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Abstract Describing the space‐time variability of hydrologic extremes in relation to climate is
important for scientific and operational purposes. Many studies demonstrated the role of large‐scale
modes of climate variability such as the El Niño–Southern Oscillation (ENSO) or the North Atlantic
Oscillation (NAO), among many others. Climate indices have hence frequently been used as predictors in
probabilistic models describing hydrologic extremes. However, standard climate indices such as
ENSO/NAO are poor predictors in some regions. Consequently, this paper describes an innovative
method to avoid relying on standard climate indices, based on the following idea: the relevant climate
indices are effectively unknown (they are hidden), and they should therefore be estimated directly from
hydrologic data. In statistical terms, this corresponds to a Bayesian hierarchical model describing extreme
occurrences, with hidden climate indices treated as latent variables. This approach is illustrated using
three case studies. A synthetic case study first shows that identifying hidden climate indices from
occurrence data alone is feasible. A second case study using flood occurrences at 42 east Australian sites
confirms that the model correctly identifies their ENSO‐related climate driver. The third case study is
based on 207 sites in France, where standard climate indices poorly predict flood occurrence. The hidden
climate indices model yields a reliable description of flood occurrences, in particular their clustering in
space and their large interannual variability. Moreover, some hidden climate indices are linked with
specific patterns in atmospheric variables, making them interpretable in terms of climate variability and
opening the way for predictive applications.

1. Introduction
1.1. Space‐Time Variability of Hydrologic Extremes

Managing hydrologic hazards such as floods and intense precipitation requires a good knowledge of their
space‐time variability. As an illustration, consider the occurrence of flood events at 207 stations in France
shown in Figure 1. This figure illustrates several key properties of how hydrologic extremes occur in space
and time. First, they tend to cluster in space, occurrences forming coherent spatial patterns (Merz et al.,
2018). Figure 1 also suggests a possible tendency to cluster in time, with flood‐rich periods (1981–1982
and 1992–1994) alternating with flood‐poor periods (1983–1991; Kiem et al., 2003; Merz et al., 2016; G. M.
McMahon & Kiem, 2018). As a consequence of these properties, the spatial extent of extremes varies very
irregularly from year to year: on any given year, the percentage of stations affected by an extreme tends to
be either very low or very high, but is rarely close to its interannual average of 20% (corresponding to the
5‐year flood threshold). In layman's (and exaggerated) terms, managing flood hazard at this spatial scale
looks like an alternation of long runs of problem‐free years and shorter runs of catastrophic years, rather
than a smooth sail through average years.

The irregularity described above poses great challenges to socio‐economic sectors that need to manage
hydrological risk at a national or even continental scale. For instance, international (re)insurance companies
need to secure enough capital to withstand occasional huge losses (European Environment Agency, 2010).
Alternatively, disaster response institutions (civil protection and humanitarian aid) need to deploy their
actions over a large spatial extent and are hence calling for early warning systems that may facilitate logistics
and trigger early actions (Coughlan de Perez et al., 2016). Beyond these two specific examples, a recent
World Bank report (World Bank, 2014) emphasizes the importance of understanding the space‐time varia-
bility of extremes and its relation with climate.
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1.2. The Usual Suspects: ENSO, NAO, and Other Modes of Climate Variability

Inmany areas of the world, hydrologic extremes are influenced bymodes of climate variability such as the El
Niño–Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO), among many others. Since the
latter tend to have consistent effects at the regional scale, they are good candidates to explain the variability
of hydrologic extremes in both time and space. Several authors provide global‐scale overviews of the effect of
ENSO/NAO on hydrologic extremes: see, for example, Kenyon and Hegerl (2010) and Sun, Renard, et al.
(2015) for extreme precipitation or Ward et al. (2014) and Emerton et al. (2017) for floods. In addition, many
studies demonstrate the effect of ENSO/NAO or other modes of climate variability at a smaller regional
scale. While a comprehensive review lies beyond the scope of this paper, examples are provided in the
following sections.

1.3. Probabilistic Modeling of Extremes Using Standard Climate Indices

In practice, modes of climate variability are quantified by means of climate indices, which are one‐
dimensional time series typically resulting from a dimensionality reduction exercise (e.g., Barnston &
Livezey, 1987). A large number of climate indices have been proposed in the literature (see, e.g., National
Center for Atmospheric Research, 2019). Throughout this paper, they are collectively referred to as “stan-
dard climate indices” (SCIs).

Since a SCI is a simple time series, it can conveniently be used as a covariate in a climate‐informed frequency
analysis model, where the distribution of hydrologic extremes is assumed to change according to the value
taken by the SCI. This is typically achieved by assuming that some parameters of this distribution are a func-
tion of the SCI (see, e.g., the generalized additive models for location, scale, and shape of Stasinopoulos &
Rigby, 2007). Examples of climate‐informed flood frequency analysis models include (among many others)
Sankarasubramanian and Lall (2003), Kwon et al. (2008), López and Francés (2013), or Lima et al. (2015).
These at‐site models have been extended to the regional scale, typically by making additional assumptions
on the spatial variability of the parameters (including those controlling SCI effects; e.g., Aryal et al., 2009;
Gregersen et al., 2013; Lima & Lall, 2010; Steinschneider & Lall, 2015; Sun et al., 2014; X. Sun & Lall,
2015; Sun, Lall, et al., 2015; Sun, Renard, et al., 2015).

