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Abstract  6 

Four varieties of red garlic (Allium sativum L.) cultivated in different Italian territories, Sulmona 7 

(Abruzzo), Proceno and Castelliri (Lazio), and Nubia (Sicily), were analysed by Attenuated Total 8 

Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy. ATR-FTIR spectra of bulbils 9 

and bulbil tunics were separately acquired and processed by Partial Least Squares Discriminant 10 

Analysis (PLS-DA) with the aim of classifying the garlic samples on the basis of their geographical 11 

origin. Finally, two multi-block strategies (based on Sequential and Orthogonalized Partial Least 12 

Squares and Sequential and Orthogonalized Covariance Selection, coupled with Fisher’s Linear 13 

Discriminant Analysis) have been applied in order to test whether a joint analysis of data could lead 14 

to higher prediction rates. Eventually, the best results were achieved by the multi-block approach 15 

based on SO-PLS, which allows obtaining a total classification rate of 95% (corresponding to one 16 

misclassified sample over 20) in external validation.   17 

 18 
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 21 

1. Introduction 22 

Garlic (Allium sativum L.) has been worldwide employed as food condiment and herbal medicine 23 

for millennia. Apart from the common culinary use of fresh leaves or cloves, commercial products 24 

obtained by various processing methods, including oil maceration, dehydration and lyophilisation, 25 

are today marketed for therapeutic purposes (Ramirez et al., 2017). Historical references dating 26 

back to 4000 years mention diffuse use of garlic in ancient civilizations, from religious and 27 

superstition rituals to prevention and cure of infections and diseases (Corzo-Martínez et al., 2007). 28 

Bio-activity of garlic, including anti-inflammatory, antimicrobial, cardioprotective, anticancer and 29 

antidiabetic action, has been demonstrated in the last decades by epidemiological and clinical 30 

studies (Corzo-Martínez et al., 2007; Martins et al., 2016; Yun et al., 2014; Shukla & Kalra, 2007). 31 



 

 

Unique pungent aroma and most of the medical properties attributed to garlic by traditional and 32 

modern medicine are related to distinctive organosulfur compounds.  33 

Great attention is paid to the relation between the cultivar and geographical origin of garlic and its 34 

metabolomic profile, with specific reference to the aroma precursors and other bio-active 35 

constituents (Lu et al., 2011; Beato et al., 2011; Khar et al., 2011; Montaño et al., 2011). Moreover, 36 

traditional garlic varieties cultivated in given territories are appreciated by an increasing number of 37 

consumers because of their peculiar taste, aroma and functional properties compared to commercial 38 

products. In Europe, quality and geographical identity of some traditional garlic varieties of Italy 39 

(Aglio di Voghiera and Aglio Bianco Polesano), France (Ail violet de Cadours, Ail fumé d’Arleux, 40 

Ail blanche de Lomagne and Ail de la Drôme) and Spain (Ajo Morado de Las Pedroñeras) have 41 

been officially recognised in recent years through the attribution of PDO (Protected Designation of 42 

Origin) or PGI (Protected Geographical Indication) mark (European Commission, Agriculture and 43 

Rural Development, 2019). In particular, in the last years, different consortia in Italy have been 44 

constituted to valorize and preserve the traditional varieties of specific territories. Beside the 45 

protection provided by institutions (through laws and regulations) a wide effort has been put in 46 

developing analytical methodologies aimed at authenticating and tracing food specialties awarded 47 

of quality marks, for example (Lastra-Mejías e al., 2020; D’Archivio, et al. 2019a; Biancolillo et al., 48 

2018a; Rocha et al., 2019; Giannetti et al., 2019; Mora et al., 2020; Firmani et al. 2019).   In this 49 

context, analytical/chemometric approaches for the classification of garlic according to the cultivar 50 

and/or the geographical origin are essential tools to unveil commercial frauds arising from the 51 

intentional substitution of varieties cultivated in specific territories by commercial products. 52 

Various analytical techniques, such as 1H high resolution magic angle spinning-nuclear magnetic 53 

resonance spectroscopy (Ritota et al., 2012), infrared spectroscopy (Lu et al., 2011), high 54 

performance liquid chromatography (Montaño et al., 2011), high resolution mass spectrometry 55 

(Hrbek et al., 2018) and electronic nose (Trirongjitmoah et al., 2015), were applied to characterise 56 

garlic for traceability purposes. In these investigations, the organo-sulphur compounds and other 57 



