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Abstract: Climate change is a product of the Anthropocene, and the human–nature system in
which we live. Effective climate change adaptation requires that we acknowledge this complexity.
Theoretical literature on sustainability transitions has highlighted this and called for deeper
acknowledgment of systems complexity in our research practices. Are we heeding these calls
for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area
to explore this question. We first distilled existing challenges for complex human–nature systems
into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod
approaches, human–nature dimensions, and interactions. We then performed a systematic assessment
of 737 articles to examine patterns in what methods are used and how these cover the complexity
concepts. In general, results showed that many papers do not reference any of the complexity concepts,
and no existing approach addresses all six. We used the detailed results to guide advancement from
theoretical calls for action to specific next steps. Future research priorities include the development of
methods for consideration of multiple hazards; for the study of interactions, particularly in linking
the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up
and top–down approaches in a way that connects local context with higher-level decision-making.
Overall this paper serves to build a shared conceptualisation of human–nature system complexity,
map current practice, and navigate a complexity-smart trajectory for future research.

Keywords: methodology; review; complexity; systems; climate change; adaptation; hydrohazards;
floods; droughts; human–nature interactions; Anthropocene

1. Climate Change and Sustainability in the Anthropocene

1.1. Needs for Future Research in Complex Human–Nature Systems

The current Anthropocene age is a period where human activity has been the dominant influence
on climate and the environment. In this era, climate change has compounded human–nature
complexity. Deep changes to research and practice will be required to address the human–nature
interactions in the systems we use and build, and effectively adapt to climate change.

The traditional approach to ‘managing’ the environment reduces hazards to only natural aspects.
These tend to produce exclusively physical solutions, which have long struggled to cope with
the reality of human–nature systems (e.g., [1,2]). As a result of climate change, the limitations of
this human–nature dualism are becoming more apparent. Hazards are projected to occur with
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greater magnitude, frequency, and duration (e.g., for floods and droughts, otherwise referred to
as hydrohazards [3]). In March 2018, the UK Environment Agency’s Chief Executive warned
practitioners against outdated approaches. He presented two options: Rethink the status quo of
simply installing ‘taller, stronger and costlier concrete defences’, or consider the future relocation of
at-risk communities [4]. This highlights that the traditional ways of conceptualising and approaching
human–nature systems are now at the boundary of their ‘performance envelope’.

This illustrates a strong need to move away from siloed, dualistic, and oversimplified approaches.
New perspectives, such as those in resilience engineering [5] and ‘social cascades’ [6], are beginning to
acknowledge the importance of human-centred characteristics. Current sustainability transitions
literature calls for integrated research and “intensive cooperation” between natural and social
sciences [7] (p. 4). Similar calls have increasingly been made over the last decade (e.g., [8]). However,
such collaborations continue to be rare.

One reason for this might be that different research areas conceptualise complex systems in
different ways. In the words of Brondizio et al. [9] (p. 318), the Anthropocene concept has also
“brought front-and-center epistemological divides between and within the natural and social sciences,
and the humanities”. Human–nature systems defy oversimplification, and as each discipline explores
what complexity issues are most critical to effective research in their area, differing perspectives are
developed. A shared conceptualisation of what is important about complex human–nature systems
would benefit research in the area of climate change, to facilitate more effective collaborations.

Some of these shared issues are highlighted in seminal theoretical papers on sustainability
transitions [7,9–11]. Table 1 synthesises these core challenges of complex systems research for the
Anthropocene. These challenges fall under three categories: Advancing interdisciplinarity, improving
ethics, and coping with complexity.

1.2. What Now?

Researchers working in systems, complexity, and climate change are at least tacitly aware of
the high-level challenges in Table 1. However, little guidance is available to translate these into the
practical: An effective application of methods. It is natural for researchers, after coming across an
inspiring yet primarily theoretical call to action, to ask: What now?

Building a shared conceptualisation of complex human–nature systems does not just facilitate
smoother collaborations. It also provides a framework against which to map our current methods,
how well they address human–nature complexity, and what might currently be neglected. By using
this shared conceptualisation to relate theoretical ideas to methods, we can move beyond hypothetical
calls to action into specific next steps for improving our approaches. This tractability is now critical for
the realisation of sustainability transitions.

This paper performs a structured assessment of the literature on methods for climate change
adaptation, using hydrohazards (floods and droughts) as an example hazard. This determines what
methods are typically used for climate change adaptation, how complexity concepts are currently
addressed, and what remains to be done to perform true ‘systems’ research. In other words, this paper
serves to overview current research practices, rather than recommend specific adaptation options.

By consolidating the theoretical complexity challenges in Table 1 and linking these to research
methods used across 737 hydrohazard papers, our current shortcomings are revealed. A more in-depth
analysis tracks 70 individual variables through this knowledge base, to characterise the typical context
of existing research and examine the complexity concepts in finer detail. This structured review process
not only maps past research but also identifies which complexity concepts require more emphasis
and how best to apply this emphasis. This navigates the path forward for systems research in climate
change adaptation to hydrohazards. It also unearths exemplary past papers which might serve as
waypoints, using an approach outside the norm of a traditional citation score.
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Table 1. Challenges for interdisciplinary sustainability research in the Anthropocene.

Category # Challenge

Advancing interdisciplinarity

1 Fuller integration and “intensive cooperation” between social and natural sciences [7]

2 True inter-/transdisciplinary work, by avoiding reductionism [10]

3 To be flexible in our construction of shared reflections on a possible future [10]

4 To move beyond siloed sectorial analysis, to find new ways of modelling the social and environmental trade-offs of policy choices, institutional
arrangements, and economic incentives—and their local and distant outcomes [9]

Integrating ethical concerns
5 To ensure solutions do not perpetuate existing inequalities—or create new ones (i.e., we need to consider populations vulnerable populations,

and consider the impacts of local/regional interventions globally) [7]

6 To ensure humans are not “in conflict with themselves through the structures and systems that they themselves have created in order to improve
their lifestyles and well-being” [7]

Coping with complexity

7
To acknowledge and account for multiple interactions across natural and social systems [10];

To eschew the Western dualism of nature and society, by being more flexible in our approaches, e.g., by applying the same theoretical frameworks
across many scales [7]

8 To acknowledge and account for unclear system boundaries [10]

9 To acknowledge and account for different temporal scales [10];
To model and understand both fast ‘shocks’ and slow ‘stressors’ [7]

10 To understand how multiple hazards or types of hazards co-occurring at the same time could impact the system [9]

11 To identify how directionality could be articulated, democratically anchored, and implemented (i.e., how to effectively model impacts not just
hazards, but perhaps more importantly, potential interventions) [7]

12 To develop ‘early warning systems’ for cascading effects through the system [9]

13

To acknowledge and account for different spatial scales [10];
To connect global scale dynamics to local realities and vice versa [11];

To combine abstract, theoretical, and systemic knowledge with contextual and place-based understandings (i.e., we need to link top–down and
bottom–up systems approaches) [10]

14 To identify when local-level actions dampen out to have no appreciable effects at larger levels, and when they amplify to drive significant impacts at
larger levels (e.g., with new approaches to network, spatial, and multilevel analyses) [9]

15

To acknowledge and account for deep influences by human values, behaviour, culture, and institutions [10];
To pay attention to the role of different lifestyles and worldviews in decision-making models, by bringing together current advances in modelling

human behaviour and agency and Earth System dynamics, as well as how visions and narratives of urban and rural sustainability consider
trade-offs of various choices and their potentially contrasting outcomes [9]

16
Because of our limited, human capacity of understanding the fullness of complexity), to “create multiple narratives (scenarios), each invoking

different dimensions, none of which will entirely ‘predict’ what will happen. Probabilities, contingencies, conditionalities and thresholds need to be
assigned to them as a measure of the extent to which scenarios seem ‘realistic’” [10]

17 To find ways to cope with the abundance of data now available to us, by developing sound methodologies which link multiple forms of evidence [9]

18 To diversify our modelling approaches, and avoid the “convergence towards single models that are able to answer a wide range of questions,
but without sufficient specificity” (i.e., we need to stop expecting one model to tell us everything) [11]
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For the purposes of this review, we pose a number of questions: What methods or approaches
exist to address climate change adaptation to hydrohazards? Are complexity concepts broadly
acknowledged by this area of research? Where complexity challenges are acknowledged, how well
are they addressed by the applied methods? Do any important patterns exist in our current
approaches? And how might we improve our incorporation of complexity concepts in future research?
The following sections explain how these questions were tackled and what we might learn from
their answers.

