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Abstract 

In precision agriculture, most studies focus on spatial crop variability whereas temporal
variability and its role in decision-making is equally important. The classical methods
for temporal analysis have limitations, potentially resulting in information loss. A novel
method based on a  Bayesian functional  Linear regression with  Sparse  Steps functions
(BLiSS method) is evaluated in this paper to investigate continuous influence analysis
when working with time series data. The example of the influence of temperature on the
number  of  clusters  per  vine  during  the  year  before  harvest  was  considered  as  an
example  application.  The  evaluation  of  the  BLiSS  results  was  done  by  comparing
identified critical time periods with traditional viticulture knowledge in the literature. It
showed the relevance of the BLiSS method, highlighting already known results  and
identifying new critical time periods for yield elaboration.
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Introduction

In precision agriculture, most studies have focused on spatial crop variability (Oliver et
al.,  2013)  whereas  temporal  variability  and  its  role  in  decision-making  is  equally
important. Indeed, most indicators of production yield and quality are time-dependant.
Understanding their evolution during the crop growth cycle and the factors that drive
them is often an issue for better production management. This implies understanding the
pattern of influencing factors over a whole production period, as well as the correlations
between influences. 
Historically, ‘temporal’ studies have focused on using climate variables at a few known
key phenological stages or time steps. This has been done to simplify the analysis and
permit the use of classical methods, such as least squares linear regression. However,
these  classical  approaches  have  limitations:  i)  they  depend  on  choices  of  climate
variables and timing, ii) it is often necessary to suppress data or to analyse only parts of
a time series, and iii) times series temporality (observations correlated over time) is not
considered.  Therefore,  information  about  temporal  crop  physiological  regulation  is
potentially missed.
To advance temporal analysis in the crop production domain, this paper evaluates the
potentialities of a new approach to study quantitative time series data. It uses a Bayesian
functional Linear regression with Sparse Steps functions (BLiSS method) (Grollemund
et  al.,  2019).  The principle  of this  method is  to  analyse  the complete history of  an
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explanatory  variable  to  identify  the  periods  during  which  it  has  an  impact  on  the
explained variable. It takes into account the data correlation over time i.e. it allows the
analysis of a period’s impact according to the impact of others periods. By overcoming
the classical approaches’ limitations, the BLiSS method could result in the discovery of
new periods of influence of an explanatory variable on an explained variable in many
agricultural sectors. 
The aim of this paper is therefore to test the potentialities of the BLiSS method on a
study  case  that  is  well  understood  in  the  literature.  To  this  end,  the  impact  of
temperature history in the year before harvest on the number of clusters per vine has
been chosen as a study case. Indeed, grape yield elaboration is an interesting case study
in  temporal  terms  as  grapevine  is  a  perennial  crop,  meaning  its  yield  determining
process covers two growth cycles (Howell, 2001 ; Vasconcelos et al., 2009). These two
years are noted n-1 and n, the year  n being the year of harvest (Fig. 1). Thus, at least
two  growth  cycles  overlap  and  there  is  an  interdependency  between  the  different
physiological processes leading to memory effects in vine physiology (Ravaz & Sicard,
1911 ; Keller et al., 2010). 

Figure  1.  Key phenological  stages  and  the  temporal  pattern  of  the  grapevine  yield
determining process over two seasons (aligned for the northern hemisphere).

The number of clusters per vine (CN) is a major yield component, said to explain up to
60% of  the  final  yield  variability  (Clingeleffer,  2001).  However,  understanding  the
timing of its elaboration and its sensitivity to external factors such as temperature is
complicated  by  its  interdependency  with  other  physiological  processes  over  time.
Therefore,  there  is  a  challenge  to  determine  all  the  periods  during  which  any
explanatory variable, such as temperature, has an impact on CN taking into account that
the  effects  of  theses  periods  are  correlated  to  many  others  periods’  multivariable
impacts. To do this, classical approaches have been carried out using key phenological
stages (Buttrose, 1974 ; Pouget, 1981) or time steps (Guilpart et al., 2014 ; Molitor &
Keller, 2017). They have shown that temperature is one of the major factors driving
grape fruitfulness (Buttrose, 1974 ; Srinivasan & Mullins, 1981 ; Petrie & Clingeleffer,
2005).  In the literature, periods of phenological development during year  n-1 for one
cycle are referred to by their concomitance with the phenological stages of year n. For
example, the development of inflorescence primordia linked to the yield in year n starts
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with budbreak in year  n-1 (Vasconcelos et al., 2009). Following this notation, a  few
hours  of  elevated  temperature  around  budbreak  of  year  n-1 should  be  sufficient  to
positively  impact  inflorescences’  or  clusters’  number  per  vine  in  year  n (Buttrose,
1974 ; Srinivasan & Mullins, 1981 ; Pouget, 1981 ; Lobell et al., 2006). Critical stages
have also been highlighted around bloom (Durquety et al. ; 1982 ; Molitor & Keller,
2017) of year  n-1. Molitor and Keller (2017) found that high maximum temperatures
around veraison and low average temperatures during maturation of year n-1 favoured
high yield. 
As a study case, this paper aims to assess whether using the BLiSS method to analyse
the  impact  of  the  whole  history  of  temperature  in  year  n-1 on  CN permits  the
identification  of  critical  periods  previously  described  and  well  understood  within
literature. It also tests the potential detection of previously unknown critical periods.