 

 

metabolome components, such as amino acids, fatty acids, organic acids and sugars were 58 

recognised as promising traceability indicators to assess the garlic provenance or variety. In 59 

addition, garlic cultivated in different countries (Smith, 2005; Vasi et al., 2016) or close regions 60 

(D’Archivio et al., 2019b) were well discriminated using the trace multi-element profile determined 61 

by atomic spectroscopy. However, most of the above analytical methods are relatively complex, 62 

expensive, time-consuming and require specialized skills. Moreover, a preliminary sample 63 

treatment is often necessary, which, apart from further increasing complexity and cost of the 64 

characterisation method, may also alter the metabolomic profile of garlic. Attenuated Total 65 

Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy, by contrast, is a relatively 66 

simple, fast, cheap and non-invasive technique applicable to both liquids and solids without any 67 

complex sample pre-treatment. About garlic, ATR-FTIR spectroscopy was previously used to 68 

quantify the total phenol content and antioxidant activity with the aim of differentiating the samples 69 

grown in different US states (Lu et al., 2011), but the ATR-FTIR spectra, rather than directly on the 70 

garlic samples, were acquired from methanolic extracts.  71 

In the light of these considerations, the aim of the present work is to test the potentiality of ATR-72 

FTIR for geographical traceability purposes. In particular, red garlic varieties cultivated in four 73 

distinct areas of Italy, namely Sulmona (Abruzzo), Castelliri and Proceno (Lazio), and Nubia 74 

(Sicily), were analyzed and the observed spectra were handled by chemometrics. These red garlic 75 

ecotypes have been chosen because of their valuable characteristics; additionally, those cultivated in 76 

Sulmona and Nubia were also included by Slow Food Foundation for Biodiversity (Slow Food 77 

Foundation, 2019) in the list of local plant varieties to safeguard.   At first, ATR-FTIR spectra of 78 

bulbils and tunics were separately analysed by Partial Least Squares-Discriminant Analysis (PLS-79 

DA) (Sjöström et al., 1986); this approach is widely and satisfactorily applied for authentication of 80 

agro-food, in particular handling Infrared (IR) data (Biancolillo & Marini, 2018b). Finally, the two 81 

data blocks were jointly analyzed by multi-block classifiers, in order to test whether data fusion 82 

strategies would provide more accurate models, allowing a deeper comprehension of the system. 83 



 

 

Consequently, IR spectra were analyzed by Sequential and Orthogonalized Partial Least Square 84 

(SO-PLS) (Næs et al., 2011) or Sequential and Orthogonalized Covariance Selection (SO-CovSel) 85 

(Biancolillo et al., 2019a) coupled with Fisher’s Linear Discriminant Analysis (LDA). 86 

 87 

2. Materials and methods 88 

2.1. Garlic samples 89 

Bulbs of red garlic varieties cultivated in 2017 in four Italian sites, Sulmona (Abruzzo), Castelliri 90 

and Proceno (Lazio), and Nubia (Sicily), were kindly donated by producers working in the 91 

respective territories that assured the geographical origin of the samples. In particular, 81 garlic 92 

cloves were analyzed with the tunics; of these, 20 were from Castelliri, 20 from Proceno, 20 from 93 

Nubia and 21 from Sulmona. Eventually, spectra were collected on 82 skinned samples (21 were 94 

from Castelliri, 20 from Proceno, 19 from Nubia and 22 from Sulmona). Only 69 cloves were 95 

analyzed on both compartments (i.e., either with and without tunic). Of these, 19 were from 96 

Castelliri, 20 from Proceno, 17 from Nubia and 13 from Sulmona. Samples were acquired in July-97 

September 2017, stored under typical domestic conditions (bulbils were located into a box which 98 

allowed their perspiration, not exposed under direct light and in a cool room) and analyzed before 99 

December to avoid variations in the composition due to aging or sprouting.   100 

 101 

2.2 ATR FT-IR measurements  102 

The infrared spectra of garlic cloves and clove tunics were separately recorded on a PerkinElmer 103 

Spectrum Two™ (PerkinElmer, Waltham MA, USA) FT-IR spectrometer consisting in a deuterated 104 

triglycine sulfate (DTGS) detector and a PerkinElmer Universal Attenuated Total Reflectance 105 

