
HAL Id: hal-02609790
https://hal.inrae.fr/hal-02609790

Submitted on 5 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relevance of Free Jet Model for Soil Erosion by
Impinging Jets

Zeyd Benseghier, P. Cuéllar, Li-Hua Luu, J.Y. Delenne, Stéphane Bonelli, P.
Philippe

To cite this version:
Zeyd Benseghier, P. Cuéllar, Li-Hua Luu, J.Y. Delenne, Stéphane Bonelli, et al.. Relevance of Free
Jet Model for Soil Erosion by Impinging Jets. Journal of Hydraulic Engineering, 2020, 146 (1),
pp.04019047. �10.1061/(ASCE)HY.1943-7900.0001652�. �hal-02609790�

https://hal.inrae.fr/hal-02609790
https://hal.archives-ouvertes.fr


Relevance of the free jet model for the soil erosion by impinging jets1

Zeyd Benseghier1, Pablo Cuéllar2, Li-Hua Luu3, Jean-Yves Delenne4, Stéphane Bonelli5, and2

Pierre Philippe63

1PhD Student, IRSTEA, French Research Institute of Science and Technology for Environment4

and Agriculture, 3275 route de Cézanne, 13100 Aix-en-Provence, France. E-mail:5

zeyd.benseghier@irstea.fr6

2Research supervisor, PhD, BAM, Federal Institute for Materials Research and Testing, Division7

7.2 for Buildings and Structures, Unter den Eichen 78, 12205 Berlin, Germany. E-mail:8

pablo.cuellar@bam.de9

3Associate researcher, PhD, IRSTEA, French Research Institute of Science and Technology for10

Environment and Agriculture, 3275 route de Cézanne, 13100 Aix-en-Provence, France. E-mail:11

li-hua.luu@irstea.fr12

4Director of research, PhD, INRA/CIRAD/Montpellier Supagro/UM2, 2 place Pierre Viala,13

34060 Montpellier, France. E-mail: jean-yves.delenne@irstea.fr14

5Director of research, PhD, IRSTEA, French Research Institute of Science and Technology for15

Environment and Agriculture, 3275 route de Cézanne, 13100 Aix-en-Provence, France. E-mail:16

stephane.bonelli@irstea.fr17

6Director of research, PhD, IRSTEA, French Research Institute of Science and Technology for18

Environment and Agriculture, 3275 route de Cézanne, 13100 Aix-en-Provence, France. E-mail:19

pierre.philippe@irstea.fr20

ABSTRACT21

The surface erosion of soil samples caused by an impinging jet can be analyzed with the Jet22

Erosion Test (JET), a standard experimental test to characterize the erosion resistance of soils. Here23
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we specifically address the flow characteristics of a laminar impinging jet over the irregular surface24

of granular beds to discuss the pertinence and relevance of commonly used empirical estimations25

based on the self-similar model of a free jet. The JET is here investigated at the micro-scale with26

a coupled fluid-particle flow numerical model featuring the Lattice Boltzmann Method (LBM) for27

the fluid phase combined with the Discrete Element Method (DEM) for the mechanical behavior28

of the solid particles.29

We confront the hydrodynamics of a laminar plane free jet with the results from a parametric30

study of the jet impingement, both on solid smooth and fixed granular surfaces, which take into31

account variations of the particle size, of the distance from the jet origin, and of the jet Reynolds32

number. The flow characteristics at the bed surface are here quantified, including the maximal33

values in tangential velocity and wall shear stress, which can be regarded as the major cause for34

particle detachments under hydrodynamic solicitation.35

We show that the maximal velocity at the impinged surface can be described by the free jet36

self-similar model, provided that a simple empirical coefficient is introduced. We further propose37

an expression for the maximal shear stress in laminar conditions including a Blasius-like friction38

coefficient that is inversely proportional to the square root of the jet Reynolds number.39

To conclude, we finally analyze the JET erosion of different cohesionless granular samples,40

confirming that the threshold condition at the onset of granular motion is consistent with the41

Shields diagram and also in close agreement with previous experimental results.42

Keywords: Free jet, Impingement jet, Lattice Boltzmann Method, Soil erosion, Laminar flow,43

Discrete Element Method.44

INTRODUCTION45

The impinging jet is widely encountered in numerous natural and industrial applications, such46

as heat transfer (heating, cooling and drying) (Martin 1977; Jambunathan et al. 1992), discharge47

of pollutants in rivers, lakes, and oceans (Gholamreza-Kashi et al. 2007), and headcut erosion48

(Bennett and Alonso 2005). The jet flow configuration has been profusely studied in the past49

both from theoretical and experimental perspectives (Beltaos and Rajaratnam 1973; Beltaos and50
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Rajaratnam 1974; Rajaratnam 1976; Hanson et al. 1990; Looney and Walsh 1984; Poreh et al.51

1967; Ghaneeizad et al. 2015; Phares et al. 2000), often addressing the particular cases of the free52

jet and wall jet with a special focus on their self-similarity features.53

Notably, the case of the impinging jet bears great interest in the field of civil engineering, where54

it is specifically used to quantify the resistance against erosion of cohesive soils. The erodibility of55

soils is a key parameter for the safety of earthen hydraulic structures such as earth-dams, levees,56

and dikes against the risk of erosion-induced failures (Foster et al. 2000; Bonelli 2012; Bonelli57

2013).58

The JET testing device (Jet Erosion Test) was firstly introduced by Hanson and Cook (2004)59

in order to assess the erosion rate E of soils for given flow conditions, with particular devices60

developed both for laboratory and in situ conditions. The interpretation of the test is based on the61

assumption that the rate of erosion is proportional to the excess of hydraulic shear stress τ exerted62

on the soil surface over a critical value τc at which the erosion will initiate. In mathematical form,63

this assumption reads E = kd(τ − τc), where the parameters τc and kd are the critical shear stress64

and the erosion rate coefficient respectively, which define the soil’s erodibility.65

The rate of erosion is usually quantified by measuring the depth of the scour hole generated66

by the jet impingement on the soil surface over time. Then, the free jet theory can be applied67

to estimate the hydraulic shear stress on the soil surface, so that empirical values for the soil’s68

erodibility (i.e. for τc and kd) can be quantified by fitting the experimental data. It can be noted69

that such approach only considers the free jet theory (Schlichting 1960; Bickley 1937) and wall70

shear stress estimates on a smooth wall (Beltaos and Rajaratnam 1977; Beltaos and Rajaratnam71

1974; Hanson et al. 1990) without taking into account the possible recirculation of the flow inside72

the scour crater nor any irregularity or roughness of the impinged surface.73

A relevant weakness of this testing procedure is that the interpretation of the results is still74

based on strong assumptions for the estimation of the excess shear stress. Furthermore, the75

complex hydrodynamics of the impinging jet flow, which itself depends on many parameters (e.g.76

nozzle diameter, jet Reynolds number -nature of the flow-, inlet velocity profile) as well as the type77
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of the impinged surface, make the determination of the flow characteristics at the bed surface not78

an easy task, especially in the presence of a scour crater.79

Moreover, the estimation of the shear stress disregards any confinement and wall effects in the80

JET device, as if the experiments were performed in unconfined conditions. In this respect, Gha-81

neeizad and co-workers have shown that the maximum shear stress under confined conditions can82

be 2.4 times higher than the value estimated in the original JET (Ghaneeizad et al. 2015). Never-83

theless, the present study is here restricted to the unconfined condition that allows however a direct84

comparison to existing experimental data as explained hereafter. Phares and co-workers (2000)85

gave a theoretical prediction of the wall shear stress produced by an impinging jet over a flat surface86

for various jet configurations (axially-symmetric and two-dimensional jets, both for turbulent and87

laminar flows). They found that some of the theoretical results are not consistent with the measured88

wall shear stress reported by previous experimental investigations of impinging jets.89