Materials and Methods

Data description 

Clusters Number per vine   data  
Data  were  collected  from  a  commercial  Cabernet-Sauvignon  (Vitis  vinifera  cv.
Cabernet Sauvignon) vineyard field (~1 ha) in the Bordeaux region, France. The vines
are short-pruned, trellised,  non-irrigated,  partially grass covered in the inter-row and
planted at a density of 8696 vines/ha. The CN was determined after fruitset on the same
100 vines in the vineyard from 2007 to 2018, with the exception of 2014. Note that
depending  on  the  seasonal  conditions,  cluster  thinning  is  often  performed  in  this
vineyard, such that the final harvest differs from the amount of fruit set. The occurrence
date  of  the  principal  phenological  stages  (budbreak,  bloom,  fruitset,  veraison)  was
recorded by the vineyard manager according to the Gregorian calendar from 2006 to
2018.

Temperature data
Temperature data were collected by a local weather station (provided by DE.MET.E.R,
Villenave d’Ornon,  France)  located  in  the wine estate  from 2006 to  2018. Multiple
measurements were observed, however, only daily minimum (Tmin) and average (Tavg)
temperature (°C) are considered in this analysis as their impact on grape yield is well
documented in the literature.
The Tmin and Tavg influences on CN have only been studied during the growing season
of year n-1 (from 1st of March to 25th of October). The potential impact of winter or the
growing season of year n was not investigated in this preliminary study, but it could be
included  following  the  same  steps.  To  reduce  processing  time,  temperature  was
aggregated into 10-day periods. The Tmin therefore corresponded to the minimum daily
temperature during each of these periods. The Tavg corresponded to the average of daily
temperatures over the 10-day periods. It is expected that better software and increased
computing power will remove the need for this pre-processing step in the near future.

Analysis by the BLiSS method

Theory
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The BLiSS method (Grollemund et al., 2019) allows quantitative data (variable Y) to be
explained by functional data (variable X) using a linear functional regression model. 

Y=α+∫
0

T

β (t )X ( t )dt+ε      (1)

Where  Y is  the  explained  variable,  α  a  scalar,  X the  explanatory  variable,  β(t) the
parameter function to be estimated and ε  a residual error supposed to follow a normal
distribution N(0,σ 2). In this paper,  Y corresponds to CN and X corresponds to Tmin or
Tavg.  BLiSS  is  a  Bayesian  method:  it  supposes  that  the  parameter  β(t) is  random,
formulates an a priori estimation of the β(t) distribution and updates it with the data to
produce  an  a  posteriori estimation  of  the  β(t) distribution.  The  BLiSS  method
investigates the estimated distribution support, i.e. all the t instants for which β(t) differs
from 0. The BLiSS method thus delivers two estimators: one of the  β(t) function and
another of the β(t) function support (here time). The latter allows periods during which
X has an impact on Y to be identified.
The output of BLiSS is best represented in a graphical form (e.g. Fig. 2). By way of
explanation, Fig. 2 features the a posteriori distribution of the BLiSS estimator of β(t)
as a line estimated over time. If the β(t) estimator is null (= 0) during a certain period, it
means that the variable  X is not related to  Y. If it has a positive value during a given
period of time,  X is positively correlated to  Y. In contrast, if it  has a negative value
during a period of time,  X is negatively correlated to  Y. The duration of the detected
periods corresponds to their time length (distance on the x-axis). The magnitude of the
detected periods corresponds to their estimated β(t) value (distance on the y-axis). The
higher the magnitude, the greater the impact X has on Y. The BLiSS method also allows
the  correlation  between  X and  Y to  be  estimated.  Practically,  it  corresponds  to  the
influencing period detection confidence. The colour code is a visual way to represent it.
The darker the colour is (red on the extreme case), the more confident the correlation
between X and Y during this period. In contrast, the lighter the colour is (white on the
extreme case), the less confident the correlation.