2. Materials and Methods

The structured literature review was designed in four parts: (1) To collect literature on climate
change adaptation to hydrohazards; (2) to broadly check if these papers intend to address six core
complexity concepts (condensed from Table 1), using a keyword search; (3) to describe the context of
papers addressing at least one complexity concept; (4) to assess these papers in depth, to examine the
coverage and convergence of the complexity concepts in more specific detail, and to test for patterns in
existing approaches.

2.1. Collect the Literature: Initial Search and Exclusion Strategy

The first part of the assessment was to collect and refine a suitable knowledge base of research.
This is presented in Figure 1 below and was performed by a single author to ensure consistency.

Step 1 was to perform an initial search. This was based on the question: What methods or
approaches exist to study climate change adaptation to hydrohazards? Due to the abundance of
research on climate change, the design of this question was key to providing a manageable knowledge
base focusing on hydrohazards. From this, a Scopus search of titles, abstracts, and keywords
was performed on 28 August 2018 for the terms: Method + “climate change” + adapt* + {“water
management” OR “water security” OR flood OR drought}. This search strategy implicitly emphasised
the dominant fields around hydrohazard study (e.g., climate modelling) with relatively mature
methods. This may have unintentionally excluded other promising fields which contribute valuable
theoretical framing (e.g., climate justice), where specific methods may be less emphasised or mature.
Thus, the presented results are influenced by this initial selection. An initial 1094 documents were
returned. Article records were downloaded from Scopus into a single Excel file. Each row contained
the article’s title, authors, year of publication, abstract, keywords, journal or publication source,
and other information.

Steps 2 and 3 excluded foreign language documents (47) and documents that were not journal,
article, or conference papers (70).

Step 4 required a manual review of each abstract in more detail. This determined their relevance
to this study. Papers were deemed irrelevant when they addressed only:

• Theoretical principles or conceptual discussions, without the accompanied use, comparison,
or recommendation of specific methods (though theoretical discussions were arguably useful to
the field, their exclusion ensured the review’s practical focus);

• Non-hydrohazards, without some consideration of associated hydrohazards (e.g., forest fire
threats, without explicit consideration of droughts);

• The causes of climate change (e.g., socioeconomic trends) without linking to consequent hazards
or impacts;

• Summaries of conference proceedings or journal issues;
• Ancient historical climate trends, sometimes in relation to the eradication of a specific civilisation

(as these were not generalisable to the practical study of modern adaptation).

Based on these criteria, irrelevant papers (56) were removed.
Step 5 involved removal of any duplicate entries (7).
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Step 6 required a manual check of each abstract, for a sufficient level of information provided to
perform the second part of the review in Section 2.2. In checks for a full copy of each paper, 36 papers
were found to be unavailable. However, based on the abstract alone, an estimated assessment was
possible. In four cases where a full copy was unavailable, the abstract did not provide sufficient
information to proceed. As such, these four papers were excluded. These included one paper from
2005 and three from 2009. These were all nearly 10 years old at the time of writing this review. It is
assumed that their exclusion would have no substantial impact on the trends identified in the results,
and any minimal impact may be outdated.

This process resulted in a reduction from 1094 to 910 documents. Both the initial and reduced sets
are available on request from the authors.Sustainability 2019, 11, x FOR PEER REVIEW 5 of 36 
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2.2. Broad Check for Complexity Concepts

The third part of the review design was to address if current complexity concepts are being
broadly met by existing research. The 18 challenges for interdisciplinary research into sustainability in
complex human–nature systems are presented in Table 1. This review focuses on points 7 through
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18: Challenges around ‘coping with complexity’. Points 1 through 6 were not used in the structure of
this review. During conceptualisation of this assessment, these were deemed nebulous to detect in a
structured review of hundreds of papers. Additionally, the direct design and application of research
methods to cope with complex systems (i.e., points 7 through 18) leads indirectly to interdisciplinarity
and integrating ethical concerns.

Thus, points 7–18 from Table 1 were used as a basis for the development of six core complexity
concepts, against which papers could be evaluated. Three co-authors discussed each point in Table 1
during a brainstorming session and distilled these into main parts.

For example, Challenge 8 in Table 1 mentions system boundaries. It is often noted that complexity
creates unclear system boundaries. In Table 2, we have considered the ‘fuzziness’ of complex system
boundaries as an aspect of uncertainty. Dealing with complex systems means that boundaries are in
flux; therefore, the use of methods which can acknowledge future uncertainties is imperative.

Table 2. Six core complexity concepts relevant to complex human–nature systems.

# Concept Description Related Challenges
from Table 1

1 Uncertainty Uncertainty in projections of future scenarios; consideration of
multiple possible futures 8; 16

2 Spatial Scale
Coverage of multiple spatial scales; connecting contextual,

place-based understandings (bottom–up) with theoretical and
systemic knowledge (top–down)

13

3 Time Scale Coverage of multiple temporal scales; any intention to address
fast ‘shocks’ or slow ‘stressors’) 9

4 Multimodel Approaches

Usage of multiple models; understanding impossibility of a single
‘silver bullet’ model; linkage of multiple forms of evidence;

diversifying modelling approaches; coping with an
abundance of data

13; 17; 18

5 Human–nature
Dimensions

Acknowledging and accounting for deep influences by human
values, behaviour, culture, and institutions; eschewing

human–nature dualism
7; 15

6 Interactions

Accounting for multiple interactions across natural and human
systems; connecting global scale dynamics to local realities and
vice versa; identifying salient leverage points and pathways to

transformation; developing ‘early warning systems’ for cascading
effects through the system; modelling not just impacts but also

feeding back and testing interventions

7; 11; 12; 13; 14

The six resulting complexity concepts are described in Table 2 below.
Step 7 is depicted in Figure 2. This sought to answer the question: How many complexity concepts

are addressed by current research? The occurrence of each of the above concepts was assessed for
each paper. Specific search terms were brainstormed by the authors for each complexity concept,
shown in Figure 2. In particular, search terms for concepts 5 and 6 were taken from common categories
of sociohydrology indicators (e.g., from References [12–15]). Coverage of a complexity concept was
determined by the presence of its specific search terms. These search terms were applied as filters
to the 910 papers remaining in the knowledge base from Section 2.1., to each paper’s title, abstract,
or keywords. As article records were initially downloaded from Scopus in an Excel spreadsheet,
each search term searched using CTRL+F. Six additional Excel columns were created to represent each
complexity concept. Where any search term related to a complexity concept was present, this was
indicated as a ‘1’ in the appropriate cell. This only provided a broad indication of which concepts were
intended to be addressed in an article, as explicitly used by its authors. At the end of this process,
173 articles covered 0 complexity concepts and were thus removed from the database. This final
database of 737 papers is available on request from the authors.
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The Excel spreadsheet database was imported into R as a CSV file. The R package UpSetR [16,17]
was used to process results. Results were reported through Euler diagrams. Euler diagrams are a
representation of sets, similar to a Venn diagram. They are often used when a traditional Venn diagram
is illegible due to a high number of intersecting variables. In a Euler diagram, intersections of variables
can be represented as mutually exclusive ‘bins’, in a bar char format. An example of the reported Euler
diagrams is found in Figure 3 and these contain:

• a horizontal bar chart portraying each variable with their respective overall, nonmutually
exclusive, occurrence;

• a vertical bar chart portraying the number of papers allotted to mutually exclusive ‘bins’, with each
bin representing a distinct combination of variables, signified by applicable variable intersections
indicated by dots and lines.
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2.3. Characterise the Typical Research Context

The third part of the review design was to generally describe the knowledge base. This step was
performed only for the 737 final papers found in Section 2.2, as these were deemed the most useful
for understanding how complexity concepts are currently covered. A timeline of the knowledge base
was produced.

This stage required one author to manually read and review the abstract of each paper.
Where insufficient information was provided in the abstract, the reviewing author read the full
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paper. As article records were initially downloaded from Scopus in an Excel spreadsheet, a column
was added to the database to reflect whether papers reviewed or compared methods. This counted the
existing work to perform reviews that may be in any way similar to this effort.