(uATR) accessory equipped with a single bounce diamond crystal. Each spectrum was registered 106 

from 4000 cm-1 to 400 cm-1 with 1 cm-1 instrumental resolution and ten scans were averaged per 107 

spectral replicate. The background was collected with the crystal exposed to the air. Before each 108 

measurement, the ATR crystal was cleaned with methanol and air-dried. ATR FT-IR spectra were 109 



 

 

collected on intact freshly peeled cloves by contacting a flat part of the clove with the ATR crystal.  110 

A consistent force was applied using the pressure monitoring system integrated with the instrument 111 

to maximize the spectrum intensity but avoiding crushing the clove. The ATR FT-IR spectra of 112 

clove tunics were recorded separately following the same procedure. 113 

---------------------------------------------Insert Figure 1 approx. Here------------------------------------ 114 

The observed ATR-FTIR spectra (shown in Figure 1) display the typical vibration patterns of the 115 

plant constituents (proteins, fats and sugars) (Schulz & Baranska, 2007; Movasaghi et al., 2008) and 116 

reflect the composition of garlic clove and tunics. The garlic clove is mainly composed by water 117 

(65%), followed by carbohydrates (28%, mainly fructans), sulphur compounds (1-4%), proteins 118 

(2%), fibres (1.5%) and free amino acids (1-1.5%) (Rahman, 2003), while polysaccharides 119 

(cellulose, hemicellulose and pectin) and lignin are the main constituents of the bulbil skin (Kallel 120 

et al., 2015; Reddy & Rhim, 2014). The broad band centred at about 3290 cm-1 can be assigned to 121 

the N-H stretching of proteins and O-H stretching of carbohydrates and water, while the two sharp 122 

signals at 2920 and 2850 cm-1 are associated to symmetric and antisymmetric C-H stretching 123 

vibrations, respectively. The spectral region between 1200 and 900 cm-1, although showing 124 

different intensity and fine structure in the spectra of cloves and skins, takes origin from coupled C–125 

C, C–O stretching and C–O–H, C–O–C deformation modes of oligo- and polysaccharides. The 126 

distinctive band at 1025 cm-1 in particular can be assigned to the vibrational frequency of CH2OH 127 

groups of carbohydrates. In the same spectral region, the S=O stretching of sulfoxides may 128 

contribute to the signal at about 1090 cm-1(Nikolić et al., 2011), well visible in cloves but not in 129 

skin samples. The band at about 1160 cm-1 arises from the glycosidic linkage (C-O-C) vibrations. 130 

The weak bands in the region 880-900 cm-1 can be attributed to the C-O-C skeletal modes of 131 

carbohydrates and polysaccharides, the signal at 894 cm−1 in particular being diagnostic of ??-(1 → 132 

4)-glycosidic bonds.  The band at 1735-1740 cm-1 observed in both clove and skin samples are 133 

typical of the C=O stretching vibration of polysaccharides and cellulose. The signal at 1640 cm-1 134 

observed in the spectrum of cloves can be assigned to the bending vibration of water and to the 135 



 

 

stretching of carbonyl of proteins (amide I), while the signals at 1552 cm-1 and 1252 cm-1 can be 136 

attributed to the amide II and amide III bands (associated with coupled C–N stretching and N–H 137 

bending vibrations of the peptide group). Additionally, the stretching vibrations of aliphatic and 138 

aromatic double bonds fall in the region 1640-1500 cm-1 as well. The signal at 1225-1230 cm-1 of 139 

the skin spectra can be attributed to the stretching vibrations of C-O bonds in lignin (Stark et al., 140 

2016). The band observed at about 1600 cm-1 in skin samples, partially overlapped to the amide I 141 

band of proteins in the clove spectra, can be assigned to the asymmetric stretching of carboxylate 142 

groups of amino acids, proteins or polysaccharides. The signals due to the O-H stretching of 143 

adsorbed water and asymmetric stretching of lignin aryl rings also fall in this spectral region, while 144 

the band at about 1510 cm-1 can be assigned to the symmetric stretch of the aromatic groups of 145 

lignin (Stark et al., 2016). The two sharp signals at 1460 and 1470 cm-1 observed in clove samples 146 

and sometimes superimposed, and the bands at 1427 cm-1 and 1328 cm-1 are due to O-H 147 

deformation vibration, and to various vibrational modes of CH2 groups of lipids, polysaccharides 148 

and proteins. The two weak signals at about 720 and 727 cm-1 observed in the clove spectra but not 149 

