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A method for coupling 1D and 2D models used to simulate floods and its application to the Niger inner delta

Introduction

For calculating flood hazard, 2-D models are more and more used replacing 1-D models because they permit to obtain a detailed view of the flooding patterns. However, a 2-D calculation on large areas remains time consuming. Thus, one alternative consists in coupling 1-D and 2-D models.

Often, the 1-D model is dedicated to the areas such as the river main channel in which the flow velocity direction can be fixed to a hydraulic axis all over the flood duration; conversely, the 2-D model is limited to the areas such as flood plains in which the flow pattern evolves with time [START_REF] Paquier | Coupling 1D and 2D models for flood management[END_REF]. Obviously, during floods along a river, the main flow will not keep exactly the same direction during the whole event, particularly, if the main channel is meandering and the water depth above the river banks is relatively high; thus, the assumption of a 1-D flow in the main channel should always be discussed.

Another usual case for coupled model is the one of urban floods in which the drainage network is represented using a 1-D model and the overflow detailed using a 2-D model [START_REF] Ettrich | Surface models for coupled modelling of runoff and sewer flow in urban areas[END_REF]. During the RIVES (urban flood risk and scenario assessment) project that focuses on some specific processes occurring during urban floods and investigates how to assess the consequences linked to various hydrological scenarios [START_REF] Paquier | Projet RIVES : Risques d'inondation en ville et évaluation de scénarios[END_REF], the processes occurring at the interface between a sewer network and the streets were observed and simulated in the city of Oullins. The coupling of various 1-D and 2-D models solving shallow water equations met instabilities when the pipe network was pressurized and streets flooded, which was linked to the representation of pressurized flow using a Preissmann slot or occurred because one cannot decrease the time step of the 1-D code below a few seconds. Thus, this latter case revealed also the difficulty to select a suitable time step, small enough for keeping calculation stability but not too small for limiting calculation duration. During this RIVES project, the way coupling is implemented was also discussed. In order to avoid increasing computational time, it is recommended not to use files for exchanging data but shared memory (example of the OpenMI software (www.openmi.org)); in both cases, the software to couple require some changes in order to provide the right variables at the right time. A standardization of the inputs and outputs such as the one proposed by OpenMI is likely to simplify this problem of access to internal variables of other software without obliging to know the structure of both codes.

However, here below, the problem was more deeply simplified in coupling two codes written in the same language (Fortran) and compiling the three parts (1-D code, 2-D code and coupling code) at the same time as one single code.

Description of the coupled model

The coupled model was built from the software Rubar 3 that solves 1-D de Saint Venant equations and the software Rubar 20 that solves 2-D shallow water equations. Both codes solve their system of equations using an explicit second order Godunov type numerical scheme, which makes possible part of any model to be empty and permits to integrate hydraulic jump as an ordinary calculation point. Locally if flow becomes complex or cannot be represented by shallow water equations, specific equations describing the features of hydraulic structures (i.e. orifice type equation) can replace or be added to the standard calculation using shallow water equations. Because the equations are quite similar, the terms exchanged during coupling are the fluxes of mass and of momentum through the interfaces between the 1-D and the 2-D models. Because both solvers are explicit and require a time step limitation (Courant number limited to 1), the calculation of these fluxes can be performed at an intermediate time taking into account the variables of both models. Then, one can concentrate on the main difficulty that stands in defining a calculation method of these fluxes. This method should represent the physical processes at the boundary. But also should be easily calculated starting from the variables of both models at locations and times close to the location and time of the boundary problem. Before detailing this point, it is necessary to detail the solvers of the two codes.