It was also considered whether papers addressed multiple or compound hazards. This was
identified in Table 1, Challenge 10. However, this was not incorporated into the six complexity
concepts from Table 2, as it was instead deemed a sustainability concept. Thus, whether floods
and droughts are covered separately or jointly was tracked through all 737 papers. Specifically,
the reviewing author identified which types of hazard were covered and the emphasis of each paper on
its study of a hazard and/or impact. Table 3 shows the five variables considered in this step: Drought
hazards, flood hazards, general climate change hazards, focus on hazards, and focus on impacts.

Table 3. Variables for describing the context of the knowledge base.

Type Hazard/Focus Variable Description

Hazard Type

Drought Referencing droughts, lack of rainfall, low flows

Flood Referencing floods, heavy rainfall, high flows

General Climate Change
Referencing a flood and/or drought in the

context of a wider set of climate change hazards,
e.g., hurricanes, heat waves, sea level rise

Focus
Hazard Referencing the detection or quantification of a

specific hazard (e.g., a flood extent)

Impact Referencing the identification or quantification or
impacts (e.g., economic damages of a flood)

The reviewing author read each abstract to determine the applicability of each variable.
Five additional spreadsheet columns were created to represent each of the above variables. Where a
variable was applicable, this was indicated as a ‘1’ in the appropriate cell. This took a ‘select all that
apply’ format. In other words, these variables are not mutually exclusive.

For example, one paper studied the effects of drought stress on different potato cultivars.
This paper had received a ‘1’ in the columns for:

• Drought hazard type;
• Focus on quantification of a hazard; and
• Focus on quantification of an impact.

The updated Excel spreadsheet database was imported into R as a CSV file. The R package
UpSetR [16,17] was used to process results. Results were reported through Euler diagrams, as described
in Section 2.2 and depicted in Figure 3.

2.4. In-Depth Assessment

2.4.1. Frequency and Co-Occurrence of Variables

The in-depth analysis required one author to manually read and review the abstract of each paper.
Where insufficient information was provided in the abstract, the reviewing author read the full paper.
The six complexity concepts from Table 2 were broken down into more detailed variables to examine
not just if, but also how well, complexity challenges are covered.

Table 4 presents each detailed variable, in relation to the six general complexity concepts.
These variables and their descriptions were used to assess if they occurred within each abstract (or full
paper where insufficient information was provided). As article records were initially downloaded
from Scopus in an Excel spreadsheet, additional columns were created to represent each detailed
variable. Where a detailed variable was applicable, the reviewing author indicated this as a ‘1’ in the
appropriate cell.
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Table 4. Detailed variables relating to the six complexity concepts.

# Complexity Concept Detailed Variable Description Additional Sub-Variables

1 Uncertainty Ensemble Scenarios Use of a method or approach which involves the consideration of multiple possible futures,
probabilistic assessments, scenario analysis, climate ensembles, etc.

2 Spatial Scale

Cellular Target of study (plants etc.) on a cellular level; measured in ≤mm

Individual Discretisation at an individual (one person; tree) level; measured in cm up to 2 m

Household Household, family, gauging station; measured in m

Community
Community; neighbourhood; street; species; small local habitat; small organisation; set of
technologies for comparison; set of different stakeholder types for comparison; typically

measured in less than 2–10 km2, or higher with low population density

Town or City Ward Town; city ward; small area/district; roughly 1000 people per 2.5 km2; roughly 2–3 km2 for
urban district, roughly 10–30 km2 for standalone town settlements

City City; large municipality; small county; sub-catchment; bay; peninsula; wetland; roughly a large
area anywhere between 50–20,000 km2, ~1000 people/2.5 km2

Regional Region; catchment; large county; roughly 5000-800,000 km2 depending on nation size, climate,
settlement, and land features

National National; some overlap with regional, usually pertaining to national datasets or how a model has
been applied than a specific spatial scale; roughly 5000-800,000 km2

Global Global; continental; international (i.e., a nation each representative of different continents,
not nations groups in the same region)

3 Time Scale

None
Method is time-independent, i.e., it does not require a time-series or event causality for its use;

is not normally intended to provide specific solutions, instead clarifying conceptual
underpinnings or ‘mental models’ around adaptation

Short-term Studied phenomena in intervals of minutes; hours; days; weeks

Medium-term Studied phenomena in intervals of months; years

Long-term Studied phenomena in intervals of decades; centuries

4 Multimodel Approaches

Census Census data; Municipal datasets (including social factors; water use)

Classic Qualitative Methods Qualitative ‘building blocks’ of research

Content Analysis

Interview

Literature Review

Observation

Personal History Items (e.g., diaries)

Questionnaire

Survey

Classic Quantitative Methods Quantitative ‘building blocks’ of research
Biological or Physical Measurement (e.g.,
primary data; meteorological datasets)

Statistical or Numerical Analysis
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Table 4. Cont.

# Complexity Concept Detailed Variable Description Additional Sub-Variables

Decision-Making Analyses
Decision-making analysis; integrated decision support tools; any form of formalised

decision-making process or rule-construction surrounding decision-making; usually weighing
a broad range of possibilities

Collaborative Risk-Informed Decision
Analysis (CRIDA)

Decision, Event, or Problem Tree

Decision Making Under Deep
Uncertainty (DMDU)

Decision Scaling

Decision Support System (DSS);
Integrated Assessment Method (IAM)

Delphi Method; Expert Ranking
or Weighting

Dynamic Adaptation Policy Pathways
(DAPP); Adaptation Tipping Points

(ATP) framework; Adaptation
Mainstreaming Moments (AMM)

Integrated Value Model for Sustainable
Assessment (IVMSA)

Multicriteria Decision Analysis (MCDA);
Multicriteria Decision-Making (MCDM)

Robust Decision-Making (RDM)

Strategy Robustness Visualisation
Method (SRVM)

Economic Appraisal Appraisals of economic benefits, costs, damages, pricing

Cost–Benefit Analysis (CBA)

Other Economic Assessment (e.g.,
calculation of damages; water pricing;

willingness-to-pay)

Portfolio Analysis

Real-In Options (RIO) Analysis

Indicators Indicators derived from more complex datasets to be easily and relatively quickly applied with a
sufficiently representative result

Participatory Methods Methods which involve the end users affected by research outcomes in their data
collection and feedback processes

Focus Group

Other Participatory Method

Photo-Elicitation

Seasonal Calendar

Serious Games

Timeline Exercise

Transect Walk

Usability Experiment
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Table 4. Cont.

# Complexity Concept Detailed Variable Description Additional Sub-Variables

Workshop

Simulations Computer-based simulations which typically run in a time-series

Agent-Based Model

Climate Model

Crop or Vegetation Model

Hazard Model

Hydrological Model

Other Model (e.g., based on decision
analysis; water demand)

Static Models Static models which do not independently (via computer) run in a time-series; conceptual
models; ‘mental models’; maps for spatially explicit representations

5 and 6
Human–nature

Dimensions/Interactions

Agricultural Involving or impacting agricultural yields and practices, crop choices, crop or
livestock improvement

Behavioural/General
Adaptation Planning

Generally understanding climate change phenomena, dynamics in human–nature systems, and
impacts; mobilising behaviour change; detailing comprehension and decision-making; general
adaptation planning effectiveness; power dynamics (e.g., between researchers and practitioners,

between outsiders and indigenous groups)

Community
Referencing community advocacy, civic involvement, innovation potential, cultural aspects,

participation in voluntary work, place attachment, collective community values, religious belief,
social capital, or social connectivity

Ecological
Involving or impacting wild/natural species of plants or animals not explicitly for food

production, referencing or influencing water quality, water salinity or saltwater intrusion around
coastal areas

Economic
Generally referencing costs (e.g., cost–benefit analysis), benefits, damages, pricing (e.g.,

willingness to pay), business size, education equity, employment, employment sector diversity,
single sector employment, multiple livelihood sources, housing capital, income, income equality

Infrastructure
(General)

Acknowledging a wide range of critical infrastructure (e.g., electricity;
nuclear power; telecommunications)