in the skin samples can be attributed to C-S stretching vibrations of di-alkyl sulphides and 150 

disulphides (Minzhen et al., 2015) and to C-H deformation vibration.  151 

 152 

2.3 Chemometric Analysis 153 

The ATR-FTIR signals collected as described in the previous section have been analyzed by means 154 

of chemometric tools, in order to classify samples according to their geographical origin. To 155 

achieve this goal, three classification methods have been employed: PLS-DA, in order to handle the 156 

two data blocks individually, and SO-PLS-LDA or SO-CovSel-LDA, to achieve a simultaneous 157 

analysis of both sets of signals. 158 

 159 

2.3.1 Partial Least Square-Discriminant Analysis (PLS-DA)  160 



 

 

Discriminant classification methods discern samples on the basis of their mutual differences. 161 

Applying these approaches, the multi-dimensional samples-space is entirely divided into class-162 

regions, and each object will be assigned to one specific category. One of the first discriminant 163 

classifiers proposed is the Linear Discriminant Analysis by Fisher. This approach, despite it 164 

performs well and it is still widely used, presents a considerable limitation: it can be used only when 165 

the data matrix is invertible. This condition is rarely met, in particular working with instrumental 166 

data, where the number of variables is likely higher than the number of samples.  167 

Among the different methods developed in order to enable the application of discriminant analysis 168 

on ill-conditioned data matrices, Partial Least Square-Discriminant Analysis (PLS-DA) (Sjöström et 169 

al., 1986; Ståhle & Wold, 1987) is probably one of the most widely applied. One of the main 170 

reasons for its diffusion is that it is suitable to handle highly correlated variables (e.g., spectroscopic 171 

data), which makes it applicable on non-invertible data blocks. PLS-DA exploits the PLS algorithm 172 

(Wold et al., 1983) to solve a classification problem as if it were a regression one (Barker, & 173 

Rayens, 2003); mathematically, this corresponds to estimate Eq.1:  174 

� = �� + �    (1) 175 

Where � is the data matrix of measures collected on samples, � and � are the regression 176 

coefficients and the residuals, respectively, and  � is the so-called Dummy Matrix, a binary matrix 177 

(of dimensions � × 
, where � is the number of the analyzed samples and 
 is the number of 178 

categories present into the system) encoding the class-belonging. Once Eq.1 is solved (i.e., once the 179 

calibration model is built), whenever new measures (���) are collected on unknown samples, it is 180 

possible to predict their class-belonging (solving ����=����). Nevertheless, ����, i.e., the matrix 181 

collecting the responses predicted on new samples, is not categorical, but made of continuous 182 

values, so that it is necessary to define a criterion for class-attribution. Accordingly, classification 183 

may be accomplished, e.g., by assigning the sample to the category corresponding to the highest 184 

value of the predicted response, by application of LDA either on scores or on predicted responses or 185 

by a bayesian approach based on Gaussian mixture modeling (Perez et al., 2009).   186 



 

 

  187 

2.3.2 Sequential and Orthogonalized Partial Least Square-Linear Discriminant Analysis (SO-188 

PLS-LDA)  189 

Sequential and Orthogonalized Partial Least Square-Linear Discriminant Analysis (SO-PLS-LDA) 190 

(Biancolillo et al., 2015) is a multi-block discriminant classifier whose algorithm has been 191 

developed combining a multi-block regression method, SO-PLS (Næs et al., 2011), and Fisher’s 192 

Linear Discriminant Analysis, where SO-PLS is used to reduce the dimensionality of the data 193 

blocks (solving problems related to ill-conditioned matrices) prior the application of the 194 

discriminant approach. 195 

In order to create a SO-PLS-LDA model, first of all it is necessary to build the SO-PLS one; given 196 

two predictor blocks, � and �, and a dummy �, this can be done applying the procedure described 197 

in (Næs et al., 2011). Briefly, � is fitted to � by PLS (obtaining the �-scores ��), � is 198 

orthogonalized with respect to �� and then the resulting matrix (�����) is used to predict (by PLS) 199 

the residuals from the previous regression.  Finally, the predictive model is calculated summing up 200 

the outcomes of the two PLS-models (the reader is addressed to (Næs et al. 2011) for more details).   201 