1.4. Hidden Climate Indices

The examples provided in the previous section illustrate that SCIs can often be used as skillful predic-
tors of hydrologic extremes. However, SCIs also have limitations. For instance, they may focus on cap-
turing a mode of climate variability that is not relevant for hydrologic predictands in the target study
region (Lavers et al., 2013). The combined use of several SCIs should account for the fact that distinct
SCIs may be strongly related to each other (e.g., Westra et al., 2008; Westra & Sharma, 2009; Westra
et al., 2015). Most notably, several authors reported that all SCIs are poor predictors in some regions
and seasons (e.g., Giuntoli et al., 2013 ; Grantz et al., 2005; Renard & Lall, 2014). This does not imply
that hydrologic extremes are unrelated to climate but rather that this relation cannot be expressed
through SCIs for such region/season combinations. By restricting to SCIs, one may hence miss a

Figure 1. Autumn flood occurrence in France, 1981–1994. An occurrence (orange dot) corresponds to a flood exceeding the local 5‐year autumn flood (empirical
estimate based on at least 40 years of data). In each panel, the percentage of stations with a flood occurrence is shown.
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genuine relation with climate; in a sense, this is akin to looking for lost keys under a lamppost because
the light is better here.

Consequently, alternative methods have been proposed to avoid relying on a predefined list of off‐the‐shelf
SCIs, based on the idea that the relevant climate indices may effectively be unknown (i.e., they may be hid-
den). A hidden climate index (HCI) affecting the target hydrologic predictand data should leave a trace in it,
and should therefore be identifiable directly from the hydrologic predictand. For instance, Grantz et al.
(2005), Zeng et al. (2017), or Schlef et al. (2018) defined “customized” predictors (that can be viewed as
HCIs) by means of some correlation analysis between the hydrologic predictand and large‐scale climate
fields (e.g., sea surface temperatures or atmospheric pressures).

The notion of hidden climate indices can also be embedded into a formal statistical model: for instance, hid-
den Markov models postulate the existence of a hidden climate state (e.g., a binary wet/dry indicator) that
drives the distribution of the hydrologic predictand (Bracken et al., 2016; Thyer & Kuczera, 2000, 2003a,
2003b): this climate state can be interpreted as a discrete HCI. Renard and Lall (2014) proposed a
Bayesian hierarchical model to extend this approach to a continuous HCI, and highlighted much more skill-
ful predictions than traditional approaches using SCIs.

The model proposed by Renard and Lall (2014) was based on the assumption that the HCI to be identified
has a common effect for all target sites: this restricts its application to small regions where the effect of cli-
mate variability can be considered as homogenous. Ahn et al. (2017) relaxed this assumption by means of a
parsimonious description of the variation of the HCI effect in space. They assumed that the HCI effect is
maximal at some unknown location of the study area, and then decreases as a deterministic function of
the distance to this location. While this parsimonious model allows considering larger, moderately hetero-
geneous regions, it is still not applicable at a large spatial scale (national, continental or even global).
Indeed, climate effects are unlikely to follow the deterministic pattern used by Ahn et al. (2017) at such a
large spatial scale. Moreover, a single HCI may not be sufficient to explain the variability of hydrologic
extremes. There is therefore a need to develop a probabilistic HCI model that could be applied at a large spa-
tial scale. This entails allowing the identification of several HCIs whose effects may realistically vary in
space: the objective of this paper is precisely to fill this research gap.

1.5. Detailed Objectives and Outline of the Paper

This paper describes and evaluates a Bayesian hierarchical model describing the space‐time variability of
extreme occurrences at a large spatial scale. This development pursues the following specific objectives:

1. Identifying (several) HCIs that drive the temporal variability of extreme occurrences;
2. Proposing a realistic description of the spatial variation of the HCI effects at a large spatial scale;
3. Deriving an efficient inference strategy to estimate parameters and their uncertainties;
4. Testing the internal consistency of the model using a synthetic case study;
5. Applying the model to real‐life data sets.

The remainder of this paper is organized as follows. Section 2 describes the probabilistic model and the infer-
ence strategy used to estimate its parameters. Section 3 describes a synthetic case study mostly aimed at ver-
ifying that the estimation of hidden climate indices from occurrence data alone is feasible. In sections 4 and
5, the model is applied to two contrasting case studies based on flood occurrences: eastern Australia (where
the influence of ENSO is well established) and France (where standard climate indices are poor predictors).
Section 6 discusses limitations of the proposed model and suggests avenues for improvement. Finally, the
main outcomes of this paper are summarized in section 7.

2. Theory
2.1. Probabilistic Model
2.1.1. Notation
Let Y(x,t) denote the random variable representing the occurrence of an event at location x and time t.