Infrastructure
(Pre-Hazard)

Referencing infrastructure often cited as important pre-hazard (e.g., flood defences), building
material, ecological buffer, water-related infrastructure, land use diversity, location, soil retention,

wetland diversity, green infrastructure, urban extent

Infrastructure
(Post-Hazard)

Referencing infrastructure often cited as important post-hazard (e.g., transport networks),
access/evacuation potential, care for housing and infrastructure, housing age, housing type,

medical capacity, shelter capacity, sheltering needs

Institutional

Acknowledging the role of governance or other institutional contexts, awareness and
preparedness (e.g., education), insurance coverage, mitigation and recovery previous disaster

experience, political fragmentation, state services and resources, warning systems and weather
forecasting, multisectoral partnerships, trade agreements

Social
Referencing age, communication capacity, disability and special needs, educational status,

health insurance coverage or health access, language competency, population size or growth,
health impacts, demographic trends
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The first step was to identify the specific methods used in each paper (e.g., content analysis).
Before the start of analysis, several commonly used methods were brainstormed. An Excel column
representing each of these methods was added to the spreadsheet. Each time a new method arose
(e.g., transect walks), another spreadsheet column was created so that the use of this method could
be tracked through the remainder of the papers. At the end of analysis, 42 specific methods had
been tracked. A Euler diagram with 42 variables and all of their possible combinations proved
difficult to produce and interpret. Results for specific methods were presented selectively, not fully,
for maximum clarity.

To further ease the presentation of results, each of the specific methods was also placed under
the umbrella of a higher-level category (e.g., content analysis was categorised as a classic qualitative
method). These categories emerged from the common aims of the specific methods, rather than
a standard set of methodological approaches. (For example, categorising simply as qualitative vs.
quantitative, or categorising as action research vs. ethnography vs. scientific.) Descriptions for each
category are provided in Table 4 for clarity.

After identifying the methods used, the reviewing author examined which of the other detailed
variables (i.e., uncertainty, spatial scales, time scales, and human–nature dimensions) were covered by
that set of methods. For example, one paper measured physiological traits of potato cell membranes
every day over a 2-year period and performed a statistical analysis on the data to study their
drought response. This did not include the consideration of multiple possible futures, or probabilistic
assessments. This paper received a ‘1’ in the columns for:

• Physical measurement or lab experiment method (under the umbrella of classic
quantitative methods);

• Statistical analysis method (under the umbrella of classic quantitative methods);
• the cellular spatial scale;
• the short-term time scale (hours to days to weeks);
• the medium-term (months to years) time scale;
• the agricultural human–nature dimension; and
• the ecological human–nature dimension.

This approach means the frequency count of each detailed variable was attached to what was
actually measured by the methods used. The theoretical rigour and the quality of discussion within
each paper were disregarded. Inferred recommendations based on findings were also disregarded.
For example, if the above paper on drought stress of potato cultivars made recommendations for
long-term agricultural policies, the long-term time scale was not ticked, because this study was not
measured over decades or centuries.

Variables were updated as themes emerged during an initial sample of 50 papers. Small additions
were made to the examples of these variables as they arose throughout the analysis.

The updated Excel spreadsheet database was imported into R as a CSV file. The R package
UpSetR [16,17] was used to process results. Results were reported through Euler diagrams, as described
in Section 2.2 and depicted in Figure 3.

2.4.2. Associations between Variables

There were a high number of variables considered in this review. To test for patterns, statistical
tests were applied.

The first step was to test for associations between variables. This involved a Pearson chi-square
test adjusted for multiresponse categorical variables. This review takes a ‘select all that apply’ approach
(answers are not mutually exclusive). To this end, the R package MRCV (Methods for Analyzing
Multiple Response Categorical Variables) was applied [16,18]. Statistical significance was determined
at p ≤ 0.05.
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The second step was to determine the Cramer’s V correlation coefficients. These measure the
strength (or weakness) of relationships between paired variables (ranging from 0, no relationship, to 1,
perfect relationship) [19]. Typically, Cramer’s V < 0.10 is indicative of a weak relationship. Due to
the ‘select all that apply’ approach in this review, a large number of pairs where both variables are
zero are present. This skewed the weight of Cramer’s V towards appearing relatively weak. However,
differences in Cramer’s V still made it possible to rank the significant pairs found in step 1.

3. Results

3.1. Broad Check for Complexity Concepts

3.1.1. Are the Complexity Concepts Acknowledged?

A total of 173 papers were excluded in Section 2.2, because the broad check showed these did not
address any complexity concepts. This is noteworthy because 173 papers make up 19% of the research
on climate change adaptation to hydrohazards. The requirements for this broad check were minimal;
thus, it is possible that an even higher proportion of research neglects complexity issues.

The horizontal bar chart in Figure 4 shows the nonmutually exclusive occurrences of complexity
concepts. The human–nature dimension was referenced most by a significant margin, in 66% (484)
of papers. Following this, the second most referenced aspect, time scale, was at 37% (272) of papers,
and the other four aspects were referenced in 19–26% of papers each. In general, the least referenced
concept was interactions at 19% (137) papers.
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The vertical bar chart in Figure 4 shows the mutually exclusive coverage of combinations of
complexity concepts, with each bar representing a combination or ‘bin’. In other words, where a paper
covered both the human–nature dimension and time scale concepts, this is counted in the ‘bin’ or bar
above the two black dots for human–nature dimension and time scale. On average, each paper covered
1.92 concepts. The majority of papers (75%) covered only one or two concepts. The breakdown of
coverage is as follows:
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• 41% (305) papers covered only one concept;
• 34% (254) papers covered two concepts;
• 17% (122) papers covered three concepts;
• 6% (42) papers covered four concepts;
• 2% (13) papers covered five concepts;
• 0% or none of the papers covered all 6 concepts.

More specifically, the top three most covered combinations of complexity concepts, by a significant
margin, were: Human–nature dimensions, 22% (163) of papers; time scale at 8% (59) of papers;
and human–nature dimensions + time scale at 8% (51) of papers.

3.2. Description of the Research Context

This section appears after the broad check for complexity concepts, as these results apply to the
final 737 papers that covered at least one complexity concept. These 737 papers underwent more
detailed examination (i.e., manual reading of abstracts). This gives an indication for the original set of
910 papers. Figure 5 depicts a timeline of this knowledge base. The solid line shows total cumulative
papers, and the dotted line shows number of papers added each year.
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Figure 5. Knowledge base on climate change adaptation to hydrohazards, 1989–2018.

The first paper in this set was published in 1989. After this, there was a steady increase of
1–10 papers per year until the mid-2000s. Between the mid- to late-2000s, there was a burst of activity
around climate change adaptation to hydrohazards. This rapid expansion of the knowledge base saw
the largest annual addition of papers on the topic for three consecutive years in 2015, 2016, and 2017.
This review covers the first eight months in 2018, and this trend appears likely to continue. Just 22
papers (3%) included some degree of review or comparison of different methods or approaches.

The horizontal bar chart in Figure 6 shows overall (not mutually exclusive) occurrences of each
hazard type across the set of papers. Floods and droughts were covered equally (referenced in 51%
(379) vs. 50% (372) of papers, respectively).
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Figure 6. Coverage of hydrohazard types.

The horizontal bar chart in Figure 7 shows overall (not mutually exclusive) occurrences of a focus
on a hazard or an impact, across the set of papers. Results show there was nearly three times more
emphasis on impacts as opposed to hazards (595/81% vs. 207/28% of papers). The vertical bar chart in
Figure 7 shows the mutually exclusive coverage of combinations of hazards and/or impacts, with each
bar representing a combination or ‘bin’. In other words, where a paper’s methods covered both a
hazard and an impact, this is counted in the ‘bin’ or bar above the two black dots for hazard and
impact. Results show only 9% (65) of papers covered both a hazard and its impact.
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Figure 8 shows when different hazard types from Figure 6 and the emphasis on hazard or impact
from Figure 7 are considered together. Impacts from a range of natural hazards (general climate change
and impacts) were the most covered combination at 24% (180) of papers. Drought impacts were the
second-most covered at 14% (104) of papers. Flood impacts were the third-most covered at 11% (79) of
papers. This means that drought impacts and flood impacts had about equal coverage. The fourth-most
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covered was the study of hydrohazards—covering the whole hydrological cycle at both ends of the
spectrum, with a focus on estimating the hazard itself—at 10% (75) of papers. When considered as a
distinct and separate hazard, drought and flood hazards were still covered approximately equally at
3% (21) vs. 3% (20) papers, respectively. Collectively, this shows floods and droughts are given near
equal consideration.
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3.3. In-Depth Assessment: Frequency and Co-Occurrence of Variables

The above concepts were broken down into more detailed variables in order to examine not just
if but how well complexity challenges are covered in the existing literature. These more detailed
variables are shown with descriptions in Table 4. Specifically, frequency of occurrence was examined
for uncertainty, spatial and temporal scales, human–nature dimensions, and methods used.