Description of the code Rubar 3

The 1-D code (software Rubar 3 developed by Irstea [START_REF] Paquier | Chapter 15. 1D Flow models : comparing MASCARET and RUBAR 3[END_REF]) solves the classical system (equations (1) + (2)) of de Saint Venant equations, which can be summarised by equation [START_REF] Chibane | Coupled 1D/2D hydraulic simulation of the model MURI[END_REF] to reflect a type close to a conservation law:
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in which U is the 2-D variable (A,Q), A the wetted area, Q the discharge, Z the bottom elevation, K the Strickler coefficient, R the hydraulic radius, g the gravity acceleration, ( ) ( )
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the lateral pressure, h the water depth, L the width, s J local loss of quantity of movement, q the lateral discharge, k a coefficient (generally 0 or 1).

The linear head loss J is calculated by Equation ( 4) and the momentum coefficient β by Equation ( 5).

( ) 4) and ( 5) constitute the Debord model used for compound channels [START_REF] Nicollet | Ecoulements permanents à surface libre en lits composés[END_REF].

J Q Q D D K A C R K A A A C R m m m M M m M M = = + + - 2 2 3 2 2 2 3 1 in which / / (4) ( ) ( ) β = + +       = + - A H A H A H K A A A C R K A C R m M M M m M M m m m
Various types of hydraulic structures equations (weir, orifice, etc) are included to avoid the use of de Saint Venant equations in locations in which it is not appropriate. Pressurized flow computation is made possible using a Preissmann slot. Figure 1 shows an example of such a slot for a circular pipe; calculation instabilities are avoided thanks to the progressive narrowing at the basis of the slot (and a convenient reduction of the time step).

Figure 1. Circular pipe geometry with a Preissmann slot.

The numerical scheme includes four steps in order to calculate at half space step and at half time step, which provides a second order scheme. The four steps are the following ones.

1. The slopes of the variables are computed from the values at the middle of the cell j by equation [START_REF] Ettrich | Surface models for coupled modelling of runoff and sewer flow in urban areas[END_REF].
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δ are the slopes respectively between the left cell and the cell itself, between the left and the right cells and between the right cell and the cell itself, σ is the sign of j 2 δ and α a coefficient between 1 and 2. On each of the scalar variable Q discharge or h water depth, independently, the slope is computed. For h, a supplementary limitation through water level is imposed. 
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Two values are thus obtained: one from the left cell and one for the right cell.

3. Because the values at the same location are generally different if they are coming from a calculation in the left cell or in the right cell, the flux from one cell to the next one is not immediately calculated. Solving a Riemann problem is performed in an approximate way using a Roe-type linearization or an equivalent method. It permits to solve the problem with two different values at the boundary and thus reduces the question of discontinuity at a hydraulic jump location as an ordinary problem. Alternatively, the flux can be obtained using the equation providing the flow discharge of a hydraulic structure or adding the two types of fluxes. 
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Second member G is constituted of three parts: 1. the bottom slope term that is computed as a difference of pressures at constant water level;

2. the friction term that is computed in an implicit way; 3. the other terms (generally limited to input from outside) treated in an explicit way.

Description of the code Rubar 20

For solving the 2-D shallow water equations, a finite volume scheme is used (Rubar 20 software developed by Irstea [START_REF] El Kadi | Modelling flash flood propagation in urban areas using a two-dimensional numerical model[END_REF]). The second order explicit scheme is close to the one of Rubar 3. The 2-D shallow water equations are written as the system of equations ( 9), [START_REF] Paquier | Chapter 11, Coupling 1-D and 2-D Models for Simulating Floods: Definition of the Exchange Terms[END_REF] and [START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF].
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( ) ( ) [START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF] in which u and v are the velocities along respectively x and y axis, h the water depth, P the rainfall or infiltration rate, Z the bottom level, g the acceleration due to gravity, s K a Strickler coefficient, ν t a diffusion or turbulent viscosity coefficient.
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The mesh consists of quadrilaterals or triangles of which the mixing provides various possibilities to adapt to any detail of topography. An edge is common to no more than two cells and constitutes one side for these latter cells.

