The challenge to pass from shallow water flows to sediment transport and bed evolution in a coupled 1D/2D model Paquier André a,* a Irstea, UR RiverLy, centre de Lyon-Villeurbanne 5, rue de la Doua, CS 20244, 69625 Villeurbanne, France *Corresponding author: andre.paquier@irstea.fr Sediment transport is present in the river flows at all stages and may cause a change of the shape of the bed with consequences on the flowing conditions. The finer part of the sediments is carried by the flow in the whole water column while the coarser one stays close to the bed. Except strong variations of hydraulic parameters, the finer sediments follow the flow and are seldom deposited. Here below, are only considered the coarser sediments that interact with the bed. The paper focuses on the methods to represent the transported sediments and to modify bed geometry according to erosion or deposition of these sediments.

Description of the 1-D code RubarBE

In a river in which the flow can be considered as 1-D, the bed load sediment discharge is usually limited by the capacity of the flow to carry the sediments. The simpler way to estimate this capacity uses an empirical equation that considers the median diameter (D50) although the behaviour of a mixture of sediments is known to be different. In the code RubarBE [START_REF] El Kadi Abderrezzak | One-dimensional numerical modelling of dam-break waves over movable beds: application to laboratory experimental and field cases[END_REF], the sediment transported is characterized by only one median diameter and the standard deviation of the diameters σ, both parameters evolving in time and space; σ can be calculated by (D84/D16) 1/2 or D84/D50 assuming that the grain-size distribution is lognormal (n % of the mass of sediments have a diameter less than Dn). This latter description of the sediments is adapted to the river in which the studied sediments are homogeneous in terms of interaction with the flow and the bed. In this latter case, the hydro -sedimentary model includes flow equations, equations to describe the sediment transport and equations for the processes of erosion and deposition and the associated bed evolution.

The flow equations are the classical system (equations (1) + ( 2)) of de Saint Venant equations.
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(2) in which A the wetted area, Q the discharge, Z the bottom elevation, K the Strickler coefficient, R the hydraulic radius, g the gravity acceleration, 
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the linear head loss, s J local loss of quantity of movement, β the momentum coefficient equal to 1 (except in compound channel is considered, case in which the equation for J is more complex), q the lateral discharge, k a coefficient (generally 0 or 1) ) with the x-axis longitudinal, y-axis transversal, and the z-axis vertical upward.

Starting from the hydraulic variables and the median sediment diameter, Qs cap the sediment transport capacity is calculated using an empirical equation [START_REF] El Kadi Abderrezzak | Applicability of sediment transport capacity formulas to dam-break flows over movable beds[END_REF] such as the ones from Meyer Peter and Müller [START_REF] Meyer-Peter | Formulas for bed load transport[END_REF], Camenen and Larson [START_REF] Camenen | A general formula for non-cohesive bed load sediment transport[END_REF], Bagnold [START_REF] Bagnold | An Approach to the Sediment Transport Problem from General Physics[END_REF], Engelund and Hansen [START_REF] Engelund | A monograph on sediment transport in alluvial streams[END_REF], Ackers and White [START_REF] Ackers | Sediment transport: new approach and analysis[END_REF], Smart and Jaeggi [START_REF] Smart | Sediment transport on steep slopes, Mitteilungen der Versuchsanstalt für Wasserbau[END_REF]. Because the sediment discharge is not instantaneously equal to the capacity, space-lag effect is considered using equation ( 3) in which Ls denotes the lag distance and Qs the (volumetric) sediment discharge [START_REF] Daubert | Etude expérimentale sur modèle mathématique de quelques aspects des processus d'érosion des lits alluvionnaires, en régime permanent et non-permanent[END_REF]. The lag distance Ls characterizes the distance for sediment transport to reach its saturation rate for a flow condition [START_REF] Bell | Non equilibrium bedload transport by steady flows[END_REF] but because Ls is related to the dimensions of sediment movement, bed forms and channel geometry, its definition is difficult. Its value can be set fixed or calculated using empirical equations such as the one proposed by Wu and Wang [START_REF] Wu | One-dimensional modeling of dam-break flow over movable beds[END_REF].
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Evolution of bed topography is governed by the sediment continuity equation ( 4):
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in which qs is the lateral sediment discharge, Ab the cross-sectional area of the bed above a reference datum and p the bed porosity.