3.3.1. How Well Are We Accounting for Future Uncertainties?

Throughout the detailed analysis, references to multiple possible futures were noted.
These indicated consideration of uncertainty. Just 22% (160) of papers involved a form of some
such scenario analysis. These papers undertook analyses which allowed for future uncertainties
around both the human and natural aspects of systems (for example, a range of future scenarios or
probabilistic future hazard assessments, etc.). This is slightly lower than when the “uncertainty” search
term was used alone in the broad check for complexity concepts, which found 176 papers as reported
in Section 3.1.1.

3.3.2. How Well Are Different Spatial and Temporal Scales Covered?

Results for coverage of different spatial scales are shown in Figure 9. The horizontal bar chart in
Figure 9 shows the overall occurrence of each spatial scale across the set of papers, which were not
mutually exclusive. The regional spatial scale was the most referenced by a wide margin, in 59% (438)
of papers. Second-most referenced was the community spatial scale at 40% (296) of papers. In general,
the least covered were the cellular and global scales, at either end of the spatial spectrum. Each of
these occurred in about 5% of papers.
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The vertical bar chart in Figure 9 shows the mutually exclusive coverage of combinations of
different spatial scales, with each bar representing a combination or ‘bin’. In other words, where a
paper covered both household- and community-level spatial scales, this is counted in the ‘bin’ or bar
above the two black dots for household- and community-level. The breakdown of coverage was as
follows:

• 36% (265) covered just one spatial scale;
• 34% (252) covered two spatial scales;
• 14% (103) covered three spatial scales;
• 10% (79) covered four spatial scales;
• 4% (28) covered five spatial scales;
• 1% (9) covered six spatial scales;
• 0.1% (1) covered seven spatial scales;
• 0% or none of the papers covered all eight or all nine spatial scales.

Results for different temporal scales are shown in Figure 10. The horizontal bar chart in Figure 10
shows the overall occurrence of each temporal scale across the set of papers, which were not mutually
exclusive. Medium-term (months to years) was the most frequently referenced by a wide margin,
occurring in 90% (663) of papers. This was followed by the long-term (decades to centuries) at 50% (371)
and the short-term (hours to days to weeks) at 36% (263). A handful of papers were time-independent
(1% or 5), for example, focusing on the general study of how people understand climate change, not in
relation to specific events.

The vertical bar chart in Figure 10 shows the mutually exclusive coverage of combinations of
different time scales, with each bar representing a combination or ‘bin’. In other words, where a paper
covered both short- and medium-term time scales, this is counted in the ‘bin’ or bar above the two
black dots for short- and medium-term. Coverage in mutually exclusive bins can be seen in the vertical
bar chart in Figure 10. Ignoring time-independent papers, the breakdown of coverage was as follows:

• 40% (295) covered one time scale;
• 43% (319) covered two time scales;
• 17% (123) covered all three time scales.
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There was a good linkage of medium- to long-term time scales. However, linkage between of
short-term to medium-term was half this strength, whilst linkage of the short-term to long-term was
almost negligible.
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Figure 11 depicts when spatial scale and time scale are considered in tandem. The vertical bar
chart in Figure 11 shows the mutually exclusive coverage of combinations of different spatial and time
scales, with each bar representing a combination or ‘bin’. In other words, where a paper covered both
a regional spatial scale and a medium-term time scale, this is counted in the ‘bin’ or bar above the
two black dots for regional and medium-term. The most covered bin was medium-term + long-term +
regional scales (8%, 58). The second-largest grouping covered short-term + medium-term + long-term
+ regional (4%, 28). The third-largest grouping was a tie—both medium-term + community and
medium-term + regional—at 3%, or 24 or 23 papers, respectively.Sustainability 2019, 11, x FOR PEER REVIEW 20 of 36 

 

Figure 11. Top 20 most covered combinations of spatial and time scales, ordered by frequency. 

Figure 12 shows the top 20 combinations of time and space covering the greatest breadth of 
coverage. These ‘best covered’ groupings reached across nine scales. These four bins were: 

• Short-term + medium-term + cellular + individual + household + community + town or city ward 
+ city + regional (0.1% or 1 paper) short-term + medium-term + long-term + individual + 
household + community + town or city ward + city + regional (0.1% or 1 paper); 

• Short-term + medium-term + long-term + individual + community + town or city ward + city + 
regional + national (0.1% or 1 paper); 

• Short-term + medium-term + long-term + individual + town or city ward + city + regional + 
national + global (0.1% or 1 paper). 

In total, the top 20 bins only consisted of 30 papers—just 4% of the knowledge base. This 
indicates a generally wide spread of coverage for spatial and time scales, with a low number of papers 
covering a high number of these. 

Figure 11. Top 20 most covered combinations of spatial and time scales, ordered by frequency.



Sustainability 2019, 11, 1163 19 of 34

Figure 12 shows the top 20 combinations of time and space covering the greatest breadth of
coverage. These ‘best covered’ groupings reached across nine scales. These four bins were:

• Short-term + medium-term + cellular + individual + household + community + town or city
ward + city + regional (0.1% or 1 paper) short-term + medium-term + long-term + individual +
household + community + town or city ward + city + regional (0.1% or 1 paper);

• Short-term + medium-term + long-term + individual + community + town or city ward + city +
regional + national (0.1% or 1 paper);

• Short-term + medium-term + long-term + individual + town or city ward + city + regional +
national + global (0.1% or 1 paper).Sustainability 2019, 11, x FOR PEER REVIEW 21 of 36 
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a high number of these.

3.3.3. How Well Are Human–Nature Dimensions Actually Covered?

The horizontal bar chart in Figure 13 shows the overall occurrence of each human–nature
dimension across the set of papers, which were not mutually exclusive. Infrastructure (pre-hazard)
dimensions were referenced the most in 43% (315) papers. The next most referenced was economic
dimensions at 30% (221) of papers, followed by ecological dimensions at 27% (199) of papers.
Infrastructure (post-hazard) (9%, 64) and community (8%, 61) dimensions were the least referenced.
Definitions for each dimension can be found in Table 4, and it is important to note that infrastructure
(pre-hazard) dimensions cover preparatory planning aspects such as urban extent, land cover, and
engineering. By contrast, infrastructure (post-hazard) dimensions cover the infrastructure considered
important to hazard response, e.g., evacuation or shelter capacity.



Sustainability 2019, 11, 1163 20 of 34
Sustainability 2019, 11, x FOR PEER REVIEW 22 of 36 

 

Figure 13. Top 20 most covered combinations of human–nature dimensions. 

The vertical bar chart in Figure 13 shows the mutually exclusive coverage of combinations of 
different human–nature dimensions. Here, each bar represents a combination or ‘bin’. In other words, 
where a paper covered both a community dimension and an economic dimension, this is counted in 
the ‘bin’ or bar above the two black dots for community and economic. The breakdown of coverage 
was as follows: 

• 14% (102) did not address any human–nature dimensions; 

• 30% (223) referenced just one dimension; 

• 21% (158) referenced two dimensions; 

• 16% (119) referenced three dimensions; 

• 7% (52) referenced four dimensions; 

• 5% (40) referenced five dimensions; 

• 3% (21) referenced six dimensions; 

• 2% (16) referenced seven dimensions; 

• 0.7% (5) referenced eight dimensions; 

• 0.1% (1) referenced nine dimensions; 

• 0% or none referenced all ten dimensions. 