As for the 1-D scheme, the numerical scheme includes 4 steps that first permit to calculate the variables at the middle of the edges and at an intermediate time to ensure the second order. The four steps are the following ones:

1. Computing slope of each one of the 3 scalar variables h, hu and hv in every cell on x and y axis by the method of the least squares and applying limitations of slopes to avoid the creation of additional extremums. The water level z is also used to introduce additional limitations.

2. Computing values of the variable W h hu hv = ( , , ) at the intermediate
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∆ in the middle of the edge of cell i using equation [START_REF] Paquier | Chapter 15. 1D Flow models : comparing MASCARET and RUBAR 3[END_REF].
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in which f1 (respectively. f2) are the fluxes on x (respectively y) axis, S the second member, the slope of W along x-axis, index L (respectively R) means left (respectively right) side of the edge.

3. At the intermediate time tn+1/2, a 1-D Riemann problem is solved in the direction normal to the edge (equation ( 13) similar to equations ( 9) + ( 10) + ( 11) on xaxis because these latter equations do not vary through a rotation) in order to estimate the fluxes through the edges. To avoid the full solving of this Riemann problem, the scheme either uses an approximate solution of the interface variables or uses a Roe type linearization that directly provides an estimate of the fluxes.
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) For complex flows, the flux is calculated using an equation typical from a hydraulic structure or the sum of the Riemann problem and a hydraulic structure flux. Generally, the hydraulic structure equation provides the flow discharge (flux for the mass conservation equation) and the two other fluxes are calculated using the same estimate of the water depths upstream and downstream.

4. Finally, the values i n W +1 at time tn+1, are obtained (equation ( 14)) summing the fluxes across the edges of the cell and adding the contribution for the second member that is calculated integrating the various second member terms on the surface of the cell .
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in which f1 represents flux along x axis, summing on j cells which have a common edge with cell M i (of area i A ) and ε ij equals 1 or -1 according the orientation of edge m ij (length ij l ) common to the cells M i and M j .

The contribution of the second member S includes:

1. The bed slope terms (

-gh Z x ∂ ∂ or -gh Z y ∂ ∂
) that are treated as fluxes in such a way as a horizontal water surface remains strictly horizontal.

2. The bed friction terms that are more simply assessed at the centre of the cell. The computation of those latter terms uses a method implicit in time in order to avoid numerical instabilities when a rapid change in water depth or velocity occurs.

3. The diffusion terms are estimated as fluxes calculated from the slopes of the variables between two adjacent cells.

4. Other terms that are simply estimated at the intermediate time and added.

Coupling principles

Because of the similarity of the two numerical schemes, the following principles for coupling were proposed.

1. The geographical boundary is selected as the location in which both models calculate the boundary conditions. Thus, there is no overlap between the 1-D and the 2-D models and the exchange terms are calculated only on this boundary.

2. The exchange terms are the fluxes (of mass and of momentum) through the boundaries between the areas dedicated to each model. The calculation of these fluxes should be performed taking into account the variables of both models. If the time of calculation is the same one in both models, the variables of both models are known at the previous time of calculation and an explicit scheme can be built straight forward. Then, the remaining difficulty stands in defining a calculation method of these fluxes that can represent the physical processes at the boundary. In order to keep the more detailed approach and to take into account eventual discontinuities at the boundary of models, the use of the Riemann problem of the 2-D model permits to calculate the flux at the 2-D edge and to provide the results to the 1-D model [START_REF] Paquier | Chapter 11, Coupling 1-D and 2-D Models for Simulating Floods: Definition of the Exchange Terms[END_REF]. The Riemann problem is replaced by hydraulic structures equations (similarly as in the 2-D code) if it is more convenient to represent the physical processes. 