Analysis
Each individual corresponds to a CN per year. The dataset was therefore composed of
5368 individuals to be analysed. The analysis was performed using the package  bliss
version  1.0.0  (Grollemund,  2019)  in  R 3.5.1.  The  Tmin and  Tavg time series  were
analysed independently.

Results interpretation
Assuming that the ecophysiological results reported in the literature and reviewed in the
introduction  represent  the  diversity  of  the  classical  method applications,  the  BLiSS
method results were evaluated by comparison with the identified critical time periods.
The literature review focused on temperature impact on the number of inflorescences or
clusters per vine and on production yield during the year n-1.

Results 

Figure 2A shows the influence of daily minimum temperature during the year  n-1 on
CN. Four periods of influence were detected: (i) from mid-March to late April, (ii) from
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mid-July to early August, (iii) from early August to late September and (iv) from late
September to  mid-October.  The detection of  each  of  these  periods  had an adequate
degree of confidence (dark colour). Three out of these four periods (i,ii and iv) were
positively correlated to the CN i.e. elevated Tmin during these periods favoured a high
CN. In contrast, high Tmin during the (iii) period favoured a lower CN. The duration of
periods (i) and (iii) exceeded one month whereas the period (ii) and (iv) lasted between
two and three weeks. The absolute magnitude for each period gave an indication of the
intensity  of  the  temperature  impact  on  CN.  It  was  6  for  periods  (ii)  and  (iv)  and
respectively 1.5 and 3 for periods (i) and (iii).
Figure 2B shows the influence of daily average temperature on  CN during year  n-1.
Three periods of influence were detected: (v) from late April to early June, (vi) from
late June to late July and (vii) from late July to early September. The detection of each
period had a lesser degree of confidence (lighter yellow) than periods (i) and (iii) (Fig.
1A). Two periods, (v) and (vi), were positively correlated to  CN, meaning high  Tavg
during these periods favoured a higher  CN. In contrast, high  Tavg during period (vii)
reduced CN. The duration of these three periods were between one month and a month
and a  half.  The  absolute  magnitude  of  periods  (v),  (vi)  and  (vi)  were  9,  2  and  11
respectively.

Figure 2. Analysis of possible periods of influence respectively of (A) daily minimal
temperature (Tmin) and (B) average temperature (Tavg) on the number of clusters per
vine from 1st of March to 25th of October of year  n-1. The black line indicates the  β
estimator  distribution.  The  colour  gradient  from white  to  red  illustrates  the  density
probability function of the β estimator distribution. The x axis labels  M,A,M,J,J,A,S,O
represent  March,  April,  May,  June,  July,  August,  September,  October  respectively.
Average dates of budbreak, bloom and veraison recorded on the commercial field from
2006 to 2018 vintages are indicated.

The BLiSS results are in agreement with literature 

Period (i) (Fig. 2A) was associated with the budbreak period in the Bordeaux region. It
is in agreement with Pouget’s (1981) results on the number of inflorescences per  vine
under experimental conditions and the findings of Lobbell et al. (2006) when studying
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night temperature around budbreak in California. Period (v) corresponded to the bloom
period in the Bordeaux region. This agrees with the results of Durquety et al. (1982) on
CN for Petit Manseng and the Molitor and Keller (2017) study on the impact of minimal
temperature on production yield for Müller-Thurgau and Riesling in Alsace (North-East
of  France).  In  the latter  case,  the correlation  between minimum temperature  around
bloom and yield was tested and found positive, as observed in period (v) (Figure 2B).
Period (ii) coincided with veraison in the Bordeaux region. Only Molitor and Keller
(2017) reported this period studying daily  Tmax effects on yield for Müller-Thurgau.
The (iii) and (vii) periods are associated with the maturation period in the Bordeaux
region.  Molitor  and  Keller  (2017)  also  reported  a  negative  impact  of  minimum
temperature on future yield potential during this period.