Then, the variation of the bed area Ab is distributed among the points of the cross section. The vertical bed deformation ∆zb,j at each movable point j (defined as τj > τc,j) of the wetted perimeter is assumed to be a power function of the excess shear stress (τjτc,j)

at that point (equation ( 5)).
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τ τ τ τ [START_REF] Camenen | 1D morphodynamic modelling using a simplified grain size description[END_REF] in which the subscript j refers to the cross-section points in the movable bed, τj and τc,j are the boundary shear stress and critical shear stress, respectively, at point j, ∆yj is the channel width associated with point j, and m is usually the exponent of the sediment transport capacity equation. τj can be estimated using a geometrical method, the Merged Perpendicular Method [START_REF] Khodashenas | A geometrical method for computing the distribution of boundary shear stress across irregular straight open channels[END_REF]. τc,j is estimated from the mean sediment diameter and a not dimensional critical shear stress provided by the modeller eventually using a correction factor in order to take into account the bed slope [START_REF] Ikeda | Incipient motion of sand particles on side slopes[END_REF]. However, other equations exist for the distribution of the deformation of the cross section; particularly, for deposition, the term j c j , τ τcan be replaced by j j c ςτ τ -, (ς is a coefficient that permits to define if all the cross-section points are movable or if only some of them should be moved) or simply j τ or even more simply hj or deposition can follow horizontal layers. The type of distribution of the deformation is selected for the whole model and should be linked with the actual behaviour of sediments during an event.

The sediment model domain consists of cells (between two successive centres of the flow cells and thus including one cross section that is the reference geometry of the cell) with three types of layers. The first layer refers to the flow region in which sediment is routed downstream with the water flow. The second layer is the active layer, which contains the sediment particles available for transport; the volume of the active layer is defined at each time step by Qs cap ∆x/V, with V as the flow velocity and ∆x as the cell length or the thickness of the sediment layer is defined from D84. Beneath the active layer is the riverbed substrate defined by several sediment layers. Sediment particles are exchanged between the flow and the active layer continuously according to the sediment balance inside every computational cell: at each time step, the output sediment flux is calculated from the input sediment flux and the sediment transport capacity Qs cap solving the space-lag equation [START_REF] Bell | Non equilibrium bedload transport by steady flows[END_REF]. The volume of sediment present in the active layer limits scour and deposition. When the volume of the active layer goes beyond the target value, the extra volume is deposited on the river bed. Oppositely, if the volume of the active layer is smaller than the target value, the river bed is eroded. The upstream sediments interact with the sediments from the bed layer through the active layer, which acts as a buffer layer before the sediments go downstream

For each layer and sub-layer, the sediment size distribution is represented by the two parameters D50 and σ. Exchanges between layers are calculated according to sediment balance. When two sediment masses M1 and M2 (from any layer) are mixing, D50 and σ of the mixture are averages calculated using the empirical equations (6). When a mass of sediments is sharing between two parts, one can either choose the hypothesis that all the sediments have the same size or consider that there is a sorting process in which the first one, which is finer, is transported by the flow, whereas the second one, which is coarser, settles down according to equations [START_REF] Daubert | Etude expérimentale sur modèle mathématique de quelques aspects des processus d'érosion des lits alluvionnaires, en régime permanent et non-permanent[END_REF].
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in which indexes i, c and f are for initial, coarse and fine, LD and Lσ are adaptation lengths that are generally one or two orders of magnitude higher than Ls [START_REF] Camenen | 1D morphodynamic modelling using a simplified grain size description[END_REF].

The system of the equations ( 1) + ( 2) + ( 4) is solved by an explicit numerical scheme. The scheme is second order for the flow calculation (that includes one step at an intermediate time) but only first order for the sediment transport because only one estimate of the fluxes is performed at the end of the time step. The actualization of the geometry and of the sediment layers may be performed at the same time step or less frequently. Because the numerical scheme is explicit, the computational time step should be limited by numerical stability conditions. For the flow routing, the usual Courant-Friedrichs-Levy (CFL) condition is that the Courant number is limited to 1 but, in case of rapid evolution of the geometry, the time step should be reduced. In the Ha!Ha! case presented here below, the upper value for the Courant number was set to 0.5 and the geometry actualization was performed at each time step.