Corresponding observations are available at Nx locations during Nt time steps, yielding the data set y

¼ y xi; tj
� �� �

i¼1:Nx ;j¼1:Nt
, which can be stored as a 0/1 (nonoccurrence/occurrence) matrix. The event could

for instance be defined as the seasonal maximum streamflow exceeding some threshold, but
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“nonextreme” events may also be considered, such as the seasonal average precipitation being lower than
normal.
2.1.2. Data Layer
Since Y(x,t) represents occurrence data, it is assumed to follow a Bernoulli distribution whose parameter θ(x,t)
(equal to the probability of occurrence) varies in space and time as follows:

Logit θ x; tð Þð Þ ¼ λ0 xð Þ þ λ1 xð Þτ1 tð Þ þ …þ λK xð ÞτK tð Þ (1)

The basic idea behind equation (1) is to describe the temporal variation of θ(x,t) using a set of K hidden cli-
mate indices (τ1(t),…, τK(t)). The climate indices are hidden in the sense that they are assumed unknown and
hence have to be inferred from the occurrence data. When a large spatial domain is analyzed, the effect of
each HCI is not expected to be the same for all sites: the spatial parameters (λ1(x),…, λK(x)) therefore control
the site‐specific effect of each HCI. The spatial parameter λ0(x) can be interpreted as the “normal” probabil-
ity of occurrence (i.e., when all HCIs are equal to zero). Finally, the Logit transformation is used to ensure
that parameter θ(x,t) always remains between 0 and 1. The Logit transformation and its inverse are
defined as

Logit pð Þ ¼ ln
p

1−p

� �
; p∈ 0; 1ð Þ; Logit−1 uð Þ ¼ 1

1þ e−u
;u∈ −∞;þ∞ð Þ (2)

Note that the number of HCIs K is assumed to be known; strategies to select this number will be discussed in
the case studies.
2.1.3. Spatial Process Layer
Consider the spatial parameter λk(x) controlling the effect of the kth HCI. This parameter is likely to be spa-
tially structured. For instance, it may depend on the elevation of the site x, or on some other covariate (e.g.,
windward/leeward orientation and distance to sea). In addition, it is expected to show some degree of
smoothness in space, since close sites tend to have similar climate effects. A similar reasoning may hold
for the spatial parameter λ0(x). Consequently, all spatial parameters (λ0(x), λ1(x),…, λK(x)) are assumed to
be realizations from Gaussian spatial processes, which can be written as follows:

for any k ¼ 0 : K; and for any set of sites x1;…; xnð Þ :
λk x1ð Þ;…; λk xnð Þð Þ∼MG zkβk;Σkð Þ (3)

where MG(μ,Σ) denotes the multivariate Gaussian distribution with mean μ and covariance matrix Σ.

In equation (3), zk is a n × NZ matrix of NZ site descriptors (e.g., elevation and distance to sea) and βk is a
NZ × 1 vector of parameters. The product zkβk therefore accounts for the linear effect of covariates on para-
meter λk(x). Note that a spatially constant mean can be obtained by setting zk to a n × 1 matrix of ones.

The covariance matrix Σk controls the spatial variability of parameter λk(x), including its spatial smoothness.
Following a common approach used in geostatistics, it is parameterized as a function of the pairwise
intersite distance:

Σkð Þij ¼ f k dist xi; xj
� �

; γk
� �

(4)

The function fk(d; γk) is the covariance function or covariogram, and corresponds to an assumption of isotro-
pic spatial process. It can be chosen among the many valid covariogram models existing in the geostatistical
literature (e.g., exponential, Gaussian, and Mattern). As an example, the exponential covariogram that will
be used in the case studies is defined as

f d; γ1; γ2ð Þ ¼ γ21exp −d=γ2ð Þ (5)

In the context of a hierarchical model such as the one presented here, the Gaussian spatial process of equa-
tion (3) is referred to as the hyperdistribution, and the parameters βk and γk controlling its properties are
the hyperparameters.
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2.1.4. Independence Assumptions
To complete the specification of the probabilistic model, several additional independence assumptions are
made. The first assumption is that the effects of two distinct HCIs are independent, or in other words, that
there is no cross correlation between the spatial processes λk1 xð Þ and λk2 xð Þ (for any k1 ≠ k2). The validity of
this assumption can be empirically checked after the inference by analyzing the estimated valuesbλk1 xið Þ
� �

i¼1:Nx

and bλk2 xið Þ
� �

i¼1:Nx

.

The second assumption is that the occurrences Y(x,t) are independent in both space and time conditionally
on parameters θ(x,t). It is stressed that the word “conditionally” is extremely important here: in particular,
this conditional independence assumption does not imply that the occurrences Y(x,t) are independent in
space and time. To see this, consider the model with a single HCI:

Y x; tð Þ∼Bernoulli θ x; tð Þð Þ; Logit θ x; tð Þð Þ ¼ λ0 xð Þ þ λ1 xð Þτ1 tð Þ

Consider a particular site x0 where the influence of the HCI is highly positive (λ1(x0)≫ 0). Moreover, assume
that the HCI τ1(t) has some strong autocorrelation, with a tendency for high values to cluster in time: in this
case, high probabilities θ(x0, t) will also have the same tendency to cluster in time, and so will the observed
occurrences. In other words, the possible temporal dependence structure existing in the HCI τ1(t) will pro-
pagate to the occurrences Y(x0, t).

Similarly, consider a particular time step t0 where the value of the HCI is highly positive (τ1(t0) ≫ 0). Since
the process λ1(x) shows some spatial dependence (see section 2.1.3), high values of λ1(x) will be clustered in
space and so will high probabilities θ(x, t0). As previously, the spatial dependence structure existing in the
HCI effect λ1(x) will propagate to the occurrences Y(x, t0): years with high values of the HCI will tend to
see more occurrences in those (clustered) locations where λ1(x) is high.

These considerations illustrate that the conditional independence assumption does not correspond to
assuming independent occurrences in space and time, quite the contrary: It should rather be viewed as a
way to indirectly model space/time dependences, using the hidden temporal variables τk(t) and their corre-
sponding spatial effects λk(x).