Once the SO-PLS model is built, classification is achieved by applying LDA on the predicted � (or 202 

on the row-augmented scores) (Biancolillo & Næs, 2019b).   203 

 204 

2.3.3 Sequential and Orthogonalized-Covariance Selection-Linear Discriminant Analysis (SO-205 

CovSel-LDA) 206 

As the name suggests, Sequential and Orthogonalized-Covariance Selection-Linear Discriminant 207 

Analysis (SO-CovSel-LDA) (Biancolillo et al., 2019a) is a multi-block classification method 208 

strictly linked to SO-PLS-LDA. In fact, the two approaches have similar algorithm, but in SO-209 

CovSel-LDA the feature reduction is operated by a variable selection method called Covariance 210 

Selection (CovSel) (Roger et al., 2011). CovSel is a feature reduction approach developed to select 211 

variables in a regression context; in fact, it points out the predictors which contribute the most to the 212 



 

 

estimation of a response. Briefly, considering a predictor block �, used to estimate a response �, 213 

Covariance Selection iteratively selects the �-variables presenting the highest covariance with the 214 

response. As a consequence, the main divergence between SO-PLS and SO-CovSel, is that, in the 215 

latter, calculations are based on the original variables instead on the scores (Biancolillo et al., 216 

2019a). Considering the two predictor blocks case above-mentioned (� and �), in order to create a 217 

SO-CovSel model, the first step consists in selecting variables from the �-block (by CovSel), 218 

obtaining the reduced matrix ����, which is used to estimate the � by ordinary least squares (OLS). 219 

Then, � is orthogonalized with respect to ����, obtaining �����. Covariance Selection is then used 220 

to select the �����-variables which contribute the most to the prediction of the residuals (��) from 221 

the previous regression, obtaining �����,���, which is used to estimate �� by OLS. Finally, the 222 

predicted � is calculated by summing up the individual predictions made by the two regressions. 223 

Once the SO-CovSel model is created, LDA can be applied on the predicted �. Also in this case, in 224 

order to solve the classification problem, the � is a binary matrix encoding class-belongings. 225 

   226 

3. Results and discussion 227 

After the collection of spectra, IR signals were exported in MatLab (The Mathworks, Natick, MA; 228 

version 2015b) for the analysis. In order to pursue external validation of the models, spectra are 229 

reorganized into a training set, for the optimization of the calibration model, and a test set, for 230 

validation, by the Duplex algorithm (Snee, 1977) (more details about the division are reported 231 

below). 232 

In Figure 1 the average spectra collected on cloves (in red) and on tunics (in blue) are shown. From 233 

the figure it is straightforward the IR signals collected on the different compartments of garlic are 234 

slightly different, in particular in specific absorption ranges; a wider discussion over the 235 

interpretation of the spectra is reported in the related sections.  236 



 

 

 237 

Independently on the classifier used, different pretreatments have been tested on training spectra: 238 

bare mean centering, 1st or 2nd derivative (following the Savitzsky-Golay approach, using 19 points 239 

window and a second or third order for the interpolating polynomial, respectively) (Savitzky & 240 

Golay, 1964), Standard Normal Variate (SNV) (Barnes et al., 1989) and combinations of SNV an 241 

derivatives; the most suitable preprocessing approach (together with the optimal complexity, i.e., 242 

the number of latent variables) has been defined as the one leading to the lowest classification error 243 

in a 7-fold cross-validation procedure. Even if not always explicitly mentioned, data is assumed to 244 

be mean-centered prior the creation of any model.   245 

 246 

3.1 PLS-DA analysis on tunics  247 

As above-mentioned, the IR signals were divided into a calibration and a validation set. The 81 248 

signals collected on tunics were divided into a training set of 61 samples (15 belonging to Class 249 

Castelliri, 15 appertaining to Class Proceno, 15 for Class Nubia and 16 from Sulmona) and a test set 250 

of 20 samples (5 per each category). Then, six different pretreatments (listed in Table 1) have been 251 

tested on data, and an equal number of PLS-DA models were calculated (on training samples); the 252 

preprocessing approaches, the number of latent variables (LVs) extracted and the average cross-253 

validated classification errors (%) are reported in Table 1.  254 

---------------------------------Insert Table 1 approx. here------------------------------------------------- 255 

 256 

After inspection of Table 1, the optimal calibration model has been built on data pretreated by SNV, 257 

1st derivative and mean centering; this PLS-DA model, applied on the test set (preprocessed 258 

accordingly) provided a classification rate of 75% (corresponding to 5 misclassified test samples 259 

over 20; of these, 2 belong to class Castelliri, 2 to class Sulmona and 1 appertains to class Nubia).    260 