Example of dam break wave propagation along !Ha!Ha river (from [9])

The Ha!Ha! river is a 35.7 km long river located in the mountainous and forested area of the Saguenay basin (Quebec), from PK35.7 (Ha!Ha! lake) to PK0 (Ha!Ha! bay). The longitudinal riverbed slope is in the range 0.0016 to 0.2, reflecting random variations due to bedrock outcroppings and non-alluvial areas. On Ha!Ha! lake, the flood event of 19-21 July 1996 led to overtopping and failure of an earth dyke (PK35.7). From the lake to the river mouth, the riverbed was dramatically modified particularly in the vicinity of "Chute-à-Perron" with formation of new channels and development of meanders. This event was used as test case during the European project IMPACT about dam breaching and data including the upstream flow hydrograph at the dam are available [START_REF] Capart | Lake Ha! Ha! breakout flood, Québec: Test data for geomorphic flood routing methods[END_REF].

The Digital Terrain Model (DTM) of the Ha!Ha! valley includes geo-referenced levels of the pre-flood valley and the estimated bedrock substrate. Three hundreds and sixty-three cross-sections spaced at intervals of about 100 m are used. The median grain diameter and standard deviation of bed material in the reach located between PK35.7 to PK25.0 can be set to 0.5 mm and 2.7, respectively. To take into consideration some deposit of fine sediment along the river floodplain at "Chute à Perron" (i.e. between PK14 and PK13.5), the median grain diameter and the standard deviation of bed material at this location are assumed to be 0.1 mm and 1.6, respectively. Locations of outcrops of bedrock or coarse glacial deposits are identified and assumed non-erodible. Density, porosity and angle of internal friction of bed material are 2650 kg/m 3 , 0.4 and 35 degrees, respectively. The sediment discharge at the upstream boundary is assumed to be zero. The water level in Ha!Ha! bay is set at 7 m A.S.L.. The sediment transport capacity is calculated using the Meyer-Peter and Müller equation [START_REF] Meyer-Peter | Formulas for bed load transport[END_REF] in which the usual dimensional coefficient of 8 is replaced by 12, because this later value is proper for high shear stress conditions and permits to take into account the contribution of suspended load [START_REF] Nielsen | Coastal bottom boundary layers and sediment transport[END_REF]. Three simulations are carried out to test the method for updating cross-sectional geometry (Table 1 The results of the calculations show that the method for updating the geometry of the cross sections has a strong influence on the morphological evolution although it is not so strong on the peak water elevations [START_REF] El Kadi Abderrezzak | One-dimensional numerical modeling of sediment transport and bed deformation in open channels[END_REF]. Figure 1 shows that, although all the simulations simulated the huge erosion at "Chute à Perron" due to a secondary channel, only Ha!Ha!c provides the right trend on the whole reach. However, Figure 2 shows that none of the simulations provides a final shape of the cross section similar to measurements, particularly because the bed evolution was limited to the main channel although the flood plain was eroded. A hydro -sedimentary model should be carefully calibrated if one wishes reliable results. Figure 1. Bed profile along the river at the end of the flood (from [START_REF] El Kadi Abderrezzak | One-dimensional numerical modeling of sediment transport and bed deformation in open channels[END_REF]). Figure 2. Cross section at 12.57 km from the bay at the end of the flood (from [START_REF] El Kadi Abderrezzak | One-dimensional numerical modeling of sediment transport and bed deformation in open channels[END_REF])

Example of erosion of an artificial bar along Rhine river (from [17])

Issued from a study of the efficiency of introducing sediment to restore river bed, the erosion of an artificial bar of Rhine river will be used to compare 1-D and 2-D approaches (as already presented in [START_REF] Paquier | Erosion of an artificial gravel bar in the Rhine River: comparison of 1-D and 2-D modelling[END_REF]). The originality of this case is the building of an artificial bar close to the bank of the main channel with a sediment diameter smaller than the one of the surrounding sediments at the surface of the main channel bed. In October 2010, the artificial bar was built from km 182.450 to km 183.070, about 8 kilometres downstream the Kembs dam. Horizontal layers were successively displayed with a narrowing width in order to form a bar with an average side slope of about 40 degrees. Total volume of the artificial bar reached slightly less than 22,000 m 3 and the bar width about 15 metres (i.e. about 10% of the river main channel width). The sediment used for building this bar was excavated from the neighbouring right flood plain in which polders are created to mitigate floods (within the framework of the Integrated Rhine Project). For the artificial bar, the final mean sediment diameter (D50) was about 21 mm and σ was estimated to 3.7, which illustrates the heterogeneity of the fluvial deposits in the floodplain. This resulting sediment of the bar was very different from the one of the armoured bed for which the mean diameter is about 100 mm (σ = 1.8). This armoured bed does not move or slightly moves for flow discharge below 2000 m 3 /s, which usually permits to simplify the main transport process (both in the field and in the models) to a simple transport of the bar sediments over a fixed bed.