2.2. Identifiability Constraints

In order to make the model in equation (1) identifiable, it is necessary to use two constraints on the mean
and the variance of the HCIs. To see this, consider again a model with a single HCI, and observe that it
can trivially be rewritten as

Logit θ x; tð Þð Þ ¼ λ0 xð Þ þ λ1 xð Þτ1 tð Þ ¼ λ0 xð Þ þ λ1 xð Þ
c

cτ1 tð Þð Þ

where c is a nonzero constant. This equation implies that the scale of the HCI is irrelevant: multiplying the
HCI τ1(t) and dividing its effect λ1(x) by the same constant leads to exactly the same probability of occurrence
θ(x,t). Consequently, all parameter pairs of the form λ1 xð Þ

c ; cτ1 tð Þ
� �

are indistinguishable from the data, lead-
ing to nonidentifiability. For similar reasons, the mean of the HCI is also irrelevant. Consequently, two iden-
tifiability constraints are used to force the HCI τk(t) to have mean zero and variance one:

∀k ¼ 1 : K;∑
Nt

j¼1
τk tj
� � ¼ 0 and

1
Nt

∑
Nt

j¼1
τ2k tj
� � ¼ 1 (6)

These two constraints imply that only the first Nt − 2 values of τk(t) need to be inferred, with values τk tNt−1ð Þ
and τk tNtð Þbeing deduced from the others so as to meet the constraints. Some elementary algebra leads to the
following formula:
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τk tNt−1ð Þ ¼ −u−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nt−2v−u2

p

2
; τk tNtð Þ ¼ −uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nt−2v−u2
p

2

whereu ¼ ∑
Nt−2

j¼1
τk tj
� �

; v ¼ ∑
Nt−2

j¼1
τ2k tj
� � (7)

Note that equation (7) is undefined if the quantity below the square root is strictly negative: in this case, the

vector τk tj
� �� �

j¼1:Nt−2
is considered as infeasible.

2.3. Inference
2.3.1. Stepwise Strategy
In the model described in the previous section, the following quantities need to be inferred:

1. The spatial parameter λ0 ¼ λ0 xið Þð Þi¼1:Nx
controlling the “normal” probability of occurrence, and the

hyperparameters controlling its spatial properties β0 and γ0;
2. For k = 1 : K, the kth HCI τk ¼ τk tj

� �� �
j¼1:Nt−2

, its spatial effect λk ¼ λk xið Þð Þi¼1:Nx
, and the hyperpara-

meters controlling the spatial properties of the latter βk and γk.

A stepwise Bayesian inference strategy is adopted to estimate these parameters. The time‐invariant model
with no HCI (Logit(θ(x,t)) = λ0(x)) is estimated first. The model with a single HCI is then estimated condi-

tionally on the previously estimated values bλ0 xð Þ (i.e., Logit θ x; tð Þð Þ ¼ bλ0 xð Þ þ λ1 xð Þτ1 tð Þ). The model with

two HCIs is then estimated conditionally on bλ0 xð Þ, bλ1 xð Þ, andbτ1 tð Þ (i.e., Logit θ x; tð Þð Þ ¼ bλ0 xð Þ þ bλ1 xð Þbτ1 tð Þ þ
λ2 xð Þτ2 tð Þ) and so forth until the desired number of HCIs K is reached. This stepwise procedure is used
because it is much better behaved than a single global procedure estimating all parameters at once. The
drawbacks of the stepwise approach are discussed in section 6.3, along with potential avenues to improve
the behavior of the global estimation procedure.
2.3.2. Estimation of the Time‐Invariant Model With No HCI
The stepwise procedure starts by estimating parameters λ0, β0, and γ0. Their posterior distribution, given
occurrence data y and spatial covariates z, is given by

p λ0; β0; γ0∣y; zð Þ∝p yjλ0; β0; γ0; zð Þp λ0; β0; γ0jzð Þ
¼ p yjλ0ð Þ|fflfflfflffl{zfflfflfflffl}

likelihood

p λ0jβ0; γ0; zð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
hierarchical term

p β0; γ0jzð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
prior

(8)

Equation (8) corresponds to a standard expression of the posterior distribution in a Bayesian hierarchical fra-
mework. The first row corresponds to the application of the Bayes theorem. The second term of this first row
is then decomposed into hierarchical and prior terms, using basic conditional probability algebra. Moreover,
the likelihood term is simplified by noting that it only depends on parameters λ0, but not on hyperpara-
meters β0 and γ0. Indeed, the likelihood is equal to

p yjλ0ð Þ ¼ ∏
Nx

i¼1
∏
Nt

j¼1
θ xi; tj
� �� �y xi;tjð Þ 1−θ xi; tj

� �� �1−y xi;tjð Þ

whereθ xi; tj
� � ¼ Logit−1 λ0 xið Þð Þ

(9)

In equation (9), each term within the double product is equal to the probability of occurrence θ(xi, tj) if the
event occurs (y(xi, tj) = 1) and to 1 − θ(xi, tj) if the event does not occur (y(xi, tj) = 0). The double product is a
consequence of the conditional independence assumption in space and time. It has the positive side effect of
making the handling of missing data straightforward: if a value y(xi, tj) is missing, the corresponding term
can simply be omitted from the double product.