Recent experimental studies have investigated the erosion caused by an immersed impinging90

jet on a granular material, see e.g. the work of Badr et al. (2014) for turbulent and laminar91

planar impinging jets. They found that the flow characteristics can actually be estimated using92

the self-similar free jet model. Subsequently, Brunier-Coulin et al. (2017a) proposed an empirical93

expression to model the jet velocity inside the scoured crater of a cohesionless artificial granular94

material (refractive index matched glass beads) for a laminar round impinging jet.95

On the other hand, the numerical models are nowadays gaining growing relevance for studying96

small to large-scale engineering applications. Some of the difficulties of the experimental tests97

can be overcome using customized numerical simulations, which can provide an insight into98

the local parameters of the flow that are hardly measurable in the experiments. Past numerical99

studies of the Jet Erosion Test have generally involved two main approaches. A first mono-phasic100

approach consists in solving directly the Navier-Stokes equations for the fluid flow. Several different101

turbulencemodels can be used for the axisymmetric jet condition. Thewater/soil interface is thereby102

considered as a Lagrangian boundary, which is updated using a suitable erosion law and an adaptive103

re-meshing technique (Mercier et al. 2014). The second possibility is to use a combined bi-phasic104
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approach, where the soil is modeled as a collection of discrete particles described by Newton’s105

second law of motion (e.g. with the Discrete Element Method, or DEM) and the fluid flow is106

reproduced by a suitable computational fluid dynamics method (CFD), either solving the Navier-107

Stokes or the Boltzmann equations. Given that the pertinence and validity of the erosion law108

are the main concern here, the latter bi-phasic approach has several advantages for simulating Jet109

Erosion Test, since no erosion law needs to be assumed a priori. Among the studies that have been110

carried out using this approach, Kuang and co-workers (2013) presented a 3D CFD-DEM model111

of a turbulent round air jet impinging on a granular bed, focusing mainly on the crater formation112

induced by the air jet. Concerning the surface erosion of a cohesive soil, the Lattice Boltzmann113

Method (LBM) has been coupled with the DEM for a micro-mechanical simulation of the 2D114

laminar impinging jet in (Cuéllar et al. 2015; Cuéllar et al. 2017), which constitutes the basis for115

the present study with an extended model. Such combination of the LBM-DEM methods appears116

as a promising technique for simulating a wide range of geomechanical problems, including soil117

erosion (Cuéllar et al. 2017; Lominé et al. 2013), various porous flows (Han and Cundall 2013),118

the fluidization of soils (Cui et al. 2014; Ngoma et al. 2018), and immersed granular avalanches119

(Mutabaruka et al. 2014) for instance.120

The purpose of the present contribution is to provide a numerical insight into both the free and121

impinging laminar plane free jet on either smooth or granular surfaces, thereby complementing122

the previous experimental work of Badr et al. (2014) and Brunier-Coulin et al. (2017a). We place123

a particular focus here on quantifying the flow characteristics at the granular surface, namely the124

maximum shear stress τm and the maximum tangential fluid velocityV , and discuss their relation to125

the free plane jet model in laminar regime, as illustrated in Fig. 1. Finally, we also address here the126

onset of jet erosion of a cohesionless granular sample and provide an interpretation of the results127

in terms of a Shields diagram.128

The remainder of this paper is organized as follows: Firstly, we describe the numerical methods129

employed for this study in Sec. 2. In Sec. 3, the laminar two-dimensional free jet theory is presented130

and the corresponding numerical setup is described, followed by a parametric study of the free131
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jet for various flow conditions. Afterwards, we analyze in detail the jet impingement on both a132

smooth wall and on a fixed granular surface. Sec. 4 finally deals with the full Jet Erosion Test133

on a cohesionless granular sample, discussing and comparing the numerical data with existing134

experimental and theoretical results from the literature. As a closure, Sec. 5 discusses the present135

findings and possible comparison with previous works before Sec. 6 provides a brief conclusion136

and outlines some open perspectives for future research.137

NUMERICAL METHODS138

Lattice Boltzmann Method139

The LBM is used to simulate the fluid phase (jet flow) based on the solution of the discrete140

Boltzmann equation, as an alternative to other conventional CFD techniques that rely on the direct141

solution of the Navier-Stokes equations. It is usually solved in two main steps, namely a collision142

and a streaming step performed on an Eulerian spatial grid of nodes featuring a limited number of143

discrete velocity vectors for fluid particle populations. We use here the D2Q9 model (Qian et al.144

1992), involving a two-dimensional space and nine velocity vectors cα defined in Eq. 3. For the145

collision model, we employ the multiple relaxation time approach (MRT) (Lallemand and Luo146

2000) to overcome some well-known deficiencies (e.g. numerical stability issues) of the standard147

single relaxation time collision model of Bhatnagar-Gross-Krook (BGK) (Bhatnagar et al. 1954).148

The multi-relaxation-time lattice Boltzmann equation can be written as:149

fα(x + cα∆t, t + ∆t) = fα(x, t) − M−1S
[
mα(x, t) − meq

α (x, t)
]

(1)150

where fα are the discrete distribution functions (i.e. the probability density of fluid molecules151

with velocity cα in position x and at time t) and S is the diagonal relaxation matrix, S =152

diag (0, s1, s2, 0, s4, 0, s6, s7, s8). For the D2Q9 model, the coefficients s1,2,4 are constants to be153

chosen in the range 0 < s < 2 (for stability reasons) and s7 = s8 = 1/τ, where τ is the relaxation154
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time related to the fluid kinematic viscosity as follows:155

ν =
1
3
(τ − 1

2
) (∆x)2
∆t

(2)156

We employ here the following relaxation rates after (Lallemand and Luo 2000): s1 = 1.63;157

s2 = 1.14; s4 = s6 = 1.92.158

M is the invertible transformation matrix which links the distribution functions to their moment159

vectors m by m = M f .160

Themacroscopic fluid variables for density ρ and velocity u can be obtained from the distribution161

functions as: ρ =
∑8
α=0 fα, u = 1

ρ

∑8
α=0 fαcα.162

The fluid pressure is directly given by the following state equation: p = c2
s ρ, where cs = c/

√
3163

is the speed of sound in the lattice system, c = ∆x/∆t is the characteristic lattice speed, ∆x and ∆t164

are the discretization units in space and time respectively.165

It can be noted that we employ here the swap algorithm for the propagation step proposed in166

(Mattila et al. 2007; Latt 2007), which has the advantage of using and storing only one single copy167

of the density distribution functions f in memory. This algorithm requires the following special168

ordering:169

cα



(0, 0) α = 0

(−1, 1), (−1, 0), (−1,−1), (0,−1) α = 1, 2, 3, 4

(1,−1), (1, 0), (1, 1), (0, 1) α = 5, 6, 7, 8

(3)170

It is also worth noting that the Lattice Boltzmann models can recover the incompressible Navier-171

Stokes equation through the Chapman-Enskog expansion (Chapman and Cowling 1970) when172

the density fluctuations are assumed to be negligible (Chen et al. 1992). Therefore, to correctly173

simulate an incompressible flow and reduce the density fluctuations of the model which lead to174

computational errors, the Mach number Ma = |umax | /c must be kept small as compared to unity:175

the maximum velocity in the system umax should be much smaller than the sound speed cs, usually176

with a limit value of Ma < 0.1 as found in the literature. For this reason, we maintained a constant177
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characteristic speed of c = ∆x/∆t = 10 m/s in our simulations to keep the Mach number smaller178

than 0.1.179

The magnitude of the time-step ∆t can then be calculated based on the choice of fluid viscosity180