The top three bins addressed only one dimension each. These were ecological (13%, 93), 
infrastructure (pre-hazard) (8%, 56), and agricultural (4%, 33) aspects. Fourth-highest was the 
combination of ecological + infrastructure (pre-hazard) (4%, 27). Community was the only dimension 
absent from any combination in the top 20 most frequently covered combinations. 

Figure 14 depicts the top 20 bins with the greatest coverage of human–nature dimensions. The 
top ‘bin’ referenced nine human–nature dimensions, and this bin represented only 0.1% (1) of papers. 
The community dimension was the only excluded aspect. The next three largest bins included eight 
dimensions and covered similarly low proportions of the knowledge base. This was broken down as 
follows: 

Figure 13. Top 20 most covered combinations of human–nature dimensions.

The vertical bar chart in Figure 13 shows the mutually exclusive coverage of combinations of
different human–nature dimensions. Here, each bar represents a combination or ‘bin’. In other words,
where a paper covered both a community dimension and an economic dimension, this is counted in
the ‘bin’ or bar above the two black dots for community and economic. The breakdown of coverage
was as follows:

• 14% (102) did not address any human–nature dimensions;
• 30% (223) referenced just one dimension;
• 21% (158) referenced two dimensions;
• 16% (119) referenced three dimensions;
• 7% (52) referenced four dimensions;
• 5% (40) referenced five dimensions;
• 3% (21) referenced six dimensions;
• 2% (16) referenced seven dimensions;
• 0.7% (5) referenced eight dimensions;
• 0.1% (1) referenced nine dimensions;
• 0% or none referenced all ten dimensions.

The top three bins addressed only one dimension each. These were ecological (13%, 93),
infrastructure (pre-hazard) (8%, 56), and agricultural (4%, 33) aspects. Fourth-highest was the
combination of ecological + infrastructure (pre-hazard) (4%, 27). Community was the only dimension
absent from any combination in the top 20 most frequently covered combinations.

Figure 14 depicts the top 20 bins with the greatest coverage of human–nature dimensions. The top
‘bin’ referenced nine human–nature dimensions, and this bin represented only 0.1% (1) of papers.
The community dimension was the only excluded aspect. The next three largest bins included eight
dimensions and covered similarly low proportions of the knowledge base. This was broken down
as follows:
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• Agricultural + behavioural + ecological + economic + infrastructure (general) + infrastructure
(pre-hazard) + infrastructure (post-hazard) + social (1 or 0.1% of papers);

• Agricultural + behavioural + community + ecological + economic + infrastructure (pre-hazard) +
institutional + social (1 or 0.1% of papers);

• Agricultural + behavioural + ecological + economic + infrastructure (general) + infrastructure
(pre-hazard) + institutional + social (1 or 0.1% of papers);

• Behavioural + community + economic + infrastructure (general) + infrastructure (pre-hazard) +
infrastructure (post-hazard) + institutional + social (2 or 0.3% of papers).

Sustainability 2019, 11, x FOR PEER REVIEW 23 of 36 

• Agricultural + behavioural + ecological + economic + infrastructure (general) + infrastructure 
(pre-hazard) + infrastructure (post-hazard) + social (1 or 0.1% of papers); 

• Agricultural + behavioural + community + ecological + economic + infrastructure (pre-hazard) + 
institutional + social (1 or 0.1% of papers); 

• Agricultural + behavioural + ecological + economic + infrastructure (general) + infrastructure 
(pre-hazard) + institutional + social (1 or 0.1% of papers); 

• Behavioural + community + economic + infrastructure (general) + infrastructure (pre-hazard) + 
infrastructure (post-hazard) + institutional + social (2 or 0.3% of papers). 

 

Figure 14. Top 20 combinations with broadest coverage of human–nature dimensions, ordered by 
degree. 

Behavioural, economic, infrastructure (pre-hazard), and social dimensions were present in all of 
the top 5 most covered combinations. The top 20 combinations included a combined 27 papers, or 4% 
of the knowledge base. This indicates a wide spread of coverage and a small number of papers 
covering multiple dimensions. 

3.3.4. How Are Methods Applied to Climate Change Adaptation for Hydrohazards? 

Results are first discussed in terms of overall method categories. The most frequently used 
method category was classic quantitative methods (including physical measurement, lab 
experimentation, and mathematical or statistical analysis). This was referenced 1262 times. Second-
most frequent was simulations at nearly half this frequency (651 occurrences). Third-most frequent 
was classic qualitative methods (including methods such as surveys, interviews, and content 
analysis), which was referenced 454 times. The remaining method types were in roughly equal use, 
with census, static models, indicators, participatory methods, decision-making analyses, and 
economic appraisal all within a range of 121–175 occurrences.  

The breakdown of coverage was as follows: 

• 16% (120) covered one method type; 

• 32% (238) covered two method types; 

• 23% (166) covered three method types; 

Figure 14. Top 20 combinations with broadest coverage of human–nature dimensions, ordered
by degree.

Behavioural, economic, infrastructure (pre-hazard), and social dimensions were present in all
of the top 5 most covered combinations. The top 20 combinations included a combined 27 papers,
or 4% of the knowledge base. This indicates a wide spread of coverage and a small number of papers
covering multiple dimensions.

3.3.4. How Are Methods Applied to Climate Change Adaptation for Hydrohazards?

Results are first discussed in terms of overall method categories. The most frequently used method
category was classic quantitative methods (including physical measurement, lab experimentation,
and mathematical or statistical analysis). This was referenced 1262 times. Second-most frequent was
simulations at nearly half this frequency (651 occurrences). Third-most frequent was classic qualitative
methods (including methods such as surveys, interviews, and content analysis), which was referenced
454 times. The remaining method types were in roughly equal use, with census, static models,
indicators, participatory methods, decision-making analyses, and economic appraisal all within a
range of 121–175 occurrences.

The breakdown of coverage was as follows:

• 16% (120) covered one method type;
• 32% (238) covered two method types;
• 23% (166) covered three method types;
• 14% (102) covered four method types;
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• 10% (73) covered five method types;
• 3% (22) covered six method types;
• 2% (15) covered seven method types;
• 0 or none covered eight method types;
• 0.1% (1) covered nine method types.

Figure 15 depicts the top 10 most frequently covered combinations of method categories.
Here, each bar represents a mutually exclusive combination method categories, or ‘bin’. In other
words, where a paper used both a classic quantitative and a simulation method, this is counted in
the ‘bin’ or bar above the label classic quantitative + simulation. The most covered combination
was classic quantitative + simulations at 20% (145) of papers. The second-highest combination
was classic quantitative alone, at 12% (86) of papers. The third-highest combination was classic
quantitative + classic qualitative at 5% (36) of papers.
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Going into more detail, 42 individual methods were applied at some point in the knowledge
base. The most frequently occurring methods by a wide margin were statistical and mathematical
(690 occurrences) and physical measurement or lab experiment (572 occurrences). This was followed by
climate models (195), other models (183), census (175), static or conceptual models (169), and indicators
(167). Not all 42 methods can be presented here; however, Figure 16 presents the top 20 most used sets
of methods.

The most used combination was statistical and mathematical + physical measurement (12%, 85),
followed by statistical and mathematical + physical measurement + climate model + hydrological
model (5%, 38). Third-most used was the combination of statistical and mathematical + physical
measurement + other model (3%, 23).
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3.4. In-Depth Assessment: Associations between Variables

3.4.1. Are There Statistically Significant Patterns in How Complexity Concepts Are Studied?

Several statistical tests were applied in order to detect any significant associations between
variables. Figure 17 depicts these correlations. Table 5 describes their p-values and Cramer’s V
correlations. In Table 5, these are ranked in descending order of correlation strength.
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Table 5. Cramer’s V strength of association for the linked pairs (all pairs significant to p < 0.05).