Applying the coupled model

The first example of the coupled model is the case of floods in urban areas. In order to calculate the exchange flows between surface runoff and flow into the sewage network, coupled models can be used [START_REF] Ettrich | Surface models for coupled modelling of runoff and sewer flow in urban areas[END_REF]. Many experimental devices were used to understand the processes involved during such exchanges [START_REF] Djordjevic | Experimental and numerical investigation of interactions between above and below ground drainage systems[END_REF]. The experimental results of [START_REF] Bazin | Modeling Flow Exchanges between a Street and an Underground Drainage Pipe during Urban Floods[END_REF] show that these exchanges could not be modelled by simply fitting an orifice equation. However, it appears, that a first estimate of the flow discharges can be obtained using one simplified equation for flow in one way and another one if the flow in the opposite way. Here below, two examples are shown in which this latter rule was applied.

The first example (from [START_REF] Chibane | Coupled 1D/2D hydraulic simulation of the model MURI[END_REF]) is the calculation of the flow in an experimental platform called MURI (Figure 2), which was built in the Hydraulics laboratory of Irstea (HH Lab at Villeurbanne, France). The 3.8 m wide and 5.4 m long platform includes a first level made of a network of circular pipes and a second level of a network of 0.15 m wide streets with approximately the same pattern of 3 channels from North to South and three ones from West to East (Figure 3). Seven holes in the streets permit to connect seven points in the streets with seven points of the pipes, each couple of points being connected by a small pipe with a 0.019 mm diameter. Figure 3. Location of the holes on the MURI platform (from [START_REF] Chibane | Coupled 1D/2D hydraulic simulation of the model MURI[END_REF]).

The results shown (Figure 4) concern the case of zero flow discharge entering the street but a 5 L/s entering the main inlet of the pipe network while the outlets of the pipe network are closed implying that the whole flow pass through the holes and go out the platform using the Southern outlets of the streets that are the only ones opened. The slope is 0.1 % from North to South and 0 from West to East. The 2-D mesh is formed of squared cells of 0.015 m side and the 1-D space step is 0.1 m. The second example (from [START_REF] Bazin | Flows during floods in urban areas: Influence of the detailed topography and exchanges with the sewer system[END_REF]) is the case of the city of Oullins near Lyon (France). A few streets are flooded when the Yzeron river rises to the 20 years flood levels. In such an event, the sewer network schematized in the model by the main pipes (Figure 5) can either receive water coming from the overflow of the river (for instance in SI3) or add water to the River (such as at SI2) or operate in both ways (such as in SI1). The influence of the sewer network is rather weak (Figure 6) for the 2008 flood that is a moderate flood but in such a case of low peak water depths in the streets, a few centimetres less may be important to avoid damages. A third example (from [START_REF] Paquier | Chapter 11, Coupling 1-D and 2-D Models for Simulating Floods: Definition of the Exchange Terms[END_REF]) concerns compound channels and aims at comparing various types of modelling. A series of experiments were performed in a prismatic flume located in the LMFA (Fluid Mechanics and Acoustics Laboratory) at INSA, Lyon, France. The 8 m long and 1.2 m wide PVC made flume includes a 0.8m wide floodplain and a 0.4 m wide rectangular main channel (Figure 7). The streamwise bed slope is 0.18 %. At the upstream end of the channel, two separate inlets permit to control the flow discharges in the main channel and in the floodplain. Uniform flow is obtained using two separate tailgates at the downstream end in order to avoid transverse gradient of the water surface. For the 2-D models, the mesh is constituted by rectangles with about 5 cm sides in both directions except at the interface for which the spanwise space step is limited to 5 mm. There, an inclined plane on one cell replaces the vertical plane of the experimental set-up. The vertices of the 2-D model are used to build the 1-D cross sections. Thus, if lateral coupling is performed, the 2-D edge at the interface corresponds exactly to the lateral side between two 1-D cross sections.