ν and spatial discretization parameter ∆x from the known solid particles (see the section on LBM-181

DEM coupling later on), while the relaxation parameter τ can be derived based on Eq. (2).182

Boundary conditions183

In the LBM, neither pressure nor velocity boundary conditions can be directly imposed, since184

these variables derive from the particle distribution functions fα. Therefore, the unknown dis-185

tribution functions must be properly defined to retrieve the desired values of the hydrodynamic186

quantities at the boundary nodes. Pressure and velocity boundary conditions can, for instance, be187

set by using the method proposed by Zou and He (1997). However, the alternative regularized188

method proposed by Latt and Chopard (2008) has been used here for the sake of stability to impose189

the pressure or velocity boundary conditions for the inlet velocity, since this method was found to190

be more stable in all of our simulation cases.191

Alternatively, we also use here for comparison another boundary condition in which all the192

particle populations are constructed by considering only the equilibrium part (the so-called equilib-193

rium boundary). The equilibrium boundary is somehow less accurate than the regularized method194

(see e.g. Fig. 3 later on), but has the merit of being much easier to implement.195

The nonslip boundary condition between the fluid and a stationary solid wall can be imposed196

through the so-called bounce-back scheme. We use here the half-way bounce-back model, which197

assumes that the wall is located right in the middle between solid and fluid nodes and has been198

shown to feature a second-order numerical accuracy (Zou and He 1997).199

Wall shear stress200

The hydrodynamic shear stress exerted by the fluid on the wall can generally be derived using201

the shear stress tensor τxy, which is given by the following expression for a two-dimensional202

incompressible flow: τxy = ρν(∂xuy + ∂yux).203

To calculate the wall shear stress, an extrapolation is needed in order to evaluate the velocity204
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gradient at the wall. For the case of a horizontal wall located at y = 0 and where ∂xuy is assumed205

to be negligible, the wall shear stress will be τxy,w = ρν
dux

dy

���
y=0

.206

On the other hand, the shear stress tensor also can be obtained in the LBM out of the non-207

equilibrium part of the distribution functions as proposed by Mei et al. (2002):208

τxy = (1 −
1

2τ
)
∑
α

f neq
α (x, t)

(
cα,xcα,y

)
(4)209

where f neq
α = fα − f eq

α , and cα,x and cα,y are the x and y components of the velocity vector α210

respectively.211

Since we assume here that the wall surface is not directly located on a fluid node, we extrapolate212

linearly the shear stress on the wall boundary so that τxy,w = τ
y=1
xy + ∆(τy=1

xy − τy=2
xy ), where y = 1213

and y = 2 are the locations in lattice units of the two next neighboring fluid nodes along the normal214

direction with respect to the wall. ∆ is thereby the relative distance from the fluid node to the wall.215

Since the half-way bounce-back scheme is used here, ∆ is assumed to be equal to 0.5. According to216

Mei et al. (2002), the estimation of the shear stress using the non-equilibrium part of the distribution217

functions (Eq. 4) is more accurate than that by using the velocity gradient.218

Discrete Element Method219

The DEM originally proposed by Cundall and Strack (1979) is used here to describe both the220

interaction and motion of the solid particles as governed by Newton’s equations. The total force221

acting on a given particle is the summation of the interaction forces with other particles plus the222

hydraulic forces. The interaction force exerted by grain j on grain i is Fi j = fnn + ft t and n and t223

represent the unit normal and tangential vectors along the line of particle centers.224

The contact forces (normal and tangential), as well as the torque, arise only whenever two225

particles overlap. The normal contact force fn can then be calculated based on a linear viscoelastic226

model:227

fn = −knδn − γnvn (5)228

where vn is the relative velocity in the normal direction, kn is the normal contact stiffness and γn is229
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the normal viscous damping.230

The tangential contact force ft can also be computed using a linear viscoelastic model as:231

ft = −ktδt − γtvt (6)232

where kt is the tangential contact stiffness, δt is the relative shear displacement during each contact,233

γt is the tangential viscous damping and vt is the relative tangential velocity.234

The tangential "shear" force is here limited by considering Coulomb’s friction law:235

| ft | ≤ µs fn (7)236

where µs is the friction coefficient.237

The torque acting on the particle due to the contact frictional force is then given by238

Ti = −(rin) × ( ft t) (8)239

We add here a rolling resistance at the contact Trol l = − vr
|vr | µrre f f fn, with the rolling velocity240

vr = ωi − ω j defined by the difference in the angular velocities ωi and ω j of grains i and j241

respectively. re f f =
rirj
(ri+rj ) is thereby the effective radius and µr is the rolling coefficient.242

In order to obtain a stable simulation and integrate correctly the equations of motion, the243

time step ∆tDE M must be chosen below a critical value ∆tcr which represents the oscillation244

duration of the spring-mass system used to model two contacting particles. ∆tcr is thus calculated245

taking into account the smallest mass in the granular system mmin and the normal stiffness kn246

as ∆tcr = 2π
√

mmin/kn. The DEM time-step is then usually adopted as ∆tDE M = λ∆tcr with a247

time-step factor λ chosen around 0.1.248

The coefficient of normal viscous damping γn can be derived from the coefficient of restitution249

e (Ting and Corkum 1992).250

Once all the external forces, including the contact and hydraulic forces, are computed at a time251
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t, an integration algorithm of the velocity-Verlet type can be used to compute the new kinematic252

variables of the grain at time t + ∆t (Swope et al. 1982).253

Coupling of the LBM and DEM254

The fluid-solid interaction is here introduced with the model proposed by Bouzidi et al. (2001),255

which assumes a non-slip bounce-back condition at the solid boundary nodes. This model is256

adapted to the curvature of the particle’s boundary through a linear interpolation of the post-257

collision distribution functions. As a consequence of the particle’s translation, some of the solid258

boundary nodes may convert to fluid nodes, so that the unknown distribution functions must be259

recovered. Several techniques to solve this issue can be found for instance in (Lallemand and Luo260

2003), where the unknown distributions functions of the fresh fluid node are simply approximated261

using the equilibrium distribution functions (Mansouri et al. 2016).262

The total force and torque exerted by the fluid on a given particle can then be calculated with263

the momentum-exchange algorithm (Ladd 1994) and be introduced into the DEM calculation after264

conversion to physical units. The buoyancy effect (i.e. the submerged weight) is also considered265

by reducing the gravitational acceleration with the factor (1 − ρ f /ρs).266

To overcome the unphysical situation in 2D simulations where no fluid paths exist through a267

densely packed sample of disks, we introduce a reduced "hydraulic" radius rh of the grains in the268

LBM domain while keeping the particle’s real radius r in the DEM domain (Cui et al. 2012; Boutt269

et al. 2007). The ratio rh/r is generally set to values around 0.8, as suggested in (Cui et al. 2012).270

We adopt a fixed spatial resolution ratio 2rmin/∆x of 10 as recommended by Yu et al. (2003),271

where rmin is the radius of the smallest particle. This ratio therefore defines the lattice discretization272

parameter ∆x for a given sample of solid particles.273

Since the LBM and DEM often require different time-step sizes (the DEM time-step being274

usually smaller than the LBM time-step), an efficient coupling between both methods can be275

adopted by introducing sub-cycles for the DEM algorithm (Han et al. 2007). To this end we fix276

here an integer sub-cycle number np = ∆tLBM/∆tDE M , ratio of the LBM and DEM time-steps277

respectively. In this study, np is chosen equal either to 1 or 2 by adjusting the DEM time-step factor278
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λ.279