Variable 1 Variable 2 Cramer’s V

Time.Scale.Short Gap.Interactions 0.0081
Hazard.General.Climate.Change Gap.Interactions 0.0076

Time.Scale.Short Gap.Spatial.Scales 0.0073
Time.Scale.Medium Spatial.Scale.Town.or.City.Ward 0.0067

Hazard.Drought Gap.Spatial.Scales 0.0049
Hazard.General.Climate.Change Gap.Multi.Model 0.0045

Time.Scale.Medium Gap.Uncertainty 0.0035
Hazard.Drought Dimension.Ecological 0.0034

Time.Scale.Medium Focus.Impact 0.0030
Time.Scale.Medium Dimension.Social 0.0029
Time.Scale.Medium Dimension.Economic 0.0019
Time.Scale.Medium Spatial.Scale.City 0.0010
Time.Scale.Medium Dimension.Ecological 0.0002

Of the 70 variables outlined in Tables 3 and 4, only 12 had significant associations. This resulted
in 13 linked pairs. These pairs covered the: Type of hazard, focus of the paper on hazard or impact,
six complexity concepts intended to be addressed from Table 2, specific time scale, specific spatial scale,
and type of human–nature dimensions (if any). There were no significant associations to, or between,
specific methods or their ‘umbrella’ method categories.

4. Discussion

This paper comprehensively and systematically assessed the available methods for climate change
adaptation to hydrohazards. It also illustrated how we currently incorporate complexity concepts into
this research area, in order to build a potential research agenda for the future.

Theoretical reviews are common in this area (particularly floods) [20–22], but application of
methods is rarely addressed. Despite the fact that this review specifically looked for papers focusing on
methods, just 22 existing papers (3%) attempted to compare or review methods. Often, these compared
a handful of methods for a specific aim (e.g., decision-making analyses). Coupled with the fact that 173
(19%) of papers addressed none of the targeted complexity concepts, it is clear that the journey to truly
‘doing systems research’ has just begun. However, this review serves to map the current surroundings
and the road ahead.

In exploring the context of the current knowledge base, it was found that floods and droughts
are covered equally overall. However, floods and droughts are considered together only in about 23%
of cases. As suggested in challenge 10 (Table 2) and cutting-edge climate projections [3,23–25], it will
become increasingly important to address both ends of the hydrological spectrum in a comprehensive
way. Some studies in this paper addressed highly specific issues at a low level of scale (e.g., genetic
makeup of drought-resistant crops). Here, it may not always be appropriate to study both ends
of the hydrological spectrum. However, this paper found 59% of the existing literature covers the
regional scale. Consideration of the whole hydrological spectrum at this level is not only feasible,
but also advisable. This suggests the aforementioned 23% coverage is inadequate. In other words,
consideration of the entire hydrological cycle is essential, possible, and often unaddressed.
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The study of general climate change hazards, including floods and droughts but also other
hazards such as forest fires and hurricanes, was significantly correlated with the study of interactions
and with the use of multimodel approaches. This indicates that tackling multiple hazards necessitates
addressing complexity, including the capture of salient interactions and the integration of multiple
forms of evidence relevant to those interactions. Inversely, approaches focusing on interactions and
using multiple models have greater potential to be extended across hazard types (i.e., from application
of floods to application of forest fires). Thus, a high priority for future climate change research is
to develop and apply methods that are ‘hazard-agnostic’, to consider not just floods and droughts
together, but any combination of multiple, interacting, or compound hazards.

At first glance, some findings give the impression that current approaches are highly inclusive of
local communities and ‘end users’. Impacts are covered three times more than hazards. The broad check
for complexity concepts suggests human–nature dimensions are well-covered, as they are referenced
in 66% of the knowledge base. Furthermore, the in-depth assessment of spatial scales showed that
research is done at the community level about 40% of the time.

However, do the full results bear this out? Spatial scale refers to the level at which data are
collected, rather than a type of outcome. Thus, researchers may be working with communities to
collect physical data, or working at the community-level of scale, but are frequently missing the
explicit exploration of what climate change means for that community. In fact, the human–nature
dimensions of community and infrastructure (post-hazard) were addressed the least (occurring in
8% and 9% of papers, respectively). These dimensions cover aspects of climate change such as place
attachment, social connectivity, transport infrastructure, and emergency shelter capacity, all of which
will be key to planning for future hydrohazards. The low level of coverage for these dimensions—in
contrast to infrastructure (pre-hazard) (43%) or ecological (27%) dimensions, which address aspects
such as vegetation, land use, and the engineering of flood defences—reveals that we are not yet deeply
studying the human side of climate change.

This is also reflected in the existing patterns observed for the most frequently applied methods.
Results showed that using multiple method types in a single approach is common. One third of papers
used four or more method types. However, results also showed that ‘bottom–up’ physical data (e.g.,
rainfall measurement) are often used or integrated mainly with ‘top–down’ social data (e.g., census
datasets, indicators). Although some participatory methods are used in tandem with classic qualitative
and classic quantitative methods, this often means a participatory method (e.g., focus group) has
been used in addition to a qualitative data collection survey and corresponding statistical analysis.
Thus, multimethod approaches are used, and often quantitative methods are developed with ‘softer’
decision-making tools. These approaches continue to be extremely data- and time-intensive, requiring
multiple sophisticated models. What is missing—and what could arguably alleviate the data-hunger
of higher-level policy- and decision-making analyses—is the ‘end user’ and their insights into local
context. On this basis, a future research priority is the fuller integration of ‘bottom–up’ social methods
(e.g., participatory) with higher level policy and practice processes, to inform more effective and
equitable outcomes.

The focus on medium-term time scale impacts, without strong connections to the study of
short-term time scale hazard or impacts, highlights a gap in current practice. This focus on
the medium-term is not unexpected because the impacts of a hazard can take more than hours,
days, or weeks to be fully realised, for example, impacts of a hazard on a city’s wider healthcare
system. However, without a robust understanding of how short-term dynamics lead to medium- or
long-term effects (e.g., stressors) being realised, it will be difficult to create effective interventions
and transformative adaptation. Indeed, the medium-term time scale is significantly correlated to the
study of ecological, economic, and social impacts. The latter two of these are currently studied in
a primarily top–down fashion (e.g., using census data) which could be a barrier to the unpicking
of system dynamics and interactions. In addition, interactions are the least addressed of all six
complexity concepts covered in this review, despite the wider complexity literature pointing to these
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as an underlying source of emergence. A challenge in this area is that attempts to study interactions
at multiple timescales is an inherently data-intensive exercise, so it is no surprise that the strongest
association between any two variables was the link between intention to study interactions and a
short-term time scale. As such, a future research priority is to increase and further develop the study
of interactions, particularly linking the short- to medium-term timescales, and ideally in a way that
minimises data requirements.

It appears that a ‘silver bullet’ solution to complexity does not exist. No existing approach has
the ability to cover all six complexity concepts. Few significant associations were found between the
studied variables. No significant patterns were found between methods applied to different hazards,
impacts, time scales, spatial scales, or human–nature dimensions.

We do not argue that a single solution should be sought, or that approaches which ‘check
the most boxes’ will always effect optimal outcomes. Indeed, Verburg et al. [11] (p. 328) warn
against “the convergence towards single models that are able to answer a wide range of questions,
but without sufficient specificity”, and our findings show that some approaches (e.g., multicriteria
decision-making) can skirt this line. However, this assessment of existing patterns in the knowledge
base sheds much-needed light on how little is being done to address complexity. Indeed, it could be
argued that impacts are covered more frequently in the literature because in dealing with a greater reach
of natural and human aspects, we are dealing with fewer deterministic rules and greater complexity.
This would explain a higher quantity of investigation to determine which methods are effective for
which complexity problems, through trial and error. Understanding if and how our traditional ways of
working are limited and exploring how they can be stretched or combined is a necessity. For effective
climate change adaptation, full coverage of complexity is not possible—but greater acknowledgment
of complexity is critical.

In the future, as we move forward in climate adaptation for hydrohazards, and indeed in the
study of all complex human–nature systems, we need a consistent framework to build and navigate a
shared conceptualisation of complexity. This provides a way to map what is being covered, and what
may be neglected. It also aids in understanding the possibilities and constraints around how we can
develop and integrate novel approaches. The above complexity concepts may be used as framing
reference points, to build a shared understanding of real-world complexity and guide the selection
and critique of our approaches. This methods review was applied exclusively to research addressing
hydrohazards (floods and droughts) but can be replicated for other hazards. Applying this review
structure to forest fires, for example, would test the strength of such a framework.

This assessment provides some tractable next steps. A comprehensive reference list of existing
methods for climate change adaptation to hydrohazards has been presented in Table 4. Appendix A,
Table A1 presents a condensed timeline of ‘best practice’ examples of their past use. Table 6 summarises
the current state of play (existing patterns) and provides recommendations to bridge existing gaps
(future needs).