After the creation of any PLS-based model, in order to give a depth insight into the data set under 261 

study, it is possible to calculate the Variable Importance in Projection (VIP) indices (Wold et al., 262 



 

 

1993) to understand which variables contribute the most to the model; generally, each spectral 263 

variable presenting a VIP index higher than 1 is considered relevant. A graphical representation of 264 

VIP analysis is shown in Figure 2; one plot per class is displayed in order to show which variables 265 

characterize each category.  266 

----------------------------------Insert Figure 2 approx. here-------------------------------------------------- 267 

 268 

 269 

In Figure 2, the black solid lines represent the average training signals (offset to avoid overlapping 270 

and make them visible) whereas the selected variables are highlighted as bold colored dashed lines: 271 

red for Class Castelliri, blue for Class Proceno, green for Class Nubia and cyan for Class Sulmona. 272 

From the figure it is possible to see that, as expected, the most relevant instrumental features are 273 

more or less the same among the four categories; in fact, independently on the class, variables 274 

presenting VIP indices higher than 1 are those around 2849 cm-1 and 2920 cm-1, ascribable to the 275 

symmetric and antisymmetric stretching of the C-H bond, those in the spectral range between 1640 276 

cm-1 and 1629 cm-1, attributable to the stretching of carboxylate groups, variables around 1417cm-1 277 

ascribable to CH bending and some from 1181 cm-1 to 914 cm-1, linked to the absorptions caused by 278 

CH deformations, skeletal stretching of C-O and C-C.  279 

Despite the similarities clearly visible in the plot, it is also possible to spot some variables that are 280 

selected for the characterization of some categories, but not for others. For instance, spectral 281 

variables from 1192 cm-1 to 1292 cm-1 present VIP indices higher than 1 for all the categories 282 

except for Class Castelliri, probably indicating a different composition in oligo- and 283 

polysaccharides among the diverse categories. More details about spectral absorptions can be found 284 

in Section 2.2 and in the related literature.  285 

 286 

3.2 PLS-DA analysis on cloves 287 



 

 

The PLS-DA analysis of spectra collected on cloves has been carried out in the same way as 288 

described above for tunics. The 82 signals were divided into a training set of 62 objects (containing 289 

16 samples per Class Castelliri, 15 Proceno, 14 Nubia, and 17 per Class Sulmona) and a test set of 290 

20 samples (5 per category). The same pretreatments have been tested on data, and, also in this 291 

case, the most suitable has been defined (together with the optimal complexity) in cross-validation; 292 

results are reported in Table 2. 293 

----------------------------------Insert Table 2 approx. here-------------------------------------------------- 294 

  295 



 

 

 In this case, the model leading to the lowest classification error in cross-validation is the one built 296 

on data after 1st derivative (and mean centering). When the optimal model was applied to the test 297 

set, only 3 over 20 samples were misclassified (correct classification rate: 85%); among these, 2 298 

belong to Class Castelliri and 1 to Class Sulmona. 299 

Also in this case the VIP analysis was pursued in order to inspect the variables contributing the 300 

most to the observed differentiation among the geographical origin; the agreement regarding the 301 

selected variables among the different classes was strong (plot is not shown); the most relevant 302 

variables from the classification point of view were those from 2944 cm-1 to 2837 cm-1, and some 303 

around 1413 cm-1, and 1757 cm-1. 304 

Despite the results obtained by the individual analysis of data blocks were quite satisfactory, the 305 

above-mentioned multi-block approaches have been used, testing whether it would be possible to 306 

improve predictions.    307 

 308 

  309 



 

 

3.3. Multi-block analysis 310 

Unfortunately, the IR analysis of both tunics and cloves was not available for all the samples 311 

discussed for the PLS-DA analysis; consequently, the multi-block data set has been reduced to the 312 

69 samples which have been analyzed on both compartments.   313 

In order to divide samples into a training and a test set taking into account both blocks of measures, 314 

two PCA models have been calculated, one per each set of data. Then, the first 5 principal 315 

components extracted by each PCA model were row-wise concatenated; finally, samples were 316 

divided into training and test set by the Duplex algorithm (Snee, 1977) calculating sample distances 317 

in the scores-space defined by the PCs.  318 

Due to the reduction of the available samples, the training set included 49 samples (14 belonging to 319 