The presented LBM-DEM coupling technique has been implemented in our in-house code and280

thoroughly validated in several previous works, see for instance (Ngoma et al. 2018). In Sec. 3 we281

present a further validation of the LBM model with the well-known laminar free jet theory.282

Jet configurations283

The methods and techniques presented so far are now used to study various jet flow configu-284

rations, namely the free jet and the impinging jet on either a smooth wall (case a) or on a fixed285

granular surface (case b). These configurations are illustrated in Fig. 2. We impose a bounce-back286

boundary condition (Chen et al. 1996) for the solid walls (i.e. for the nozzle boundaries and the287

smooth impinged surface), while we assume a Zou/He outlet condition with zero pressure (Zou and288

He 1997) for the exterior boundaries. For the jet’s nozzle (nozzle width b) we consider the velocity289

inlet condition with either the regularized or the equilibrium methods as introduced in Sec. 2 and290

featuring a Poiseuille velocity profile. The mean velocity of the Poiseuille injection is thereby291

u j =
2
3U0 with U0 being the maximal velocity of the inlet. In these conditions, the jet Reynolds292

number can be defined as Re j = u j b/ν. We consider here relatively high values of ν to keep the293

flowwithin the laminar regime, allowing thereby a direct comparison with recent experimental data294

from (Badr et al. 2014; Brunier-Coulin et al. 2017a).295

For the impingement case (a), the simulation procedure and conditions are the same as for the296

free jet except for the additional horizontal wall located at an axial distance H from the nozzle. For297

the study case (b), the smooth wall is replaced by a fixed granular surface at the same distance H.298

The granular surface is generated here with a particle size dispersity of dmax/dmin = 1.5. Note that299

the DEM and the coupling technique with LBM is only active in this configuration.300

The input values adopted for the parametric study are summarized in Tables 1 and 2 for the free301

jet and impinging jets respectively.302

NUMERICAL RESULTS303
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Two-dimensional free jet304

Multiple simulations were performed for various free jet conditions, with Reynolds numbers305

Re j in the range of 19 < Re j < 130. Fig. 3 shows the numerical results as compared to the306

analytical solution of the centerline velocity with two different virtual origin adjustments (see the307

appendix I, which briefly summarizes the theoretical background for a 2D self-similar free jet308

in laminar regime). Note that, according to Eq. (18), the analytical solution does not originate309

from the maximal velocity at the nozzle exit. The slight departure from the analytical solution310

appears a bit more severe for the case with the equilibrium method inlet than for the regularized311

one. Nevertheless, the overall good agreement with the theory seems evident. The transversal312

profiles of fluid velocity depicted in Fig. 4a show that the velocity decreases continuously from313

its maximum value um at the centerline with growing lateral distance y. A normalized plot of the314

variables in Fig. 4b confirms that the velocity profiles are closely self-similar and well described315

by the theoretical prediction [ch−2(y/b̃u)] for all horizons farther than x > 1.5b, i.e. beyond the316

point where the free jet exits the potential core region. This region normally extends up to around317

6b for turbulent flows according to the literature (Hanson and Cook 2004; Beltaos and Rajaratnam318

1977), and so it appears significantly reduced for the laminar conditions considered here. The319

normalization of the transversal coordinate y is here done employing the half-width bu, which is320

the transversal distance where u(bu) = 1
2um applies.321

Fig. 5a shows the variation of (u j/um)3 and (bu/b)3/2 with the normalized distance x/b from322

the nozzle for a jet Reynolds number equal to Re j = 38.9. The profiles are linear with slopes α and323

β, and negative x-intercepts denoted −λu/b and −λb/b, respectively. The proportionality between324

um and x−1/3, as well as between bu and x2/3, predicted by the theory (see Eqs. 18 and 19 in the325

appendix) appears here clearly confirmed. A further implication, stemming from the fact that the326

x-intercepts are different from zero, is that the origin of the jet is not located right at the nozzle327

exit, but at a virtual point source at a distance λ from it. Here, by convention, λ is positive when328

the virtual origin is above the nozzle exit.329

Fig. 5b shows the variation of the slopes α and β with the jet Reynolds number in a log-log plot.330
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Here, the slope of the curve α versus Re j is −1.107, while its theoretical value is −1 (see Appendix331

I). This difference is not surprising in view of the slight departure in the centerline velocities332

um between the simulated and analytical results (see Fig. 3). Nevertheless, the proportionality333

α ∝ Re−1
j implied by Eq. (18) is here verified for almost the whole range 37 < Re j < 120. In334

the same vein, the proportionality β ∝ Re−1
j derived from Eq. (19) also appears to be well verified335

here.336

Concerning the virtual origin λ, the dimensionless quantity λ/b can be easily obtained from337

the x-intercept of any of the two linear profiles (u j/um)3 or (bu/b)3/2 versus x/b (i.e. from either338

A or B in Fig. 5a). The two different estimations of λ/b seem here to agree fairly (Fig. 6), with a339

mean relative error of 13%, and can be fitted with a linear trend that appears slightly higher than the340

existing solution λ̃/b = 0.029Re j given in (Revuelta et al. 2002). The trendline of the numerical341

data reads here:342

λ = 0.036Re j b (9)343

Impinging jets344

Regarding now the impinging jet situation, the three main regions of fluid flow depicted in Fig. 2345

can generally be distinguished (see e.g. (Beltaos and Rajaratnam 1973)): a free jet region (zone346

1) in which the flow remains self-similar, an impingement region (zone 2) in which the impinged347

surface affects the jet flow, decreasing the centreline velocity down to zero at the impingement348

(stagnation) point and diverting the flow to the lateral directions, and finally a wall jet region (zone349

3), where the flow becomes parallel to the impinged surface.350

Many studies have addressed in detail the velocity, pressure, and shear stress fields for these351

regions, e.g. (Rajaratnam 1976; Ghaneeizad et al. 2015). However, the analysis of jet impingements352

in the frame of soil erosion still remains largely empirical. No simple analytical approach has been353

proposed so far for the prediction of the flow quantities at either the impingement region or at the354

wall jet region (zones 2 and 3 respectively). In this respect, most of the estimations in the literature355

are based on the free jet model (zone 1). This section therefore examines the influence of both the356

jet Reynolds number and impingement height H on the distributions of fluid velocity and shear357
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stress at the impinged surfaces. Thereby, we explore firstly the relationship between the free-jet358

centerline velocity at the impingement height ũm(H) and the maximal velocity V of the impinging359

jet near the wall surface in zone 3, turning afterwards the attention to the maximal shear stress τm.360

In the simulations presented here, we observed transverse oscillations of the jet when impinging361

a granular surface. These oscillationswere only hardly noticeable for small values of Re j and tended362

to intensify progressivelywith an increasing inlet velocity. Therefore and for the sake of consistency,363

here we analyzed the velocity field only at the moments where the jet is exactly vertical. In contrast,364

such jet oscillations were never observed in the simulations with a smooth wall.365

Velocity field366

Figs. 7a and 7b show the profiles of transverse velocity v at different distances x1 from the367

impinged surface for the study cases (a) and (b) respectively. Note that the reference position368

x1 = 0 for the fixed granular surface corresponds to the top of the uppermost particle. All profiles369

show a monotonic increase of velocity up to a maximum value vm and a subsequent continuous370

decrease with growing distance y/H from the jet’s axis. The local maximum of transverse velocity371

vm of each profile increases rapidly with x1 until reaching a global maximum V = max(vm) and372

then decays slowly.373

The global maximum of fluid velocityV over the impinged surface can be extracted for different374

flow conditions and samples (different mean grain sizes), and then be plotted versus the free-jet375

maximum velocity ũm(H + λ) at the corresponding distance from the nozzle (Eq. 18), as shown in376