The topography of the river bed is defined by a set of cross sections of the main channel between the levees surveyed at the beginning of 2010 by Regierungspräsidium Freiburg. The average distance between cross sections is about 200 metres along the 45 kilometres of the Rest-Rhine. For the two kilometres long reach including the bar and the immediate downstream area, some additional surveying permits to define the topography of the bar in October 2010 immediately after its building and in February 2011 (after the December 2010 flood that eroded the bar). Interpolation between the levelled cross sections and within these sections leads to a full description of the topography through cross sections separated by a distance of about 50 metres in the reach containing the bar and about 200 metres elsewhere; the distance between points throughout a cross section is finally set to about 10 metres. These cross sections are directly used in the 1-D model while for the 2-D model (limited to a four kilometres long reach), the vertices are set at a distance of about 10 metres in the cross direction (similarly to 1-D model) and 30 metres in the stream wise direction (which means further interpolation).

While the river bed below usual water level (discharge below 200 m 3 /s) is only constituted with sediments, the bars and banks are covered with vegetation: weeds close to the main channel, shrubs and trees further. Thus, the resistance to the flow increases with increasing water elevation and then, vegetation should be characterized by various friction coefficients in the models. Finally, after calibration, 1-D Strickler coefficients vary from 8 to 40 m 1/3 /s. At the beginning of December 2010, high flows coming from the Rhine upper basin (Switzerland) exceeded the capacity of the derivation canal and a flood came into the Rest-Rhine and eroded the artificial bar. The flood lasted five days with two peaks at more than 1000 m 3 /s (Figure 3).

During the flood, about 80 % of the bar volume was eroded, this process being followed by a deposition of the eroded sediments in the main channel near the bar or at a location immediately (less than 100 metres) downstream from the bar. At the scale of a flood peak, the bar seems to move slightly downstream (90 metres for the whole December 2010 flood) together with a smoothening shape. This trend was supported by the monitoring of the sediment transport using passive transponders placed into pebbles. 1-D simulation of the 2010 flood uses the following reference parameters: the (Meyer Peter and Müller, 1948) equation for the sediment transport capacity with a nondimensional shear stress τc * equal to 0.047, a lag distance of one metre (equivalent to no space lag), a corrected critical shear stress using [START_REF] Ikeda | Incipient motion of sand particles on side slopes[END_REF] equation with a stability angle of 30 degrees and the grain sorting option is not applied. Erosion and deposition are proportional to a power function of the excess shear stress (similar to the simulation Ha!Ha!-c.) This simulation provides an erosion of about 80% of the bar volume; only the downstream end of the bar is not completely eroded. The first flood peak starts the erosion mainly over the 300 metres and deposes the eroded sediments in the immediately downstream sections that are the sections of the downstream half of the bar; then, the second flood peak erodes most part of the rest of the bar and of the previous deposits of the main channel. As an alternative, a second simulation is performed using the same parameters except that the deposition of the sediments is set into horizontal layers starting from the lower point of the section.

Figures 4 and5 show two cross sections located respectively at the upstream and downstream part of the bar. At the upstream section, both the reference calculation and the alternative calculation with horizontal deposition of the sediments provide exactly the same results of a generalized erosion without any deposition while measurements show less erosion and some deposition at the foot of the bar. 

Measurements after flood after building artificial bar horizontal deposition reference calculation of erosion

At the downstream section, the two calculations provide different results: the reference calculation is less relevant than the alternative calculation that permits some deposition in the main channel beside the bar (although the shape of these deposits is not similar to the one measured); indeed, such deposition beside the bar is also present in the reference calculation after the first flood peak but is washed out by the second flood peak. Figure 5. Cross section at km 182.944. Comparison of initial shape, measurements after the 2010 flood and 1-D model results (from [START_REF] Paquier | Erosion of an artificial gravel bar in the Rhine River: comparison of 1-D and 2-D modelling[END_REF]).