Ultimately, this review underscores the need to be bolder in exploring new frontiers and drawing
from other methodologies, such as human factors, participatory action research, and any other fields
which emphasise cost-effective data collection to capture context, human behaviour, and interactions.
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Table 6. Summary of findings regarding methods for climate change adaptation to hydrohazards.

# Complexity Concept State of Play/Existing Patterns) Next Steps/Future Needs

1 Uncertainty Only 22% of research accounts for uncertainty;
Significantly associated to medium-term study (months or years)

Greater consideration of multiple
possible futures;

Deeper consideration of how uncertainty
cascades through different time scales (not just

medium-term)

2 Spatial Scale
Heavy emphasis on regional and community scale analysis;
Highest-frequency spatial scales had physical emphasis, i.e.,

social dynamics and considerations less covered

Need for investigation of finer level of scale,
e.g., household-level to determine if critical

complexity dynamics are being lost in
current approaches;

Community (and most other) scale needs
greater focus on social, behavioural, cognitive,

and/or cultural aspects

3 Time Scale

Adequate coverage with a heavy emphasis (90% occurrence) on the
medium-term; medium-term significantly linked to

study of impacts;
medium-term is specifically linked to the intention to study

ecological, economic, and social dimensions

More focus needed on short-term (hours or
days or weeks) and linking this to

medium-term (months or years), particularly in
study of all types of impacts and interactions

4 Multimodel Approaches
30% of approaches use more than 4 types of method;

however, most approaches relied on classic quantitative methods
and simulations

Better integration of participatory methods
(bottom–up) and decision-making Analyses

5 Human–Nature
Dimensions

This was most frequently mentioned complexity concept;
Infrastructure (pre-hazard), economic and ecological were

most covered

Other dimensions should be explored more
frequently and systematically;

specifically, the community and infrastructure
(post-hazard) dimensions

6 Interactions
Only 19% of research claims to address interactions of any kind;

interactions significantly associated with short-term (hours or days
or weeks)

Need to push the study of interactions to link
short-term shocks and long-term stressors;
development of methods to optimally use

minimal data

OVERALL

No ‘tried and tested’ methodological patterns have yet emerged in
the study of climate change adaptation to hydrohazards;

Just 3% of reviewed papers performed any form of method
comparison or review before applying their chosen methods;

19% of initial knowledge base did not cover any of the six
complexity concepts, even at a broad level;

75% of reviewed papers addressed only 1 or 2 complexity concepts;
None of the 910 papers could address all six complexity concepts

More systematic consideration of the six
complexity concepts in research design;

need to be bolder in venturing to unfamiliar
disciplines and adapting

complexity-smart methods

5. Conclusions

It is not novel to say that methods are needed which acknowledge the role of uncertainty, multiple
spatial and time scales, multiple forms of evidence, human dimensions of systems, or interactions.
What this work does contribute, in the form of a systematic assessment, is a rigorous evaluation of
if and how well these six complexity challenges are met. From the results, it is clear that in climate
change adaptation to hydrohazards, there is a substantial lack of complexity-smart approaches. Of a
total 910 papers, no single study addressed all six of these complexity concepts. A lack of consistency
was also in evidence, even in cases where one or two complexity concepts were addressed.

The findings of this paper provide a clarification of exactly which areas are most in need of
development to improve the study of complex human–nature systems. Though it is not always feasible
or desirable to cover all six complexity concepts in any single design and each method has a unique fit
to the system, it is clear that complex climate change challenges are quickly outgrowing our ‘classic’
approaches. Moving forward, complexity concepts can be better incorporated to further build the
knowledge base in sustainability transitions. Specifically, future applications of research methods in
this area should first aim to cover some type of interaction; to minimise use of data-hungry approaches;
and to incorporate deeper levels of context-specific insights. Looking to new horizons and fresh
disciplines, climate change adaptation research can take tractable steps to meet the modern challenges
of complex, human–nature systems.
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Appendix A

In the main text, this review mapped current practice and proposed methodological recommendations. Table A1 below supports these findings by
illustrating a timeline of exemplary past research, which meets various complexity challenges.

Table A1. Timeline of key past literature exemplary of complexity-smart research.

Year Addressed 5+
Complexity Concepts in Broad Check

Addressed 8+
Spatiotemporal Scales

Addressed 7+
Human–Nature Dimensions

Spanned across 7+
Method Types

2018 Liu, et al., 2018 †,Ψ [26] Aslam, et al., 2018 [27]

Shah, et al., 2018 [28]
Cabal & Erlich, 2018 † [29]
Ling & Chiang, 2018 Ψ [30]
Jayanimita, et al., 2018 [31]

2017
Honti, et al., 2017 Ψ [32]

Stigter, et al., 2017 †,Ψ [33]
Toimil, et al., 2017 † [34]
Gahi, et al., 2017 † [35]

Toimil, et al, 2017 † [34]

Espada, et al., 2017 [40]
Kumasi, et al., 2017 [36]

Parry, et al., 2017 [37]
Rizzi, et al., 2017 † [38]

Kaspersen & Halsnaes, 2017 † [39]

2016 Schaphoff, et al., 2016 Ψ [41]

Sample, et al., 2016 [42]
Kingsborough, et al., 2016 Ψ [47]

van Ruiten, et al., 2016 † [48]
Weis, et al., 2016 [49]

Herslund, et al., 2016 † [43]
Bailey & Buck, 2016 [44]

Hasse & Weingaertner, 2016 [45]
Kim, et al., 2016 Ψ [46]

2015

Dunford, et al., 2015 †,Ψ [50]
Van der Knaap, et al., 2015 †,Ψ [54]

Gombault, et al., 2015 † [55]

Antwi, et al., 2015 [56]
Lee, et al., 2015 Ψ [57]

Spyridi, et al., 2015 [58]

Kane, et al., 2015 [59]
Lee, et al., 2015 Ψ [57]

Espada, et al., 2015 Ψ [51]
Syed, et al., 2015 Ψ [52]

Yazdanfar & Sharma, 2015 [53]

2014 Pulido-Velazquez, et al., 2014 †,Ψ [60]
Ulrich & Rauch, 2014 †,Ψ [61]

Ronchail, et al., 2014 [62]
Krellenberg, et al., 2014 [66]

Haasnoot, et al., 2014 Ψ [67]

Krellenberg, et al., 2014 [66]
Ronco, et al., 2014 [63]
Giupponi, 2014 Ψ [64]

Ronco, et al., 2014 [63]
Giupponi, 2014 Ψ [64]

Van Bodegom, et al., 2014 Ψ [65]

2013

Zischg, et al., 2013 [68]
Lung, et al., 2013 [69]

Parker & Wilby, 2013 [70]
Liu, et al., 2013 [71]
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Table A1. Cont.

Year Addressed 5+
Complexity Concepts in Broad Check

Addressed 8+
Spatiotemporal Scales

Addressed 7+
Human–Nature Dimensions

Spanned across 7+
Method Types

2012 Chang, et al., 2012 Ψ [72]
Georgakakos, et al., 2012 [73] Verburg, et al., 2012 † [74]

Malik, et al., 2012 [75]
Chaliha, et al., 2012 [76] Rijcken, et al., 2012 †,Ψ [77]

2011 Haasnoot, et al., 2011 †,Ψ [78]
Ceccato, et al., 2011 Ψ [79]

Verma & Negandhi, 2011 [80]
Sokolewicz, et al., 2011 † [81]

2010 Williams, et al., 2010 [82] Stakhiva & Stewart, 2010 Ψ [83] Lempert & Groves, 2010 † [84]

2009 Angus, et al., 2009 †,Ψ [85] Angus, et al., 2009 †,Ψ [85]

2008 Dewals, et al., 2008 Ψ [86]
Kazama, et al., 2008 [87] Dewals, et al., 2008 Ψ [86]

2004 Hooijer, et al., 2004 † [88]
Ψ = paper also covers interactions as per broad check for complexity concepts; † = paper also covers uncertainty as per in-depth assessment; bold = covers both interactions and uncertainty;
italics = present in more than one column of the timeline.
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