For the 2-D models, the upstream condition is constituted by the measured inflow in each channel (main channel or floodplain). A rating curve is set at every edge of the downstream boundary in order to obtain the average water elevation over the whole flume section: two curves are defined, one for the main channel and one for the flood plain. A value of Strickler coefficient of 110 m 1/3 /s was obtained from flow measurement in a single channel and is used in the 1-D and 2-D models for both the main channel and the flood plain. For the 2-D models, the diffusion coefficient is set to a value of 0.0002 m 2 /s. This latter value was calibrated in the case of uniform flow using the Reynolds stresses measured by ADV at the vertical interface between the main channel and the floodplain.

The 1-D calculation shows a nearly constant water depth of about 7.3 cm. Same feature is obtained for the 2-D model but some flow is directed to the main channel at the upstream end and the water depth is slightly lower (down to 7.1 cm) with regular increase to the downstream end; this result shows that the energy losses are too weak. The laterally coupled model shows same features but the water depth in the main channel is too low by about 0.5 cm at the upstream end; the additional head losses introduced in the 1-D calculation of a compound channel by the Debord equation [START_REF] Nicollet | Ecoulements permanents à surface libre en lits composés[END_REF] are missing in this coupled model. Coupling with a 1-D model upstream does not permit to obtain suitable results because the knowledge of the flow discharge and the mean water elevation does not permit to define a suitable upstream boundary condition for the 2-D model; the distribution of the discharge between the flood plain and the main channel is necessary so that, except if the initial conditions provide the right distribution, the model cannot recover. Note that this problem is specific to the experimental test aiming at steady state and is not met in case of progressive flooding of flood plain. Conversely, there is no problem if the 1-D model is downstream the 2-D model because the coupling algorithm transforms the water depths and velocities of the 2-D model in the exact flow discharge at the upstream end of the 1-D model. In that case, as expected, results at the upstream end are intermediate between full 1-D and full 2-D models results.

For the second experiment, only full 2-D model and coupled model with 1-D for main channel are compared. Results are very close and are marked by a recirculation area developing just downstream the obstacle and with a width slightly higher than the length of the obstacle (Figure 8). However, both models predict a too short recirculation length (1.02 m for the coupled model and 1.22 m for the 2-D model to be compared with 2.94 m in the experiment). At the location of the obstacle (x=2.5 m), the discharge transferred from the flood plain to the main channel is 1.13 L/s experimentally compared to 1.08 L/s in the coupled model and 1.34 L/s in the 2-D model. At 3 m from upstream, at the location in which transfer is maximum, the 2-D value is 2.1 L/s which is close to experimental value while coupled model transfers only 1.51 L/s. The differences between models can be explained by the assumption on the transfer velocity (spanwise velocity is zero on the 1-D side) that is likely to reduce transfers. 

Niger inner delta example

This example (from [START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]) shows the interest of using a coupled model for simulating a large flood plain during a long period (which is the opposite case of urban floods).

The inner delta of Niger River (about 40,000 km 2 ) is flooded every year from August to December after the rainy season in the upper Niger basin. The main process consists in the expansion of the Niger flood coming from upstream and slowing down. Water is stored in the floodplain and partly used for agriculture and cattle breeding. Several lakes of major importance for the regional economy also affect the flood propagation.

The challenge for the hydraulic modelling of this annual flood stands in the contrast between the flow dynamics in the flood plain (very slow) and in the river. [START_REF] Roy | Building a 2-D model for the floods in the inner delta of Niger River[END_REF] showed that the use of a full 2-D model for both main channel and floodplain could provide the right dynamics of the flood but is costly in computational time even if the geometry of the main channel is simplified. In order to describe the progressive flooding of the floodplain (by overflow and rainfalls) and the storage in the lakes, a 2-D model is convenient. Conversely, a 1-D model can represent the flow in the main channel of the Niger river and its major secondary branches if flow details inside the main channels are not studied. The main remaining question is the convenient choice of the 1-D channels and how to define their boundaries in order to ensure the consistency between mainstreams and floodplains. The 1-D river reaches were limited to the Niger river, its main tributary (Bani river) and the secondary branches that are wet most of the year (Figure 9). They are described by cross sections with an average space step of 1 kilometre while the flood plain is modelled by 2-D cells of 1 km typical size. Such a space step is possible because of the weak bed slope and because levees inside the flood plain are represented as walls (zero width). Because the definition of the topography was based on field campaigns during the floods of 2008 and 2009 (with a boat), intensive surveys carried out in the 1970's and satellite data, an additional challenge is to make the topography homogeneous. of the 2-D model (distances in kilometres) (from [START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).