A sensitivity analysis was performed changing one parameter in every simulation. Reference calculation predicts a too high erosion of the bar and a too low deposition downstream the bar: this trend is only partly corrected by increasing the non -dimensional shear stress to 0.06. Other changes applied one by one have nearly no effect on the eroded volume because the flood was high enough to evacuate most of the sediments.

Description of the 2-D model Rubar 20TS

In a 2-D representation of the flow and the bed, the question of distribution of the erosion and deposition is no longer a problem if the processes can be reduced to what occurs in a vertical column. The behaviour of the sediments can be described in the same way as in a 1-D model focusing on the median diameter and considering additional modelling to represent the evolution of the diameter and of such key parameters that are the critical shear stress for erosion or deposition.

Rubar 20TS [START_REF] Paquier | Chapter 11. 2D Model of sediment transport with RUBAR 20TS[END_REF] solves the 2-D shallow water equations ( 8) + ( 9) + (10) completed by the sediment transport equation [START_REF] Engelund | A monograph on sediment transport in alluvial streams[END_REF].
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ν ν [START_REF] Engelund | A monograph on sediment transport in alluvial streams[END_REF] in which u and v are the velocities along respectively x and y axis, h the water depth, P the rainfall or infiltration rate, Z the bottom level, g the acceleration due to gravity, s K a Strickler coefficient, ν t a diffusion or turbulent viscosity coefficient, E is the rate (m/s) of bed elevation evolution (erosion if positive or deposition if negative), C the concentration of sediments (m 3 /m 3 ), us and vs the sediment velocities in the x and y directions (often set equal to water velocities), ν a diffusion coefficient (related by a constant multiplying factor to the water diffusion coefficient νt).

E can be either calculated from an empirical equation providing the maximum sediment transport capacity (same equations as in a 1-D model) or more simply set proportional to the difference between bottom shear stress and a critical shear stress (equation 12 for erosion and equation 13 for deposition) or calculated from an equilibrium concentration (for instance, method from [START_REF] Van Rijn | Sediment transport, part II: suspended load transport[END_REF]). If the Meyer Peter and Müller sediment transport capacity equation [START_REF] Meyer-Peter | Formulas for bed load transport[END_REF] is used, the calculation equivalent to the 1-D model provides equation 15 for E. E is calculated at each node and then averaged over the cell (or directly calculated at the cell centre and then distributed between the nodes) in order to obtain sediment input or output. Bed elevation evolves considering E at every time step. E = M (τ/τcr -1) [START_REF] Ikeda | Incipient motion of sand particles on side slopes[END_REF] in which M is an erosion coefficient, τ the bed shear stress and τcr a critical shear stress

E = -α ws C (1-τ/τcr) (13) 
in which α is a coefficient and ws the fall velocity of the sediments E = -α ws (C-Ce) [START_REF] Meyer-Peter | Formulas for bed load transport[END_REF] in which Ce is the equilibrium concentration E = b (τ-τcr) 3/2 -ChVs/Ls [START_REF] Nielsen | Coastal bottom boundary layers and sediment transport[END_REF] in which b is a coefficient, Vs the sediment velocity and Ls an adaptation length

The code Rubar 20TS uses an explicit finite volume scheme on a calculation mesh consisting of quadrilaterals and triangles in order to adapt to a natural topography of a river. The second order Godunov-type scheme for the flow equations includes two main steps which consists in, first, estimating the fluxes through edges for the conservative part of the equations, and then, integrating the second member of the equations on the cell surface in order to add the corresponding contribution. The estimate of the flux through one edge is computed by solving a 1-D Riemann problem perpendicularly to the edge and is replaced by a calculation of the discharge by the flow -elevation equation in case of a hydraulic structure. For the sediment equations, only first order is used: the sediment variables are calculated from the hydraulic variables at time tn and used on the whole time step for final evolution of transported sediments (equation 11) and actualized geometry at time tn+1. Generally, hydraulic structures are assumed to transfer the sediment discharge unchanged; however, if the structure represents a breach in an embankment, sediment can be produced inside the hydraulic structure [START_REF] Paquier | Dike failure caused by flow overtopping: a comparison of two modelling methods[END_REF].

For flow equations, the stability condition is a Courant number below 1. As for the 1-D model, a rapid evolution of the bed topography requires a reduced time step.