The hierarchical term in equation (8) is computed as a multivariate Gaussian pdf fMG with mean vector z0β0
and covariance matrix Σ0(γ0), as explained in section 2.1.3:

p λ0jβ0; γ0; zð Þ ¼ f MG λ0; z0β0;Σ0 γ0ð Þð Þ (10)

Finally, the prior term in equation (8) has to be specified by the user and is case specific. Note that in most
cases, this prior will not depend on the spatial covariates z, and independent priors will be used, leading
to p(β0, γ0| z) = p(β0)p(γ0).
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2.3.3. Estimation of the kth HCI Model
Now assume that components 0 to k − 1 of the model have been estimated, with corresponding estimated

values bλ0, bλ1:k−1, andbτ1:k−1. These values correspond to the maxpost estimates, that is, the parameter vector
that maximizes the posterior pdf. Analogous to the preceding section, the posterior pdf of the parameters of
the kth component is then given by

p τk; λk; βk; γk∣bλ0; bλ1:k−1;bτ1:k−1; y; z� �
∝p yjτk; λk; bλ0; bλ1:k−1;bτ1:k−1� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood

p λkjβk; γk; zð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
hierarchical term

p βkð Þp γkð Þp τkð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
prior

(11)

The likelihood is computed as follows:

p yjτk; λk; bλ0; bλ1:k−1;bτ1:k−1� �
¼ ∏

Nx

i¼1
∏
Nt

j¼1
θ xi; tj
� �� �y xi;tjð Þ 1−θ xi; tj

� �� �1−y xi;tjð Þ

where θ xi; tj
� � ¼ Logit−1 bλ0 xið Þ þ bλ1 xið Þbτ1 tj

� �þ …þ bλk−1 xið Þbτk−1 tj
� �þ λk xið Þτk tj

� �� � (12)

The hierarchical term can be computed in a similar way as in the previous section.
2.3.4. MCMC Sampling
The posterior distribution in equation (11) is explored byMarkov ChainMonte Carlo (MCMC) sampling. An
adaptive block Metropolis sampler is used, with block of length one: the vector of inferred parameters is
updated one component at a time (seeMarshall et al., 2004, for a description of such blockMCMC samplers).
The adaption strategy is based onmonitoring the acceptance rate during iterations and increasing/decreasing
the variance of the univariate Gaussian jump distributions until acceptance rates lie within user‐specified
bounds (typically between 10% and 50%, see Renard et al., 2006, for a more detailed description). In addition,
the sampler is customized to the particular structure of the posterior distribution (11), and in particular its
double‐product likelihood (equation (12)). Indeed, many simplifications occur in the computation of the
Metropolis ratio, and taking advantage of these dramatically improves the computational efficiency of the
sampler: this is further described in Text S1 in the supporting information.

3. A synthetic Case Study

The objective of this synthetic case study is to illustrate the model described in section 2, and to verify that it
is able to reliably recover the HCIs used to generate occurrence data, solely based on the latter.

3.1. Setup
3.1.1. Data
Synthetic data are generated from the Bernoulli model of equation (1). To achieve this, the following ele-
ments need to be specified:

1. Hidden climate indices τ1(t),…,τK(t): We use a model with K= 2 HCIs, shown as black lines in the second
and third panels of Figure 2. The first HCI shows some clear low‐frequency variability, while the second
is mostly interannual.

2. Site locations:Nx= 207 sites in France are used (Figure 3), corresponding to the hydrometric stations that
will be studied in the real data case study of section 5.

3. A “normal” probability of occurrence set to 0.2 for all sites (leading to λ0(x) = Logit(0.2) ≈ − 1.39).
4. HCI spatial effects λ1(x),λ2(x): The effect of each HCI at the 207 sites is shown in the top panels of

Figure 3. The effect follows a zonal gradient for the first HCI, and a meridional gradient for the second
one. In practice the values were generated from a Gaussian spatial field.

With these elements, it is possible to compute the probability of occurrence for any location and time step
using equation (1) and to generate a 0/1 value from the corresponding Bernoulli distribution. Note that
the conditional independence assumption made in section 2.1.4 implies that each value can be generated
independently (in both space and time). Finally, a missing data pattern resembling that of real‐life data sets
is implemented (Figure S1 and top panel in Figure 2). The simulated data are released and illustrated in the
supporting information (Table S1 and Figure S2).
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3.1.2. Model
The HCI model developed in section 2 is applied to the synthetic occurrence dataset with K= 3 components.
The objective behind using a third component (whereas only two were used to generate the data) is to eval-
uate how such an unnecessary component is estimated: this may suggest heuristic ways to select the number
of components. For all HCI effects, the underlying Gaussian spatial process (equation (3)) is assumed to have
a constant mean (μ= 1. β) and an exponential covariogram (equation (5)). Very vague priors are used for the
associated hyperparameters. A Gaussian distribution with mean zero and standard deviation 2.5 is used for
the hypermean parameter β: as an order of magnitude, a mean HCI effect β= 2.5 would lead to probabilities
of occurrence varying from less than 0.01 to more than 0.99 for “extreme” values of the HCI −2 and 2
(remind that each HCI has standard deviation 1). An inverse chi‐squared distribution with a single degree
of freedom is used for covariogram parameters γ1 and γ2. This prior distribution is weakly informative
and is aimed at avoiding values of (γ1, γ2) that would tend toward zero, which may create numerical pro-
blems (see section 9.2 in Spiegelhalter et al., 1996, for a discussion on this topic). Flat priors are used for
all HCIs τk.
3.1.3. Estimation
Two estimation periods are used for inference: a 50‐year short period (1965–2014) with no missing data
across the 207 sites, and the full 110‐year (1905–2014) period, with an increasing frequency of missing data
as one goes back in time. The objective is to evaluate whether the model is able to identify early values of the
HCIs despite decreasing data availability, without deteriorating the estimation over the recent period.