The BLiSS results allow further exploration of the data 

Periods (iv) and (vi) have not been previously cited in the literature but they had a good
degree of certainty according to the BLiSS method. They respectively correspond to a
post-harvest and a fruitset period. Since the method correctly identified known periods
of influence (previous section), the hypothesis is that these periods are also influential
on  CN.  This  shows the  potential  ability  of  BLiSS to  highlight  unknown periods of
influence  of  temperature  on  CN.  Unlike  the  classical  method results,  for  which  the
duration of the resulting periods is determined by the pre-analysis choices, the periods
detected  by the  BLiSS method were  characterized  by  different  durations.  It  is  also
interesting to note that the temperature influence during summer was characterized by
several periods in Fig. 2, whereas Molitor and Keller (2017) only reported one period of
long  duration.  The  BLiSS  method  had  also  refined  the  duration  of  known  key
influencing periods. The proposed alterations in duration and the identification of new
periods of influence now need to be properly validated in a viticulture context. If true,
these  results  have  increased  the  knowledge  and  the  temporal  resolution  of
environmental effects on yield and consequent potential management.

Discussion

The BLiSS method : a novel and relevant method to analyse time series data

The BLiSS method allowed the detection of already confirmed periods of daily minimal
and average temperature on  CN and potential vineyard yield. This point validated the
use of this method to analyse time series of agricultural  data. Moreover,  the method
allowed the detection of previously unknown periods of influence or the refinement of
the  duration  of  known  key  periods.  This  demonstrated  the  advantages  of  a  linear
functional model in a Bayesian framework for the temporal analysis of agricultural data.

Comment on the interpretation of the BLiSS results 
Each  period  that  was  detected  with  the  BLiSS  method  was  characterized  by  a
magnitude, a duration and a degree of confidence. There are therefore three criteria that
can  be  used  to  compare  the different  periods.  However,  classifying  the  periods  by
decreasing order of influence required an integration of the information linked to both
the degree of confidence and the magnitude. This may not be simple in every case. For
example,  a  high  magnitude  but  medium  degree  of  confidence  period  cannot  be
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prioritized in  comparison  with  a  high  degree  of  confidence  but  medium magnitude
period. Thus,  the interpretation of the BLiSS results should be decomposed into the
three criteria first and an expert knowledge of the field of study should then balance the
interpretation.  Clearer  interpretation  of  the  BLiSS  outputs  is  an  area  for  further
development.

Potentialities for various study field analysis using the BLiSS     
The BLiSS method allows further exploration of many types of datasets. Any variable
characterized  by  time  series  data,  which  is  a  common  case  in  agriculture,  can  be
analysed with the BLiSS method. The method could also be applied to other variables
evolving over different continuous supports such as wavelength or spatial coordinates. 
While two univariate cases were presented here, several explanatory variables could be
studied in a multivariable analysis to identify their potential combined effects as well as
their individual (univariate) effects. For example,  Tmin and  Tavg have simultaneously
been considered in a bivariate BLiSS analysis to distinguish their proper effects on CN
(data not shown).
However,  there  are  some  limitations  to  the  current  BLiSS  method.  Firstly,  the
computation  time  has  to  be  taken  into  account  when  designing  the  analysis.  For
example, the results presented in Fig. 2 (derived from 5368 individuals and using 27 10-
day climatic periods) took approximately 4 hours on a machine of 4 CPU and 5 Gb
memory. Secondly, it is not possible to know the portion of the Y variability explained
by  X  at  the  moment.  It  is  also  not  yet  possible  to  include  qualitative  explanatory
variables but this is  planned to be implemented soon. In addition, it  is important  to
remember that the BLiSS method is subject to the same limitations that any other linear
analysis, such as disturbance due to the explanatory variables correlation.
Finally, the BLiSS method presents another option which has not been tested in this
paper.  Prior knowledge can be taken into account by the Bayesian-based method. In
practice,  this can help the method to detect  relevant periods using  a priori literature
results or field experience, in the case of a small number of data for example. 

Conclusion

The BLiSS method combines the advantages of both functional and Bayesian models to
perform advanced  temporal  variability  analysis.  Functional  analysis  allowed a  more
complete  and  objective  analysis  of  a  data  set,  taking  into  account  the  explanatory
variables  histories and allowing detection of  periods of influence in the time series.
Bayesian  analysis  allowed  a  better  uncertainty  management  using  conditional
probability. This approach can be used for further data exploration in many different
fields, in agriculture or others. It is an interesting method to better study the effect of
high temporal resolution variables, such as those generated in precision agriculture. The
ability to correctly identify and manage key phenological stages in agriculture is an area
that has often been overlooked in precision agriculture but is needed to improve the
temporal-resolution of decision-making on farm.
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