2-D modelling of the erosion of an artificial bar along Rhine river (from [17])

On the common four kilometres long reach, the 2-D model takes into account the same vertices as the 1-D model presented here above except that cross sections are interpolated streamwise at a 30 metres space step. Calibrating the 2-D model using the same water elevations measured for discharges between 150 and 3020 m 3 /s, 1-D Strickler friction coefficients were divided by 1.25.

Reference calculation for the 2-D model takes into account the same parameters as the 1-D reference calculation. The erosion is too weak (30% of the volume of the bar is eroded while 80% is the observed value) but the deposition and erosion patterns seem close to the observed ones; particularly, the deposition of the eroded sediments takes place immediately downstream the bar (km 183.100 to 183.600) and slightly at the foot of the bar (figure 6). The view of the cross section at km 182.944 (figure 7) explains the too weak erosion; only one point of the crest of the bar (out of two) is eroded, the other one for which the flow velocity is lower cannot be eroded because calculated shear stress is below the critical value. A sensitivity analysis was performed but no change can increase the eroded volume a lot while a slight decrease of the shear stress can reduce it. Even a finer discretization of the bar (resulting in twice more vertices over the bar crest) increases the erosion but only slightly (about 10 %) because the flow velocity at the top of the bar is still low. The main result of the comparison between the 2-D model and the 1-D model is the reduced erosion if one uses the 2-D model. This reduced erosion is clearly due to two main reasons:

• the reduced velocity on the bar in the 2-D model compared to the cross section averaged velocity used by the 1-D model to calculate bed shear stress; • the type of calculation of the bed shear stress in the 1-D model includes the distribution along the wetted perimeter of every cross section using the Merged Perpendicular Method [START_REF] Khodashenas | A geometrical method for computing the distribution of boundary shear stress across irregular straight open channels[END_REF] that corrects the shear stress corresponding to the vertical area method (equivalent to what is used in the 2-D model) increasing shear stress at convex angle and reducing it at concave angles; thus, it provides higher shear stress at the edges of the bar. Moreover, without a relevant representation of the sediment grain size distribution, the 2-D model that provides the higher shear stresses near the foot of the bar (higher water depths and higher velocities) cannot reproduce the deposits in that area while the 1-D model can provide these deposits although they are too rapidly eroded in the second part of the flood. However, the 2-D model seems to reproduce the shape of the eroded section of the bar in a better way than the 1-D model: the right part of the bar is eroded more slowly than the left part. Finally, a change in the 2-D model parameters have more relative effect than a similar change in the 1-D model because, even, at the peak of the flood, shear stress is only slightly higher than critical shear stress. One eventual conclusion may be a decrease of the critical shear stress in the 2-D model to cope with the artificial building of the bar (because the flood occurs immediately after the works), this decrease being general or limited to the points in which the slope is high (reduction of the angle of the stability of the slopes).

The different behaviours of the 1-D and 2-D models, even if the parameters for describing sediments are identical, lead to propose a coupling of the two models. In the latter case of the Rhine river, an obvious possibility is the coupling of the 4 kilometres long 2-D model with the remaining 41 kilometres of the reach of the 1-D model that then will provide the boundary conditions of the 2-D model and will permit to model the transport of the sediments of the eroded bar far downstream. Another possibility would be to limit the 2-D model to the bar and keep the remaining part of the main channel in Measurements after flood after building artificial bar reference calculation of erosion 1-D assuming that there the sediment transport remains quite simple as the morphology was not modified during the building of the artificial bar; thus, a lateral coupling may be also optimal.

Coupling 1-D and 2-D hydro-sedimentary models

Then, if the sediment modelling in the 1-D and 2-D models is unified (as in the presented software RubarBE and Rubar20TS), the coupling of such models is mathematically simple. The water flux will be accompanied by a sediment flux defined using the concentration but also the sediment diameter and its standard deviation. In the same way to what is set for the flow equations, the nine possibilities for coupling can be detailed:

1. For all the cases, the values of the variables on the 2-D side at the intermediate time are defined at the edge as usual in the 2-D model. The calculation algorithm is based on the assumption that the time step is equal in the two models so that there is only one intermediate time for which the sediment variables at the interface are calculated.

Conclusions

The coupling of 1-D and 2-D hydro-sedimentary models is simplified using the same representation of the sediments by a mean diameter and a standard deviation. [START_REF] Camenen | 1D morphodynamic modelling using a simplified grain size description[END_REF] shows that this representation can be efficient for such complex questions as sediment sorting.