The MCMC sampler is run for 300,000 iterations. The first 100,000 iterations are discarded as a burn‐in per-
iod, and the remaining 200,000 iterations are further thinned by a factor of 200 to avoid storage issues and
long postprocessing computing times. Convergence is assessed visually by examining MCMC traces for all
inferred quantities (Figure S3).

3.2. Results
3.2.1. Ability to Identify the True HCIs
Figure 2 compares the true HCIs with the estimated ones (represented as 95% posterior intervals). Overall,
the agreement is good, suggesting that inferring HCIs solely from occurrence data is feasible. Focusing on

Figure 2. Synthetic case study: hidden climate indices (HCIs) τ1, τ2, and τ3. The black line denotes the real values; colored
bands denote 95% posterior intervals using data from the short (red) or the full period (blue). The top panel shows the
number of available stations.
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the first HCI, the full‐period estimation is able to identify the underlying low‐frequency signal. The
uncertainty around HCI values grows as one goes back in time, reflecting the increasing frequency of
missing data. Over the recent years, the full‐period estimation is almost identical to the short‐period
estimation, which illustrates that including old albeit incomplete data does not deteriorate the inference.
Note that restricting on the 1965–2014 period may erroneously suggest an upward trend; the full‐period
estimation more correctly reveals the multidecadal nature of this HCI. The estimated effect of this first
HCI is mapped in Figure 3. The full‐period estimate is reported, the short‐period estimate being almost
identical (not shown). The estimated pattern adequately reproduces the true zonal gradient but seems
slightly smoother (this might be due to the use of posterior medians).

Similar comments can be made for the second HCI (third panel of Figure 2): with the full‐period estimation,
the uncertainty in HCI values grows as one goes back in time; the full‐period and short‐period estimations
are consistent over recent years, although the difference is larger than for the first HCI; the estimated effect
(middle panels of Figure 3) reproduces the meridional gradient characterizing the true effect, although in a
smoother way.

A more formal evaluation of the reliability of estimated HCIs using PIT diagrams (probability integral trans-
form—see, e.g., Laio & Tamea, 2007) indicates an acceptable reliability, despite a slight underestimation of
uncertainty (Figure S4). This is most probably due to the stepwise estimation strategy: estimating the kth
component conditionally on a point estimate of the kth‐1 component leads to ignoring the uncertainty in
the latter. While this is not entirely satisfying, Figure S4 suggests that this underestimation is limited and
may be acceptable for practical purposes. This issue is further discussed in section 6.3.
3.2.2. Selecting the Number of Components
The last row of Figure 2 shows the third estimatedHCI (remind that only twoHCIs were used to simulate the
data). Both short‐period and full‐period estimates show no discernable temporal variability. Note that the
uncertainty interval does not collapse to zero because of the identifiability constraint forcing all HCIs to

Figure 3. Synthetic case study: effect of the hidden climate indices (HCIs) λ1, λ2, and λ3: true values (top) versus estimated
values (posterior median, bottom).
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have a standard deviation equal to one (see section 2.2). However, the effect of the third HCI does collapse to
zero (right panels of Figure 3). This suggests that computing the standard effect of each HCI might be useful
to choose the number of components:

SEk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nx

∑
Nx

i¼1
λk xið Þð Þ2

s

Here, this standard effect is equal to 0.61 for the first HCI and 0.51 for the second one but drops by a factor of
10 for the third one (0.06), confirming that two components are sufficient. It is also worth noting that MCMC
convergence is rather poor for the effects of the third HCI λ3(x) (see last page in Figure S3), which may also
be indicative of the uselessness of this third component.
3.2.3. Estimation of Occurrence Probabilities
Once HCIs and their effects are estimated, it is possible to estimate probabilities of occurrence using the for-
mula in equation (1). The left part of Figure 4 shows two examples for the years 1978 and 1993. In both cases,
the estimated probabilities of occurrence closely reproduce the true spatial pattern: In 1978, the model cor-
rectly identifies the northeast area with very high probabilities of occurrence, while in 1993 it recognizes
lower‐than‐usual probabilities in the Northern half of the country. The right part of Figure 4 summarizes
these findings for all sites and all years. It shows that the estimation of probabilities of occurrence is accurate.
Moreover, the model is able to predict a wide range of probabilities. In particular, probabilities close to zero
and as high as 0.8 are predicted, which is to be compared with the “normal” probability of occurrence set to
0.2 in this synthetic case study.

4. Spring floods in Eastern Australia

ENSO is an important driver of hydroclimatic variability in Australia (Chiew et al., 1998; Verdon et al.,
2004). In particular, it impacts floods on the East Coast (Kiem et al., 2003), especially during summer and
spring (Liu et al., 2018). The objective of this case study is therefore to analyze spring flood occurrences in
Eastern Australia and to verify that the HCI identified by the proposed model is indeed related to ENSO.