Fig. 8 in direct comparison to the smooth-wall results. We appreciate a close agreement of the data377

for the low velocity range, with growing deviations for higher fluid velocities and higher particle378

size due to the irregular form of the bed surface. We also notice that the trend is almost linearly379

proportional with a slope equal to 0.82 [case (a)], consistently for any given jet Reynolds number380

Re j and distance H within the range of our simulation sets. Thereby, we replace H by H + λ in381

order to take into account the virtual origin discussed previously (i.e. λ/b = 0.036Re j), although382

the effect of λ on the slope appears to be negligible. These results therefore confirm that, for the383

case of a smooth surface, the maximum impingement velocity can indeed be estimated by means384
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of the free jet theory. Concerning the impingement on a granular surface, it appears sensible to385

approximate the maximum velocity just as for the smooth wall case at least for situations with low386

Reynolds numbers.387

In the case of granular surfaces, the sensitivity to the impact point location was also tested388

for the same inlet flow condition as presented in Fig. 7b. To this end, several calculations were389

performed after a slight lateral displacement of the nozzle (up to 3 times the minimal diameter) in390

either direction. In all cases, the maximal velocity V was found consistent to a mean value within391

a reasonable error bar estimated to less than 5% from the standard deviation values. The same392

relative error is used for the other inlet flow conditions.393

Wall shear stress394

The simulated distribution of dimensionless wall shear stress is plotted in Fig. 9a for different395

combinations of impingement height H/b and jet Reynolds number Re j . Despite the difference396

in the flow configuration (2D laminar versus round turbulent jet), the dimensionless shear stress397

distribution agrees quite well with that given by Beltaos and Rajaratnam (1974). Here, it can398

also be noted that the maxima of shear stress are actually located closer to the jet’s axis than the399

corresponding maxima of fluid velocity (see Fig. 7)400

The maximal value of τ is often assumed to be proportional to the square of the maximal401

velocity V (Beltaos and Rajaratnam 1977), namely in the form of τm =
1
2C f ρV2, where C f is the402

local friction coefficient and ρ is the fluid density.403

The authors are not aware of any estimation of C f for laminar impinging jets to be found in404

the literature. The typical value of C f for turbulent flow conditions ranges around 4 × 10−3, see405

e.g. (Beltaos and Rajaratnam 1974; Hanson and Cook 2004; Beltaos and Rajaratnam 1977). Based406

on the definition of τm, now we can use our simulation results to estimate C f for the different jet407

Reynolds numbers and impingement heights H shown in Table 2.408

A plot of the maximum shear stress τm versus ρV2/
√

Re j is shown in Fig. 9b, suggesting a409
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linear dependency that permits to estimate C f as:410

C f =
1.53√

Re j
(10)411

This way, τm can be rewritten into:412

τm =
0.765ρV2√

Re j
=

0.52ρ(ũm(H + λ))2√
Re j

(11)413

By introducing Eqs. (18) and (9), it then reads as:414

τm =
0.137ρu2

j Re j
1/6

(H/b + 0.036Re j)2/3
. (12)415

Surprisingly, we found that the simulation results give close results compared to the estimation416

based on the Blasius friction law for a laminar boundary layer over a flat plate: C̄ f = 1.328/
√

Re417

(Streeter and Wylie 1975), where C̄ f is the average friction coefficient over a plate of length L and418

Re = U∞L/ν. Consistently with the development of a boundary layer, a scaling with Re1/2
j can be419

reasonably obtained for the x1-value of location of the maximal velocity. Similar results were also420

presented in (Phares et al. 2000) implying that the maximal shear stress within a laminar boundary421

layer scales with Re−1/2
j (Hb )−5/4 at y/H = 0.12 for fully developed 2D jet impingements (H/b > 8).422

Summing up, these results show that the local friction coefficient at the maximum shear stress423

seems to be proportional to 1/
√

Re j for laminar jets impinging on a smooth wall, just as predicted424

by the laminar boundary layer theory on flat plates at zero incidence. The maximum shear stress425

over a smooth wall can therefore be estimated using the approximation in Eq. (12) based on our426

simulation results.427

Concerning the wall shear stress distribution at the granular surface, the strong fluctuations of428

shear stress related to the irregularity of the impinged surface generally preclude the appearance429

of smooth distributions such as the one shown in Fig. 9a. Nevertheless, and in absence of more430

specific estimations, it appears sensible to derive the wall shear stress over granular surfaces using431
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the previous approximation based on the maximum velocity V that was found for the smooth-wall432

case (Eq. 11).433

ONSET OF EROSION FOR FRICTIONAL SAMPLES434

We now turn the attention to the jet erosion, i.e. to the detachment of solid particles under the435

action of an impinging jet, for the case of a cohesionless granular bed. In this section, the solid436

particles are now let free to move based on purely frictional interactions (no cohesion) and under437

the hydrodynamic solicitations imposed by the impinging jet.438

In general, the onset of erosion for cohesionless sediments can be described by the Shields439

number, which quantifies the erosion threshold as the ratio between the critical bed shear stress440

τs = ρu2
∗ and the submerged gravitational stress acting on the solid particles (ρg − ρ)gd, where441

d is the particle diameter while ρg and ρ are the grain and fluid densities respectively (Shields442

1936). The abundant literature on the Shields diagrams shows that the erosion threshold can be443

well described by a critical Shields number Sh∗τ solely dependent on the particle Reynolds number444

Re∗τ = u∗d/ν, that is:445

Sh∗τ =
τs

(ρg − ρ)gd
= f (Re∗τ) (13)446

where u∗ is the so-called friction velocity, or shear velocity, at the bed surface, and τs may be447

here approximated for a 2D laminar impinging jet from Eq. (11), or equivalently Eq. (12), as shown448

in the previous section.449

Erosion threshold450

In order to estimate the erosion threshold for a given cohesionless granular sample in our451

micromechanical JET simulations, we now let the particles move freely as we increase progressively452

the maximal inlet velocity U0 over time until reaching a fully developed erosive state, as shown in453

Fig. 10. Then, we identify the critical inlet velocity Uc
0 based on the observation of the first grain454

motion.455

We repeated this procedure for various jet Reynolds numbers and three different samples456
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(dmean=2, 3, and 5 mm respectively, featuring a uniform size distribution ranging from dmin =457

0.8dmean to dmax = 1.2dmean), thus providing a range of conditions to be displayed in the Shields458

diagram. The input data for this parametric study is summarized in Table 3.459

We observe that the first granular motion generally takes place at a certain distance from the460

impingement (stagnation) point and corresponding roughly with the location of the maximal shear461

stress predicted in our analysis of the impinging jet over a smooth wall [see Fig. 9a]. However,462

by increasing progressively the inlet velocity, we observe at some point the appearance of lateral463

oscillations of the fluid jet caused by the irregularities of the bed surface, which in turn enhance the464

on-going scouring process. Due to the oscillations of the jet and the increasing depth of the crater,465

the location of the active erosion zone appears then to shift progressively towards the impingement466

point, thereby creating a deeper crater right under the jet’s axis (see the graphical sequence shown467

in Fig. 10).468

Shields diagram469

The Shields diagram represents the relationship between the critical Shields number and the470

particle Reynolds number, estimated from the friction velocity, as obtained for various particles471

sizes and shapes in a wide range of flow conditions. Although the original Shields diagram presents472

solely scatter data, several empirical approximations have been subsequently proposed to fit the473

data. The explicit formulation of the Shields curve proposed by (Guo 1997; Guo 2002) reads for474

instance:475

Sh∗τ =
0.11
Re∗τ
+ 0.054

[
1 − exp

(
−4Re∗

0.52
τ

25

)]
(14)476

where Re∗τ is the particle Reynolds number as defined before.477

Here it is worth noting that this expression is sometimes inconvenient for a practical use478