Here above, results of these models are shown on two cases in which two sediment populations are present. The extension of the coupling of 1-D and 2-D flow models to sediment transport is then reduced to defining three variables at the interface of the models: concentration, mean diameter and standard deviation. However, similarly to the coupling of hydrodynamic models, if getting boundary parameters from the 2-D side is easy, it is not so simple for the 1-D side. For instance, the concentration and diameter of the sediments near the bank of a river are often quite lower from the ones in the centre of the main channel. Moreover, the critical shear stress is a key factor that is not accurately defined from only the mean diameter and standard deviation of the sediments.

  pressure, h the water depth, L the width,

  1 and 2 refer to the variables of the sediments that are mixed.
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 3 Figure 3. December 2010 flood flow hydrograph at Rheinweiler gauging station(km 186.360) (from[START_REF] Paquier | Erosion of an artificial gravel bar in the Rhine River: comparison of 1-D and 2-D modelling[END_REF]).
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 4 Figure 4. Cross section at km 182.504. Comparison of initial shape, measurements after the 2010 flood and 1-D model results (from[START_REF] Paquier | Erosion of an artificial gravel bar in the Rhine River: comparison of 1-D and 2-D modelling[END_REF]).
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 6 Figure 6. 2-D reference calculation: thickness of flood deposits (erosion corresponds tonegative values). Distances on x and y axis are in metres (from[START_REF] Paquier | Erosion of an artificial gravel bar in the Rhine River: comparison of 1-D and 2-D modelling[END_REF]).
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 7 Figure 7. Cross section at km 182.944. Comparison of initial shape, measurements after the 2010 flood and 2-D model results (from [17]).

  and 2. 1-D model upstream, 2-D model downstream, either solving Riemann problem or using hydraulic structure. The sediment flux entering the 2-D model is defined using the flow discharge at the interface and the concentration, diameter and standard deviation on the 1-D side. 3. and 4. 2-D model upstream, 1-D model downstream, either solving Riemann problem or using hydraulic structure. The 1-D flow discharge is the sum of the 2-D discharges through the 2-D edges. On each of the 2-D edge, a sediment discharge is associated to the 2-D flow discharge; these sediment discharges are mixed to obtain an average concentration, an average diameter and average standard deviation to enter the 1-D model. 5. and 6. 1-D model at left side, 2-D model on the right bank of 1-D model, either solving Riemann problem or using hydraulic structure. The sum of the flow discharges through the 2-D edges constitutes a lateral input for the 1-D model. Depending of the flow direction at the interface, the sediment is entering or going out the 1-D model. In the same way as here above either the 1-D sediment features are used or an average of the 2-D sediment features at the 2-D edges. Note that there are two problems: is the 1-D concentration at the interface equal to the average concentration in the 1-D cell? If the flow is going out only on some edges and entering the other ones, are the average concentrations representative of the sediment flux in one way or the other way? 7. and 8. 1-D model at right side, 2-D model on the left bank of 1-D model, either solving Riemann problem or using hydraulic structure. The calculation method is similar to the previous case. 9. Hydraulic structure defining another kind of coupling (for instance, 2-D model above 1-D model if the 1-D model represents an underground drainage network): if the flow enters the 1-D model, an average of the sediment features at the 2-D edges is used; if the flow enters the 2-D model, the sediment features of the 1-D model cell are used. The same two questions as for the previous case should be answered: what occurs if the flow on the 2-D edges is not in the same direction? Is the 1-D concentration at the interface equal to the average 1-D cell concentration? For this latter question, if the 1-D model is below the 2-D model and sediment is coarse (bed load transport), the answer is certainly that the 1-D concentration at the interface is much lower except if the structure is starting close to the bottom of the 1-D cross section.

Table 1 .

 1 ). The time step in the simulations is 0.001 s. Ha!Ha! River -Summary of the numerical simulations.

	Simulations Boundary shear stress	Critical shear	Erosion	Deposition
	Ha!Ha!-a	Uniform	stress Uniform	Uniform	Horizontal
	Ha!Ha!-b	Uniform	Uniform	Uniform	layers Uniform
	Ha!Ha!-c	Merged Perpendicular Method	Slope dependent [12]	Equation (5)	Using ς coefficient