In order to avoid any intermediate spatial interpolation in the coupling process between 1-D and 2-D models, the two meshes are built according to the principle that the coupling edge of a boundary 2-D cell either coincides with a cross section (boundary of a 1-D reach) or joins the left (or right) extreme points of two successive cross sections. Moreover, the exchanges between the two models occur at the banks of the main channels (sides of the 1-D model) and at the downstream end of lakes (upstream boundary of 1-D model). The resulting hydraulic model has 41 1-D reaches with a total of 1673 cross sections and 67411 2-D cells. Because the 2-D mesh (and also sometimes the 1-D mesh) is necessarily irregular to adapt to the direction of the main channels, the time step should be as low as 15 seconds to keep stability of the calculation. Thus, the calculation time for one flood (one year) can be as high as several days on an ordinary PC.

The period between April 1, 2000 and April 1, 2001 was first considered. The inputs are the flow discharges measured at the Niger River (Ke Macina) and Bani river (Douna) set as upstream boundaries of the 1-D model. Evaporation was introduced on all the cells of the 2-D model based on mean monthly data at Mopti. Using uniform Manning coefficients of 0.05 s/m 1/3 for 2-D and 0.028 s/m 1/3 for 1-D provided quite suitable results in the upstream half, but too slow propagation in the downstream half. Thus Manning coefficient was changed to 0.014 s/m 1/3 in the main channel of Niger river downstream from Debo Lake (central part of the delta) and to 0.025 s/m 1/3 for the central part of the delta (Debo Lake) in order to obtain a suitable propagation time for the hydrological year 2000-2001. Figure 10 shows that the calculated flow discharges are quite closed to the measured ones. Calculated peak discharges are slightly in advance and often higher than measured ones. In Akka station, the calculated flow starts decreasing too early, although the peak velocities agree with measured ones during ADCP campaign (about 0.8m/s). Figure 11 compares simulated and observed water levels at the main gauge stations. Water elevations are usually underestimated, not only at peak times but also before the flood. This may reveal the existence of thresholds (not captured due to the density of cross section surveys), or issues with levelling reference systems. The ability of the model to predict the flooded areas was analysed by using 8-day MODIS images, processed according to [START_REF] Ogilvie | Decadal monitoring of the Niger inner Delta flood dynamics using MODIS optical data[END_REF] in order to provide observed flooded areas at a resolution of 500 m. Figure 12 compares the flooded areas to the calculated ones at the end of October 2000, corresponding to the time of the flood peak at the centre of the delta. Calculation underestimates the flooded area mainly in the upstream western part and in the downstream part of the delta, which agrees with the comparison of flow rates. Two causes of the differences between calculated and observed flooded areas are identified: the influence of rainfall and evaporation and the difficulty to share the flow discharges at the diversions. For year 2002-2003 (low flood), Figure 15 shows that the overestimate of peak discharge is more significant in Mopti and less pronounced downstream except in Koryoume at the downstream end. These latter results do not agree with the comparison of the flooded areas. Figure 16 shows that the discrepancy in the flooded areas is reduced upstream of Mopti and increased downstream from Debo Lake, giving strongly underestimated flooded areas in the downstream part of the delta. For the three floods, the calculation provides a too high peak discharge and a too small flooded area. The underestimate of water levels in the main channel at peakalthough the discharge is higher -demonstrates that the relation between water levels and discharges should be modified but it involves both models. The change in the friction coefficient downstream permits to obtain the right propagation time, which means that any head loss added to the model should not modify the propagation time along the main channel. The pattern of the flooded area seems quite right except in some areas in which may levees were omitted in the model. In the upstream part of the delta, a secondary branch of the Niger River was omitted in the model and thus the western branch of the Niger does not convey enough discharge, which explains the strong underestimate of the western flooded area. Moreover, to achieve a better water balance, the introduction of the detailed calculation of rainfall and evaporation should be introduced. Figure 17 shows that an improvement can be expected.

