In both cases, SRS and RSS, the MSE decreased, as the sample size increased. As expected, the 

sampling methods became more efficient with an increasing sample size. However, 

comparatively, RSS always showed lower variance of the mean (lower MSE) than SRS. In 

short, RSS was more efficient than SRS for any of the sample sizes evaluated. Hence the RE 

was higher than one (Table 3), ranging from 1.55 (N = 4) to 2.15 (N = 12). The fact of obtaining 

higher values of RE for the larger sample sizes was possibly due to the RSS procedure. 

Takahashi and Wakimoto (1968) reported a loss of efficiency by decreasing the number of 

individuals checked in the ranking process for the same final sample size. This would explain 

why the RE of the RSS increases with increasing sample size because a higher number of trees 

are ranked. Thus, by increasing the sample size (N = 7, 8 ... 12), RSS required progressively 

increasing the number of trees to rank to obtain the final sample. For example, a sample of size 

N = 9 would suppose choosing 81 trees within the plot instead of the 25 (52) needed for N = 5. 

In this way, additional information on fruit load structure was more easily achievable by having 



POSTPRINT  of  the article: Uribeetxebarria, A., Martínez-Casasnovas, J.A., Tisseyre, B., Guillaume, S., Escolà, A., 
Rosell-Polo, J.R., Arnó, J. 2019. Assessing ranked set sampling and ancillary data to improve fruit load estimates 
in peach orchards. Comput. Electron. Agric. DOI: https://doi.org/10.1016/j.compag.2019.104931	 

 

35 
 

to select and assess a larger number of trees than the one obtained in small samples. As a result, 

the RE of RSS increased compared to SRS strategy. 

Considering the UAV-based canopy projected area as ancillary information, RSS allowed more 

accurate fruit load estimates to be obtained. The extent to which this precision was improved 

was quantified by the CE (Eq. 7) as shown graphically in Fig. 6. Additionally, Figure 6 shows 

the effect of the sample size on the PR indicator for both sampling schemes. Both measures are 

important for fruit growers because they complement each other. Farmers collect samples at 

specific times during the life of the crop. Therefore, knowing the probability of exceeding the 

threshold and the average CE for each sample size is important. Both curves (CE and PR, Fig. 

6) show a similar nonlinear trend. For all sample sizes, RSS has a lower CE than SRS. 

Specifically, while in SRS the CE ranged from 15.4% (N = 4) to 8.4% (N = 12), in RSS errors 

ranged from 12.1% (N = 4) to 5.7% (N = 12). From a practical point of view, SRS should be 

based on minimum sizes of N = 10 while RSS can reduce sample sizes up to N = 5 so as not to 

exceed a CE threshold of 10% (Fig. 6). This meant that, using sample sizes N = 10 in SRS or N 

= 5 in RSS, a sampling error of less than 10% could be expected in practically 70% of the 

samplings (PR close to 30% in both cases, Fig. 6). Assuming normality, 68.3% of the samplings 

should provide errors of less than 10% (as it has been obtained approximately), although the 

RSS strategy only needed to sample 5 trees compared to the 10 trees needed in SRS. Likewise, 

SRS schemes exceed the error threshold of 10% with a higher percentage (PR, Fig. 6) compared 

to RSS for all the sample sizes that were analyzed. While for SRS, PR values ranged from 

53.5% (N = 4) to 25.5% (N = 12), in RSS the same parameter reached significantly lower scores, 

varying between 44.4% (N = 4) and 10.1% (N = 12). Therefore, using SRS practically doubles 

(for sample sizes greater than N = 8) the probability of obtaining errors of estimation above the 
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10% threshold than using RSS. However, for smaller sample sizes (N = 4), the difference 

between SRS and RSS was not so obvious. 

 

 

Fig 6 Comparison of the Coefficient of Error and the percentage of times the sampling error 

threshold of 10% is exceeded according to the sample size for two sampling methods: SRS and 

RSS. 

SRS (simple random sampling). RSS (ranked set sampling). Resampling of 1000 realizations for each of the 

sample sizes was made, using the UAV-based tree canopy projected area as ancillary variable in the RSS. 

 

As mentioned before, if a CE of no more than 10% was assumed, RSS allowed the sample size 

to be reduced to N = 5 while the SRS required twice the sample (N = 10) (Fig. 6). Moreover, a 

sample size N = 4 in RSS could even be justified by reaching an error around 12%. 

Undoubtedly, being able to reduce the sampling requirements, RSS could report favorable 

operative as well as economic consequences in fruit sampling as those obtained by Carrillo et 

al. (2016) in vineyard. Although RSS requires random sampling in each iteration to generate 

the final ranked sample, subjectivity (and, therefore, biased decisions) should not be applied 

during the ranking mechanism favoring a more automated (without farmers rating) and reliable 

sampling process. On the other hand, the ancillary variable being available, the method is even 
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applicable in small plots like fruit orchards (Zude-Sasse et al., 2016), avoiding to perform a 

stratified sampling scheme. 

 

Looking for the reasons that make the RSS a strategy more adapted to non-homogeneous 

orchards, it was verified (data not shown) that, in average, the within-sample variability 

(measured as Coefficient of Variation) in the RSS realizations was always higher than that 

found in SRS of the same size. This would explain why the RSS manages to capture the 

heterogeneity of the orchards more reliably providing greater precision in yield estimates. 

 

Finally, it is necessary to point out that these values obtained for this orchard assume that the 

sampling variance on estimating mean fruit per tree due to a (in effect) selection of 104 trees as 

the first step can be considered negligible. In addition, these recommended sample sizes apply 

to this particular orchard with its spatial variability of fruit. They provide a starting point for 

considering sample sizes, and being prepared to be more conservative for orchards that are more 

heterogeneous. 

 

4. Conclusions 

 

Ranked set sampling (RSS) is an interesting method to improve sampling in fruit growing. 

Improvements in the efficiency of peach fruit load estimates were proven by applying RSS 

compared to simple random sampling (SRS), at least for sample sizes from N = 4 to N = 12. 

However, to be optimal, RSS requires a relevant auxiliary variable, these data being the key 

factor in the procedure. Among different data sources currently available in agriculture, either 

commercialized or under development (such as MTLS), the UAV-based tree canopy projected 
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area was identified in this study of a peach orchard as the best option to use in the ranking 

mechanism aiming at estimate fruit number in peach production. This information can be 

obtained from RGB cameras that providing high-resolution images allowing the projected area 

of the canopy (geometric parameter) to be accurately delimited. The close correlation between 

this area and the fruit load per tree made this the best choice as an auxiliary variable in RSS 

schemes for the particular management by the producer (open vessel training systems). 

 

In terms of the Coefficient of Error of the estimated mean, RSS using samples of size N = 5 

trees allows acceptable errors below 10% to be achieved with about 70% probability. In 

contrast, SRS requires practically doubling the sample needed for a similar error. Finally, it 

should be noted that the work has been carried out only on one plot, although it provides 

relevant information as the ancillary variable to be used in RSS for future research on a larger 

spatial scale. In fact, UAV-based tree canopy projected area is an interesting (cheap and easy 

to get) ancillary information. However, since the values of the variable are obtained manually, 

future research is required to automatically obtain this information by developing the 

appropriate algorithm. 
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