(especially in complex flow configurations such as the impinging jet), since the shear velocity479

actually appears in both x and y variables of the Shields diagram (see Eq. 13). However, this can480

be circumvented with the alternative approach proposed by Badr et al. (2014) and later adopted481

by Brunier-Coulin et al. (2017a), representing an equivalent form of the Shields number for the482
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impinging jet. The idea is to assume an inertial expression Shu for the Shields number, considering483

that the shear stress is simply equal to ρu2, regardless of the flow regime. Here, following Badr484

et al. (2014), the velocity u is chosen as a characteristic fluid velocity around the eroded particle485

and can be directly estimated with the free jet model ũm(H) instead of the shear velocity u∗ at the486

impinged surface.487

As a first test, we can compare quantitatively our simulation results to the experimental data of488

Badr et al. (2014), since their quasi-2D configuration is closely consistent with the two-dimensional489

conditions of our model. The equivalent Shields diagram proposed by Badr et al. (2014) relates the490

critical value of the inertial Shields number, Sh∗u, to the critical particle Reynolds number Re∗p =
ud
ν491

as follows:492

Sh∗u =
ρ[ũm(H)]2
(ρg − ρ)gd

= f (Re∗p) (15)493

Sh∗u is here evaluated from the expression of ũm(H) given in Eq. (18), where u j is given by the494

critical inlet velocity obtained for each simulation at the onset of erosion, u j = 2/3Uc
0 .495

Here it is also important to note that, for a quantitative comparison, the expression of the inertial496

Shields number Shu has to be modified for the simulated results to account for the dimensional497

discrepancy of the solid particles, i.e. for the simulated disks in a plane instead of the solid spheres498

in the quasi-2D experimental configuration. The correction employed here is explained as follows.499

Firstly, we assume that the ratio of hydrodynamic drag force to the buoyant weight of a given500

particle is the same both for disks and spheres. This ratio reads τf S
∆ρgV = Sh Sd

V where S and V are501

the cross-section and volume of the particle respectively. For disks or cylindrical particles, this502

expression leads to Sd
V =

4
π , while for the case of a sphere

Sd
V =

3
2 is obtained. As a consequence, the503

inertial Shields number from the simulations is multiplied by 3π
8 to be quantitatively comparable504

to the experimental data. Moreover, the reduced (hydraulic) diameter dh = 0.8d is also taken into505

account, as explained above.506

Fig. 11 shows that a fair agreement of simulated and empirical data can be achieved this way.507

Our numerical values of Sh∗u are in the range 1.16 ± 0.33, comparing well with the results of Badr508

et al. (2014) which appear to show an almost constant value of Sh∗u = 1.2 ± 0.6 for a range of Re∗p509
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from laminar to turbulent flows. In this respect, our numerical data rather suggest a slight decrease510

of Sh∗u with Re∗p.511

Not only the inertial Shields number Shu but also the usual Shields number defined by the real512

fluid shear stress, Shτ, can be calculated out of the numerical results based on Eq. (12). This way,513

the previous results can be plotted in the classical Shields diagram through Eq. (13). This can also514

be done for the experimental data of Badr et al. (2014) if we assume the same friction coefficient C f515

as given in Eq. (10) from our LBM calculations with laminar impinging jets. The corresponding516

values of the critical Shields numbers Sh∗τ for both experimental and numerical results as compared517

to the explicit formulation in Eq. (14) are shown in Fig. 12 as a function of the particle boundary518

Reynolds number Re∗τ.519

Here the quantitative agreement between the present numerical results and the experimental data520

by Badr et al. (2014) is slightly worse than by using the inertial Shields number Sh∗u. Nevertheless,521

both data sets appear relatively close to the explicit Shields curve, with the simulated data laying522

slightly above it and the experimental one slightly below. Furthermore, a slight decrease of Sh∗τ with523

Re∗τ can now be observed more clearly for this range of particle Reynolds number Re∗τ, generally524

consistent with the trend shown by the Shields curve.525

DISCUSSION526

The main results of the present study can be summarized as follows. Firstly, the results obtained527

with our LBM model of a 2D jet flow show high accuracy when compared to the laminar self-528

similar solution of a plane free jet for jet Reynolds numbers up to almost 130, thus extending529

previous comparisons with experimental data which were limited to jet Reynolds numbers under530

30 (Phares et al. 2000; Looney and Walsh 1984; Andrade 1939). Regarding the jet impingement531

on a smooth wall, our findings also confirm that a laminar boundary layer develops at the wall532

departing from the stagnation point and featuring a friction coefficient that scales with Re−1/2
j , as533

already shown by Phares et al. (2000). On this basis, we propose here an accurate expression for534

the maximal bed shear-stress. On the other hand, and despite a greater scatter of the results, the535

data obtained for the impingement on a fixed granular wall appears broadly consistent with the536
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previous simulations on a smooth wall with respect to the maximal velocity reached by the flow537

in the impingement zone. To conclude, we finally propose a direct confrontation of our numerical538

results for granular erosion with the experimental data for three-dimensional planar jet erosion539

obtained by Badr and co-workers (2014). We find that the good quantitative agreement with the540

experimental data endorses the further use of our LBM-DEM modelling approach and appears to541

support our novel estimation of maximal shear-stress for the Shields diagram.542

However, for several reasons the outcomes proposed within this study cannot be directly com-543

pared to real flow conditions, which are usually highly turbulent both in the context of soil erosion544

and particularly in complex applications such as the Jet erosion test.545

To begin with, our LBM model is not yet adapted to natural turbulent water flows and therefore546

it was used here to simulate only laminar jets. Nevertheless, and beyond the fact that the flow547

impinging a granular bed is often laminar at the upper jet inlet, the redirection of the flow and548

the interaction with the sediment bed through intermittent and localized flow structures allow549

to explore not only the laminar flow domain but also the transitional one regarding the Shields550

diagram (i.e. Reτ up to about 20 in Fig. 12). Indeed, our results compare reasonably well with551

the experimental data by Badr and co-workers that was produced not only with laminar jets but552

also with turbulent jets, with jet Reynolds numbers up to around 1000 (Badr et al. 2014). On553

the other hand, in this respect it also appears important to note that the alternative use of a mean554

fully-turbulent modeling approach, possibly added to the LBM by means of a LES scheme (Large555

Eddy Simulation) as proposed in Feng et al. (2007), would probably not be able to reproduce the556

unsteady and short-lived flow bursts that can be observed in the simulations with our current model.557

A second reason that prevents our findings from being directly applicable for a real JET test,558

whether in the lab or in the field, is the limitation of our models to 2D and plane jet conditions,559

whereas the jets that are commonly used in practice are naturally three-dimensional and round.560

Consequently, only qualitative comparisons can be expected between the 3D circular and the 2D561

planar impinging jets, particularly since the respective analytical free jet solutions show different562

scaling laws due to the increased lateral dispersion in 3D (Bickley 1937; Schlichting 1960).563
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The applicability of the present models would certainly increase substantially if both the 3D564

as well as the turbulent flow conditions were implemented in our algorithms. However, such565

an improvement would also involve a considerable increase of both the computational cost and566

necessary resources in terms of processing power and storage that at present we only envisage567

as a future objective. In this sense, the models presented here can therefore be considered as a568

first step on this route, but already with the major advantage of allowing a direct comparison with569

experimental data, which is relatively scarce in relation to jet erosion.570

And finally, further discussion can also be focused on the way to compare quantitatively the571

impinging planar jets and their related erosion onset between the 2D conditions in the present572

numerical study and the 3D reality in the experiments by Badr et al. (2014). In this respect573

we may first note that several aspects of the experimental conditions were different from their574

numerical counterparts: in the experiments, the grains were significantly smaller in size, from575