Figure 17. Flooded areas at the end of October 2000 from MODIS data and calculated water depths with detailed calculation of rain and evaporation (from [START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).

Conclusions

The coupling of the 1-D model Rubar 3 and of the 2-D model Rubar 20 provides a coupled model adapted to simulate various cases ranging from the laboratory experiments to a large flood plain. The explicit numerical schemes can treat the cases of variable wetted part of the model as well in 1-D as in 2-D. It does not seem that the coupling involves a reduced stability; the instabilities that are generally solved by a decrease of the time step are internal to one of the models but may be due to the rapidity of the physical process at the interface of the models. However, in order to obtain this stability, the tests were carried out with a constant time step in each model and time steps of the same order. This latter condition may be a constraint for the building of the meshes and for the selection of the calculation periods if one wants to avoid too long calculation durations. The comparisons between full 2-D modelling and coupled modelling on the same cases show some differences that one can expect to reduce adapting the interpolations at the 1-D / 2-D interfaces in the coupled model.
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 3 In order to avoid complicated interpolations, a constraint is added on the building of the 1-D and 2-D meshes: the boundary on the 1-D side is constituted by one or several full 2-D edges. A difficulty remains in obtaining the values of the three 2-D variables on the 1-D side of one 2-D edge because only two variables are known; this latter difficulty adds some constraints on the location of the boundary between the 1-D and 2-D domains if one wishes to keep hydraulic consistency.Then, the coupling principle leads to the calculation of a Riemann problem of the 2-D model (equation (13)) to calculate the flux at the 2-D edge that constitutes the boundary between 1-D and 2-D models. In the same way as what occurs in the 2-D model, alternatively, this flux can be calculated starting from an equation for a hydraulic structure. Then, nine possibilities for coupling can be considered: 1. and 2. 1-D model upstream, 2-D model downstream, either solving Riemann problem or using hydraulic structure. The 1-D flow discharge is supposed to be perpendicular to the edges and is distributed in a similar way as in the 2-D model at the previous time step (or with the same velocity if no flow in the 2-D model). The water elevation downstream the 1-D model is the average of the water elevations on the edges of the 2-D model. 3. and 4. 2-D model upstream, 1-D model downstream, either solving Riemann problem or using hydraulic structure. The 1-D flow discharge is the sum of the 2-D discharges through the 2-D edges; the water elevation at the 2-D boundary is equal to the one calculated at the upstream cross-section of the 1-D model. 5. and 6. 1-D model at left side, 2-D model on the right bank of 1-D model, either solving Riemann problem or using hydraulic structure. The sum of the flow discharges through the 2-D edges constitutes a lateral input for the 1-D model; the water elevation at the 2-D boundary is equal to the one calculated at the centre of the 1-D cell (between two cross sections). One guesses that the velocity of the 1-D cell centre has the same direction as the 1-D model boundary and thus the velocity at the boundary is supposed to be parallel to the boundary on the 1-D side (and has the same intensity as the value in the 1-D cell). This latter assumption should be questioned: generally, it leads to a too high velocity intensity; conversely, in case of strong lateral flow between the two models, the transfer is underestimated. 7. and 8. 1-D model at right side, 2-D model on the left bank of 1-D model, either solving Riemann problem or using hydraulic structure. The calculation method is similar to the previous case. 9. Hydraulic structure defining another kind of coupling (for instance, 2-D model above 1-D model if the 1-D model represents an underground drainage network): for the 1-D model, the water elevation and the velocity are the ones at the 1-D cell centre and the direction of the velocity is defined as perpendicular to the line middle of the two cross sections defining the 1-D cell. For all the cases, the values of the variables on the 2-D side at the intermediate time are defined at the edge as usual in the 2-D model and only depend of the way the boundary is defined in the 2-D model because the type of boundary determines the calculation method of the slope in the adjacent cell. For building the algorithm, the hypothesis is that one or several 2-D time steps correspond to the 1-D time step although here below, the simplified assumption of equality of the time steps is used. During one 1-D time step, first the 1-D model is calculated up to the intermediate time tn+1/2: (steps 1 and 2 of the numerical scheme); then, the 2-D model is fully calculated using the 1-D predictions at intermediate time; finally, the 1-D time step is finished for the 1-D model (steps 3 and 4 of the numerical scheme). The stability of the coupling scheme is a priori similar to the one of the 1-D and 2-D schemes, which is a Courant number below 1.
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 2 Figure 2. MURI platform -view of the streets network.
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 4 Figure 4. Map of the water depths in the streets of MURI (from [3]).
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 5 Figure 5. Simplified model of the Oullins drainage system with location of exchange points with the surface flows (from [1])
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 6 Figure 6. Evolution of the simulated maximum water levels when introducing street inlets in the surface model for the 2008 flood (from [1]).
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 7 Figure 7. Cross section of the LMFA flume (from [10]).
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 8 Figure 8. Water surface elevation and velocity field calculated using full 2-D model (left) and coupled model (right) (from [10]).
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 9 Figure 9. Inner Niger delta: 1-D network (black lines) inside the boundaries (red lines)of the 2-D model (distances in kilometres) (from[START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).
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 10 Figure 10. Flow discharges for year 2000-2001 at various locations: Ke Macina, upstream of Niger River, Mopti where Bani and Niger Rivers join, Akka at the outlet ofDebo lake, Koryoume at the downstream end of the delta and Dire at half distance between Akka and Koryoume (from[START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).
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 11 Figure 11. Water elevations for year 2000-2001 at various locations: Ke Macina, upstream of Niger River, Mopti where Bani and Niger Rivers join, Akka at the outlet ofDebo lake, Koryoume at the downstream end of the delta and Dire at half distance between Akka and Koryoume (from[START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).