Class Proceno, 15 from Class Castelliri, 12 appertaining to Class Nubia and 8 of Class Sulmona), 320 

and the test set was made of 20 objects (5 objects per class).  321 

As anticipated, two multi-blocks classifiers have been applied at this stage of the work; 322 

independently of the approach used, spectra collected on cloves have been used as first input block, 323 

while signals collected on tunics have been used as the second one. 324 

Classification models have been built also using an inverted input order (tunics-data modelled as 325 

first block and clove-data as second) but results were slightly worse; consequently, these will not be 326 

discussed in the following sections.  327 

 328 

3.3.1 SO-PLS-LDA analysis  329 

Building the SO-PLS models, all the possible combinations of the above-mentioned preprocessing 330 

approaches have been tested on the two data blocks in a cross-validation procedure (7 cancellation 331 

groups). The optimal calibration model is the one calculated using the mean-centered spectra 332 

collected on cloves as first input block and signals on tunics as the second one (pretreated by 2nd 333 

derivative and mean centering). The number of components extracted from the two blocks are 4 and 334 

11 for spectra on cloves and tunics, respectively. This model has been applied on the test set 335 



 

 

(pretreated accordingly) and it provided 100% of correct classification for all categories except for 336 

class Sulmona, whose correct classification rate was 80% (corresponding to 1 misclassified 337 

sample). The results are graphically shown in Figure 3, where samples are projected onto the space 338 

of the first two canonical variates. 339 

------------------------------Insert Figure 3 approx. here-------------------- 340 

 341 

Looking at the plot, it is possible to recognize a quite clear distinction among the four different 342 

classes. In particular, the first canonical variate allows discriminating samples belonging to class 343 

Castelliri (red circles, at negative values) from the other three categories; while the second 344 

canonical variate allows distinguishing the objects belonging to class Proceno (blue squares) and 345 

class Sulmona (green triangle), at negative scores, from those belonging to class Castelliri (red 346 

circles) and Nubia (black diamonds) at positive values. From the figure, it is easy to spot the 347 

misclassified sample from class Sulmona (green triangle), in fact, this falls closer to the centroid of 348 

class Nubia rather than to the one of its own category. 349 

VIP analysis was pursued on the SO-PLS model, following the embedded strategy described in 350 

(Biancolillo et al., 2016); nevertheless, the results were not relevantly different from those 351 

previously described for the individual PLS-DA analysis, and therefore they are not reported.  352 

  353 

3.3.2 SO-CovSel-LDA analysis 354 

Similarly to SO-PLS-LDA analysis, also for SO-CovSel-LDA, several multi-block models have 355 

been built (in a cross-validation procedure) in order to test different combinations of pretreatments; 356 

simultaneously, also the number of variables to be selected per each block is chosen. The optimal 357 

model has been calculated on the clove-block pretreated by 1st derivative whereas the signals 358 

collected on tunics were preprocessed by SNV and 1st derivative. The number of selected variables 359 

is 1 and 7 on cloves- and tunics-block, respectively. The application of the calibration model to the 360 



 

 

test set led to a correct classification rate of 85%, corresponding to 3 misclassified samples in total 361 

(2 object from Class Castelliri and 1 belonging to Class Sulmona assigned to Class Proceno). 362 

As described in the Section 2.3.3, SO-CovSel-LDA naturally provides information about the 363 

variables contributing the most to the classification. A visual representation of the selected variables 364 

is reported in Figure 4, in particular, the mean spectra collected on cloves and tunics are reported in 365 

in Figure 4a and Figure 4b, respectively; selected variables are highlighted by red circles.   366 

-----------------------------------Insert Figure 4 approx. Here------------------------------------------- 367 

 368 

As expected, the selection provided by CovSel is sharper than the one achieved by VIP analysis; 369 

nevertheless, the two are in agreement. In fact, CovSel selects the variable at 2843 cm-1 in the 370 

spectra collected on cloves, and those at 2917 cm-1 and 3285 cm-1 on tunics, probably associated to 371 