0.1 to 1mm, while the liquid used for the jet flow was either water or glycerol-water mixtures576

with a viscosity not greater than four times that of water. By contrast, the numerical simulations577

featured larger particles (with 2, 3 and 5 mm in mean grain size) and much more viscous fluids578

(30 to 50 times the water viscosity). Nevertheless, we show here that these differences do not579

prevent a quantitative comparison assuming the relevance of the Shields diagram approach based580

on dimensionless numbers, namely the Shields number and the particle Reynolds number, which581

cover approximately the same ranges. Therefore, the main issue here rather comes from the natural582

differences in terms of geometry: an assembly of disks with a 2D impinging flow versus a bed583

of spherical particles impinged by a 3D planar jet. As explained beforehand, the expression of584

the Shields number in 2D with disks can be modified based on the mechanical equilibrium at the585

particle scale. This feature leads to an accurate agreement with the experimental data when using586

the inertial Shields numbers as shown in Fig. 11. In contrast, the agreement appears less convincing587

when the correct dimensionless numbers needed in the Shields approach are used. However, this588

latter approach seems questionable since it is based on several major simplifications. For instance,589

the fluid friction coefficient in Eq. (10) is probably slightly different between the 2D jet and the 3D590
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planar jet. Furthermore, the relationship between the hydrodynamic drag force and the bed shear-591

stress may also be different between a sphere and a disk (or a cylinder), including the potential592

influence of the numerical hydraulic diameter. And finally, the effective maximal shear-stress593

exerted on the sediment bed is probably different from the one calculated on a smooth wall. All594

in all, it appears that our crude estimate of Shields number in 2D is probably compatible with the595

factor of about 2 that, according to Fig. 12, could account for the almost systematic discrepancy596

between the Shields curve and our numerical results.597

CONCLUSIONS AND OUTLOOK598

Some 2D laminar flow configurations of both free jet and impinging jet on a horizontal surface599

have been investigated here using the numerical Lattice Boltzmann Method (LBM). We show that600

the flow simulations are accurate for various jet Reynolds numbers by introducing the virtual origin601

λ, as validated with the self-similarity theory of the free jet.602

The simulations of the impinging jet for both a smooth wall and a fixed granular surface603

have further shown that the maximal tangential velocity in the vicinity of the surface is directly604

proportional to the free-jet velocity at a corresponding downstream distance as computed with the605

self-similar theory. The results therefore confirm that the free-jet velocity ũm(H) can be used as the606

characteristic impingement velocity when the virtual origin is taken into account. Furthermore, we607

have proposed here an expression for the maximal shear stress at the surface (Eq. 11) based as well608

on the free-jet theoretical velocity and including an additional friction coefficient of the Blasius609

type that is inversely proportional to the square root of the jet Reynolds number.610

Finally, we have addressed the onset of jet erosion for frictional (cohesionless) granular samples611

by means of two-dimensional simulations of the Jet Erosion Test (JET) with a coupled LBM-DEM612

technique. The simulated results appear in fair agreement with the experimental data of Badr613

et al. (2014) for plane impinging jets regarding two different definitions of the Shields number,614

namely the inertial expression Sh∗u and the usual one Sh∗τ. The classical Shields diagram was well615

reproduced in the latter case.616

As a perspective, we are currently extending our JET simulations to the case of cohesive granular617
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samples with varying particle sizes and inter-particle cohesion, aiming to verify the generalization618

of the Shields number for cohesive granular materials proposed by Brunier-Coulin et al. (2017b).619
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APPENDIX I. TWO-DIMENSIONAL FREE JET627

The two-dimensional free jet has been studied in the past by many researchers. Schlicht-628

ing (1960) provided a solution describing a round jet based on the boundary-layer approximation,629

while Bickley (1937) gave an analytical solution for the two-dimensional case. The latter is based630

on the assumption that the momentum flux M remains constant so that the free jet flow remains631

self-similar with the downstream distance x from a source point. For the remainder, we introduce632

the index ( ˜ ) to denote the analytical variables and distinguish them from the simulated ones.633

The self-similarity of a plane free jet implies that the longitudinal velocity of the fluid at any634

point downstream of the nozzle can be described by:635

ũ(x, y) = ũm(x) f (η) (16)636

where ũm is the fluid velocity along the jet axis (i.e. the maximal velocity at the horizon x)637

and f is the similarity function in the following form: f (η) = 1/ch2(η) with η = y/∆̃(x). Here, η638

is the self-similar variable, ∆̃(x) is the jet’s half-width at the downstream distance x and y is the639

coordinate transversal to the jet’s axis (see Fig. 13).640

Defining b̃u as the value of y where ũ = 1
2 ũm, the relationship between ∆̃ and b̃u is simply given641

by b̃u(x) = ach(
√

2)∆̃(x).642

The analytical solutions for the jet’s centerline velocity and half-width are provided by Bick-643

ley (1937) as: ũm(x) =
(

3M2

32ρ2νx

)1/3
and ∆̃(x) =

(
48ρν2 x2

M

)1/3
respectively.644

For the case of a 2D Poiseuille inlet flow, the constant momentum flux is M =
∫ +∞
−∞ ρũ2dy =645

(6/5)ρu2
j b. Since the mass flux is assumed to be constant at any downstream location, the centerline646

velocity ũm can be expressed as:647

ũm(x) =
3
10

u j

(5Re j

x/b

)1/3
(17)648

We note here that the analytical solution features a singular point at x = 0 due to the assumption649

that the jet flow begins at a narrow orifice of infinitesimal width (Bickley 1937; Schlichting 1960).650
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Consequently, and in order to fit with the experimental and simulated data, the equations need to be651

adjusted by introducing a virtual origin λ̃ (see Fig. 13), which has been estimated in previous works652

(Andrade and Tsien 1937; Andrade 1939; Revuelta et al. 2002). Revuelta and co-workers (2002)653

gave for instance a numerical estimation of λ̃ for both plane and round jets as a function of Re j and654

b. The expression of λ̃ for a laminar plane free jet with Poiseuille injection reads: λ̃ = 0.029Re j b.655

After introducing the virtual origin, the centerline velocity and the jet’s half-width become:656

ũm(x) =
3

10
u j

( 5Re j

(x + λ̃)/b

)1/3
(18)657

658

∆̃(x) = 401/3bRe−2/3
j

(
x + λ̃

b

)2/3
(19)659

with x being now the downstream distance from the nozzle.660
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TABLE 1. Input parameters used for the study cases with free jet configuration

U0 b ν × 10−6 Re j
(m/s) (mm) (m2/s) (-)
0.37 5.2 33 38.9
0.37 5.2 66 19.4
0.185 10.8 16.5 80.7
0.185 5.2 16.5 38.9
0.185 10.8 33 40.4
0.185 5.2 33 19.4
0.74 5.2 33 77.7
0.37 10.8 33 80.7
0.37 6.8 33 50.8
0.37 8.4 33 62.8
0.37 12.4 33 92.7
0.62 5.2 16.5 130.3
0.53 5.2 16.5 111.4
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TABLE 2. Input parameters used for the study cases with impinging jet configuration