4.1. Setup
4.1.1. Data
Daily discharge series from 42 stations are used, over the period 1951–2014. These stations are part of the
Hydrologic Reference Stations data set (Zhang et al., 2014) and were selected to cover coastal New South

Figure 4. Synthetic case study: true versus estimated probabilities of occurrence. Left: true and estimated (posterior median) probability maps for years 1978 and
1993. Right: true versus estimated probabilities for all years and all stations; the transparency of each point is proportional to the posterior standard deviation.
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Wales and southeast Queensland. At each station, the series of austral spring maximum discharge is
extracted (September‐October‐November, SON). A flood is considered to occur if the spring maximum
exceeds the empirical 0.8‐quantile computed over all maxima available at this station (thus approximately
corresponding to a 5‐year spring flood). All stations therefore have approximately the same frequency of
occurrences (20%) and nonoccurrences (80%). The data set is released in Table S2 and illustrated in
Figures S1 and S5. Additional climate data are used to interpret the results of this case study: global sea
surface temperatures (SST) and standard ENSO indices (see Table 1 for a more detailed description).
4.1.2. Model and Estimation
We use the same HCI model as described in section 3.1.2 and apply it to the spring floods dataset using all
available data. The model was estimated with up to K= 3 components, but computing the standard effects as
proposed in section 3.2.2 suggests that a single component is sufficient (1.23, dropping to 0.54 and 0.37).
MCMC traces are shown in Figure S6.

4.2. Results
4.2.1. Identification of the HCI
The left panel of Figure 5 shows the estimated HCI. Three particular years are also reported in order to inter-
pret this temporal signal. Spring 2010 corresponds to the start of a strong La Niña event (Boening et al.,
2012), leading to many flood occurrences in the region (Figure 6); the corresponding HCI value is high
(τ1 ≈ 2). Conversely, an El Niño event occurred in 2002 (McPhaden, 2004), with eastern Australia experien-
cing no spring flooding; the corresponding HCI value is low (τ1≈ − 1). Year 1979 was ENSO neutral, and the
corresponding HCI value is close to zero. This suggests that the estimated HCI can be interpreted as a La
Niña indicator. This is further confirmed by high absolute correlations between the HCI and standard

Table 1
Climate Data Used to Interpret the Hidden Climate Indices

Acronym Full name Data source Availability Reference

ENSO indices
SOI Southern Oscillation Index NOAA CPCa 1951–pst (Ropelewski & Jones, 1987)
NINO1+2 Extreme eastern tropical pacific SST NOAA ESRLb 1950–pst (Trenberth & Stepaniak, 2001)
NINO3 Eastern tropical pacific SST NOAA ESRLb 1950–pst (Trenberth & Stepaniak, 2001)
NINO3.4 East central tropical pacific SST NOAA ESRLb 1950–pst (Trenberth & Stepaniak, 2001)
NINO4 Central tropical pacific SST NOAA ESRLb 1950–pst (Trenberth & Stepaniak, 2001)

Standard climate indices relevant for western Europe
NAO North Atlantic Oscillation NOAA CPCc 1950–pst (Barnston & Livezey, 1987)
SCAND Scandinavia pattern NOAA CPCc 1950–pst (Wibig, 1999)
EA East Atlantic pattern NOAA CPCc 1950–pst (Barnston & Livezey, 1987)
EAWR East Atlantic‐Western Russia pattern NOAA CPCc 1950–pst (Ionita, 2014)
AMOr Atlantic Multicadal Oscillation, raw NOAA ESRLd 1856–pst (Enfield et al., 2001)
AMOs Atlantic Multicadal Oscillation, smoothed NOAA ESRLd 1856–pst (Enfield et al., 2001)

Atmospheric fields over the North Atlantic
Z850 Geopotential height at 850 hPa NCEP/NCARe 1948–pst (Kalnay et al., 1996)
U850 Zonal wind component at 850 hPa NCEP/NCARe 1948–pst (Kalnay et al., 1996)
V850 Meridional wind component at 850 hPa NCEP/NCARe 1948–pst (Kalnay et al., 1996)
CAPE Convective available potential energy 20CRf 1871–2012 (Compo et al., 2011)

Sea surface temperature (SST)
SST Kaplan low‐resolution global SST NOAA ESRLg 1856–pst (Kaplan et al., 1998)
SSTmed High‐resolution Mediterranean SST CMEMSh 1955–2015 (Fratianni et al., 2015)

Extreme events
AR Duration (day) with an atmospheric river

detected over Western France
Universidad de Cantabriai 1900–2012 (Brands et al., 2017)

MEDI Number of medicanes formed in the Western
Mediterranean region

Data sent by authors 1950–2011 (Cavicchia et al., 2014)

Note. NOAA = National Oceanic and Atmospheric Administration; NCEP = National Centers for Environmental Prediction; NCAR = National Center for
Atmospheric Research; ESRL = Earth System Research Laboratory; CPC = Climate Prediction Center.
ahttps://www.cpc.ncep.noaa.gov/data/indices/soi. bhttps://www.esrl.noaa.gov/psd/data/climateindices/list/. chttp://www.cpc.ncep.noaa.gov/data/teledoc/
telecontents.shtml.
dhttps://www.esrl.noaa.gov/psd/data/timeseries/AMO/. ehttps://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml. fhttps://www.esrl.noaa.gov/
psd/data/20thC_Rean/. ghttps://www.esrl.noaa.gov/psd/data/gridded/data.kaplan_sst.html. hhttps://doi.org/10.25423/MEDSEA_REANALYSIS_PHY_
006_009. ihttp://www.meteo.unican.es/atmospheric‐rivers.
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ENSO climate indices, reaching −0.63 with the NINO4 index (not shown). In addition, the correlation map
between the HCI and spring SST (central panel of Figure 5) reveals an ENSO‐like spatial pattern, with high
HCI values being associated with negative SST anomalies in the equatorial Pacific (especially its western
part), that is, to La Niña conditions. Overall, these results indicate that the HCI approach is able to
identify the well‐known influence of ENSO on floods in this region and during this season.
4.2.2. Estimation of Occurrence Probabilities
The right panel of Figure 5 indicates that the HCI effect is positive at all stations (i.e., high values of the HCI
lead to higher‐than‐usual flood probabilities). It also shows a meridional gradient suggesting that stations in
Queensland (north) are more strongly affected than stations in New South Wales (south).