CH3, CH2, O-H and N-H stretching; variables at 1013 cm-1, 1034 cm-1, 1588 cm-1, 400 cm-1 and 945 372 

cm-1 associable to polysaccharides (for more details the reader is addressed to Section 2.2 and to the 373 

related literature).   374 

 375 

4. General overview of the results 376 

In general, all the classification models provided acceptable results, indicating ATR FT-IR coupled 377 

with discriminant classifiers could represent a suitable approach for assessing the geographical 378 

origin of the investigated cultivars of red garlic. The best results, from the prediction point of view, 379 

are provided by a multi-block approach; this outcome is somehow expected, because data fusion 380 

strategies are supposed to provide comparable or better results than models built on the individual 381 

data blocks (Biancolillo, et al.  2019c). In order to ease a comprehensive overview of the 382 

classification rates provided by the different models, they are reported all together in Table 3.  383 

------------------------------------Inset Table 3 approx. here------------------------------------------------ 384 

From the table, it is straightforward the most suitable methodology to solve the classification 385 

problem under study is SO-PLS-LDA. Concerning the single-block analysis, the best results are 386 



 

 

provided by the model built on data collected on the cloves. This latter achievement suggests this 387 

compartments contains more information suitable for distinguishing the different red garlic 388 

ecotypes. 389 

 390 

5. Conclusions 391 

The aim of the present work was to develop a non-destructive approach suitable for distinguishing 392 

different cultivars of red garlic according to their geographical origin. In order to achieve this goal, 393 

samples of red garlic harvested in four different Italian towns (Castelliri, Proceno, Nubia and 394 

Sulmona) were analyzed by ATR-FTIR spectroscopy and classified. Spectra collection was pursued 395 

on both tunics of bulbils and cloves, avoiding any other physical-chemical pretreatment of samples. 396 

The data-block obtained were individually analyzed by PLS-DA and involved in multi-block 397 

models by the application of SO-PLS-LDA and SO-CovSel-LDA. In general, all the approaches 398 

provided good results from the prediction point of view. Concerning the classification pursed on the 399 

individual data blocks, the lowest classification error was provided by the PLS-DA model 400 

calculated on spectra collected on cloves, which led to the misclassification of three test objects 401 

over twenty. Nevertheless, the best results have been provided by a data-fusion strategy, the SO-402 

PLS-LDA approach, which allowed achieving extremely satisfactory results, misclassifying only 403 

one sample over the 20 constituting the validation set.  404 

 405 
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 600 

Figure captions 601 

Figure 1 Mean spectra collected on cloves (in red) and on tunics (in blue). 602 

Figure 2 VIP analysis. Solid black lines represent mean spectra for the four different categories 603 

(offset to make them visible) while bold variables highlight selected features. The upmost plot 604 

refers to spectra collected on samples from Sulmona, lines in the middle are mean spectrum for 605 



 

 

class Nubia and Proceno, respectively; the lowest lines represent the mean signal for samples 606 

belonging to class Castelliri. 607 

 608 

Figure 3 SO-PLS-LDA analysis: Samples project onto the first to canonical variates. Legend: Red 609 

circles: Class Castelliri; Blue squares: Class Proceno; Black diamonds: Class Nubia; Green 610 

triangles: Class Sulmona. Empty and filled symbols represent training and test samples, 611 

respectively.  612 

 613 

Figure 4 SO-CovSel Analysis: blue line represents mean spectrum collected on a) cloves b) tunics. 614 

Variables selected by SO‐CovSel are circled in red. 615 











 

 

Table 1 PLS-DA analysis on tunics: Cross-validated mean classification errors (%) as function of 

preprocessing and complexity (LVs). 

Preprocessing LVs Average classification errors (%-CV) 

Mean Centering (MC) 10 12.3 

1st Derivative + MC 12 10.2 

2nd Derivative + MC 7 12.5 

SNV + MC 10 11.8 

SNV + 1st Derivative + MC 8 8.7 

SNV + 2nd Derivative + MC 10 12.0 

 

  



 

 

Table 2 PLS-DA analysis on cloves: Cross-validated mean classification errors (%) as function of 

preprocessing and complexity (LVs). 

Preprocessing LVs Average classification errors 

(%) 

Mean Centering (MC) 13 13.4 

1st Derivative + MC 15 10.5 

2nd Derivative + MC 13 10.9 

SNV + MC 16 12.8 

SNV + 1st Derivative + MC 14 12.3 

SNV + 2nd Derivative + MC 9 16.4 

 

  



 

 

Table 3 Classification rates (on the test set) for the four proposed strategies. 

Method Classification rates on the test 

set (%) 

PLS-DA on tunics  75.0 

PLS-DA on cloves 85.0 

SO-PLS-LDA 95.0 

SO-CovSel-LDA 85.0 

 