Case U0 b ν × 10−6 Re j H
(m/s) (mm) (m2/s) (-) (mm)

a, b 0.37 5.2 33 38.9 90.4
a, b 0.74 5.2 33 77.7 90.4
a, b 0.5 5.2 33 52.5 90.4
a, b 0.6 5.2 33 63.03 90.4
a, b 0.37 6.8 33 50.8 90.4
a, b 0.74 6.8 33 101.7 90.4
a 0.37 5.2 33 38.9 73.2
a 0.74 5.2 33 77.7 73.2
a 0.37 6.8 33 50.8 73.2
a 0.37 5.2 33 38.9 108
a 0.74 5.2 33 77.7 108
a 0.37 6.8 33 50.8 108
a 0.74 5.2 10 256.5 90.4
a 0.37 5.2 10 128.3 90.4
a 0.74 5.2 100 25.7 90.4
a 0.37 5.2 100 12.8 90.4
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TABLE 3. Input parameters for a parametric study of the erosion threshold

Solid particles Fluid
Density ρs: 2230 kg/m3

Normal stiffness kn: 1.1 × 105

Shear stiffness kt : 1.1 × 105

Friction coefficient µ: 0.3
Rolling friction µr : 0.1
Restitution coefficient e: 0.2
Gravitational acceleration g: 9.81 m/s2

Density ρ f : 847 kg/m3

Kinematic viscosity ν:
30 to 50 × 10−6 m2/s
Nozzle diameter b: 5.2 mm
Impingement height H: 90 mm
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Fig1.pdf

Fig. 1. Paradigm of free jet and impinging jet on a granular sample. The hydrodynamic variable
ũm(H) represents the free jet centerline velocity at a distance equal to the impingement height H,
while V is the maximal fluid velocity over the impinged surface.
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Fig2.pdf

Fig. 2. Sketch of study cases for jet analysis. Left: Free jet configuration; Right: Impinging jet
on either a smooth wall (case a) or on a granular surface (case b) with distinction of the three
characteristic jet flow regions.
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Fig3.eps

Fig. 3. Simulation results for a laminar 2D free jet with Poiseuille inlet (U0 = 0.37 m/s, b =
5.2 × 10−3 m, ν = 33 × 10−6 m2/s, and Re j = 38.9). The curves represent the dimensionless
centerline velocity um/U0 along the dimensionless downstream distance x/b from the nozzle using
the regularized (red circle line) and equilibrium (blue triangle line) boundary conditions for the
inlet, as compared to the analytical solutions of the 2D laminar free jet using virtual origin given
by (Revuelta et al. 2002) (dotted line) or by Eq. (9) (solid line), respectively. The dashed line
represents the impinging jet on a smooth wall with H = 90.4 mm for the same inlet conditions.
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Fig4a.eps

(a)

Fig4b.eps

(b)

Fig. 4. Transversal profiles of fluid velocity for a laminar 2D free jet with Poiseuille inlet (same
conditions as in Fig. 3). (a) Dimensionless fluid velocity u/U0 versus dimensionless transversal
coordinate y/b at different downstream distances x/b from the jet’s nozzle. (b) Profiles of fluid
velocity u normalized by the maximum (centerline) value um at each downstream location x/b; the
coordinate y is now normalized by bu, the transversal distance where u(bu) = 1

2um.
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Fig5a.eps

(a)

Fig5b.eps

(b)

Fig. 5. (a)Variation of (u j/um)3 (e) and (bu/b)3/2 (5)with the normalized distance from the nozzle
x/b for Re j = 38.9; the solid lines are linear fits: (u j/um)3 = α( x+λub ) and (bu/b)3/2 = β( x+λbb )with
α = 0.201, β = 0.138, λu/b = 1.29, and λb/b = 1.48. (b) Log-log representation of the slopes α
and β versus Re j ; the lines represent the theoretical predictions extracted from Eqs. (18) and (19)
in Appendix I.
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Fig6.eps

Fig. 6. Variation of the dimensionless virtual origin λ/b versus the jet Reynolds number Re j

obtained from the linear regression of the profiles (u j/um)3 (u) and (bu/b)3/2 (E). The linear
trend fitting the data is shown as a dashed line and the solid line is the expression of λ̃ provided by
(Revuelta et al. 2002).

46 Benseghier, April 24, 2019



Fig7a.eps

(a) Smooth wall

Fig7b.eps

(b) Granular surface

Fig. 7. Profiles of transverse velocity v for different distances x1 from the impingement surface,
both for the smooth wall configuration (a) and for a fixed granular surface with mean grain size
d = 5 mm (b) (b/d = 1.04 and bu/d = 1.93 with bu deduced from Eq. 19 with free jet model).
The general simulation parameters are H = 90.4 mm and U0 = 0.37 m/s. For symmetry reason,
only the right part of the transverse velocity profiles are shown for the smooth wall configuration.
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Fig8.eps

Fig. 8. Variation of maximum velocityV versus the free jet velocity ũm(H+λ) at the corresponding
downstream distance x = H for a laminar jet impingement on either a smooth wall or on fixed
granular surfaces with mean grain sizes d = 3 mm and 5 mm respectively. The solid line is a linear
fit from the smooth wall results.
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Fig9a.eps

(a)

Fig9b.eps

(b)

Fig. 9. (a) Transversal profiles of dimensionless wall shear stress for different combinations of
normalized impingement height H/b and jet Reynolds number Re j . The solid line represents the
estimation provided by (Beltaos and Rajaratnam 1974). (b) Maximum shear stress τm on a smooth
impinged surface versus ρV2/

√
Re j .
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Fig10a.pdf

(a) t = 12.5 s, Re j = 40.21, U0 = 0.58 m/s

Fig10b.pdf

(b) t = 15 s, Re j = 45.76, U0 = 0.66 m/s

Fig10c.pdf

(c) t = 17.5 s, Re j = 50, U0 = 0.72 m/s

Fig10d.pdf

(d) t = 20 s, Re j = 55.47, U0 = 0.8 m/s

Fig10e.pdf

(e) t = 22.5 s, Re j = 61.01, U0 = 0.88 m/s

Fig10f.pdf

(f) t = 25 s, Re j = 69.33, U0 = 1 m/s

Fig. 10. Time sequence of jet erosion on a frictional granular sample composed of 3000 particles
with dmean = 2 mm, ν = 50 × 10−6 m2/s, b = 5.2 mm. A color scale is used for fluid velocity
magnitude from zero (blue) to maximal inlet velocity U0 (red). Solid particles with kinetic energy
above a critical threshold are classified as eroded (here depicted in red colour).
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Fig11.eps

Fig. 11. Critical values of inertial Shields number Sh∗u versus particle Reynolds number Re∗p for the
simulated jet erosion of frictional granular beds, as compared to the experimental results of (Badr
et al. 2014) (e). The simulations were performed with different values of mean particle size d and
fluid kinematic viscosity ν: d = 2 mm (a), d = 3 mm (5), and d = 5mm (0) with ν = 4 × 10−5

m2s−1; d = 2 mm (1), d = 3 mm (e), and d = 5 mm (`) with ν = 5 × 10−5 m2s−1; d = 2 mm
(3) with ν = 3.3 × 10−5 m2s−1; d = 3 mm (c) with ν = 3.75 × 10−5 m2s−1; d = 5 mm (f) with
ν = 3 × 10−5 m2s−1; d = 5 mm (6) with ν = 3.7 × 10−5 m2s−1.
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Fig12.eps

Fig. 12. Critical Shields number Sh∗τ versus particle Reynolds number Re∗τ at the threshold. The
solid line stands for the explicit Shields equation [Eq. (14)]. The symbols are the same as those
used in Fig. 11.

52 Benseghier, April 24, 2019



Fig13.pdf

Fig. 13. Sketch of a plane free jet with virtual origin λ located above the nozzle exit.
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