Figure 12 .

 12 Figure 12. Flooded areas from MODIS data and calculated water depths at the end of October 2000 (from [11]). Then, the model is used for two other hydrological years 2001-2002 (high flood) and 2002-2003 (low flood). For year 2001-2002, the flow discharges follow the same pattern as in 2000-2001 with calculated peak discharge higher than the measured one, the difference increasing streamwise (Figure13). The flooded area is even more underestimated (Figure14) than in year 2000-2001.
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 13 Figure 13. Flow discharges for year 2001-2002 at various locations: Ke Macina, upstream of Niger River, Mopti where Bani and Niger Rivers join, Akka at the outlet ofDebo lake, Koryoume at the downstream end of the delta and Dire at half distance between Akka and Koryoume (from[START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).
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 14 Figure 14. Flooded areas from MODIS data and calculated water depths at the end of October 2001 (from [11]).
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 15 Figure 15. Flow discharges for year 2002-2003 at various locations: Ke Macina, upstream of Niger River, Mopti where Bani and Niger Rivers join, Akka at the outlet ofDebo lake, Koryoume at the downstream end of the delta and Dire at half distance between Akka and Koryoume (from[START_REF] Paquier | A 1-D / 2-D coupled model for the floods in the Niger inner delta[END_REF]).
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 16 Figure 16. Flooded areas from MODIS data and calculated water depths at the end of October 2002 (from [11]).