The HCI and its effect can be combined to derive probabilities of occurrence using the formula in equa-
tion (1). This is illustrated in the left panels of Figure 6. Year 1979 correspond to a neutral state τ1 ≈ 0 and
to “normal” probabilities of occurrence close to 0.2. For El Niño year 2002 (τ1 ≈ − 1), flood probabilities
range between 0.05 and 0.1, which is 2 to 4 times smaller than normal; no flood occurred in the region.
Conversely, La Niña year 2010 (τ1 ≈ 2) is characterized by flood probabilities ranging from 0.5 to 0.8, which
is up to 4 times higher than normal; a flood occurred at 67% of the sites. The agreement between estimated
probabilities and actual flood occurrences can be evaluated more formally by means of a reliability diagram
(Bröcker, 2007): the right panel of Figure 6 confirms the good reliability of estimated probabilities across all
sites and all years.

5. Autumn Floods in France

The NAO is an important driver of hydrologic variability in many European regions (Pociask‐Karteczka,
2006), especially in autumn and winter. It has strong and opposite effects in Northern and Southern
Europe, but tends to be less impactful in central regions, including France (Lavers et al., 2013). Beyond

Figure 5. East Australia case study. Left: hidden climate index (HCI) τ1 (black line = posterior median, red band = 95% credibility interval, and vertical green lines:
particular years illustrated in next Figure 6). Center: correlation map between hidden climate index τ1 and sea surface temperatures (SST) computed over the period
1971–2014 (dashed and plain contours denote correlations larger than 0.4 and 0.6, respectively). Right: effect λ1 of the hidden climate index (posterior median).

Figure 6. East Australia case study: estimated probabilities of occurrence for years 1979, 2002, and 2010 (posteriormedians). The green dots denote stations where a
flood did occur. Right panel: reliability diagram for all years.
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NAO, Renard and Lall (2014) documented that no standard climate index delivered skillful predictions of
autumn floods in Mediterranean France. This case study therefore aims at illustrating the benefits of a hid-
den climate indices approach in such a region.

5.1. Setup
5.1.1. Flood Occurrence Data
Daily discharge series from 207 French stations are used, from the earliest available data up to 2016. These
stations form the reference hydrologic network used by, for example, Giuntoli et al. (2012) and Hodgkins
et al. (2017). Autumn (October‐November‐December, OND) flood occurrences are defined exactly as in pre-
vious section 4.1.1. The data set is released in Table S3 and illustrated in Figure S7. Data availability varies
greatly between stations, as shown in Figure S1: the oldest stations started in the early twentieth century, but
most stations started in the mid‐1960s.
5.1.2. Climate Data
In order to interpret the HCIs identified from flood occurrences, several types of climate data are used. They
can be classified into four categories (see Table 1 for a more detailed description):

1. Standard climate indices whose influence in Western Europe is well documented;
2. Atmospheric variables over a North Atlantic domain (80°W–20°E, 5°N–70°N);
3. Sea surface temperatures at the global scale and over the Mediterranean basin;
4. Extreme event indices denoting the occurrence of atmospheric rivers over western France andmedicanes

in the western Mediterranean.

All climate data are averaged over the same OND season as that used for defining flood occurrences.
5.1.3. Model and Estimation
The sameHCImodel as described in section 3.1.2 was estimated with up to K= 6 components. The first com-
ponent is by far the most important: its standard effect is equal to 1.74, then drops to 0.6 for the second com-
ponent before slowly decreasing for subsequent components. However, for illustrative purposes, results are
shown for the first three components. MCMC traces are shown in Figure S8.

5.2. Results
5.2.1. Identification of HCIs
Figure 7 shows the estimated HCIs and their effects at all stations. For the three components shown in this
figure, HCI values are estimated quite precisely after 1960, but uncertainties aremuch larger before this date,
due to lower data availability. The first HCI controls flood occurrence over a large part of France: its effect is
positive at all stations, and is particularly large over the Oceanic part of the country (centerwest). The second
HCI effect shows an opposition between Britany (northwest) and the Mediterranean region (southeast):
higher‐than‐usual probabilities in one region are associated with lower‐than‐usual probabilities in the other.
Also note that many stations are not affected by this secondHCI (yellow dots in the southwest and northeast,
corresponding to near‐zero effects). The third HCI effect highlights the “four corners” of France, with posi-
tive effects in the northeast and southwest, and negative effects in the northwest and southeast. However
these effects start becoming relatively small, suggesting a moderate influence on probabilities of occurrence.
5.2.2. Ability of the HCI Model to Reproduce the Observed Space‐Time Variability of
Flood Occurrences
The left panels of Figure 8 show the estimated probabilities of occurrence for three particular years (denoted
by vertical green lines in Figure 7). Year 1982 is characterized by a large value of the first HCI; consequently,
probabilities of occurrence are higher‐than‐usual in most of the country, and in particular in the Oceanic
part, consistently with the HCI effect shown in Figure 7. Similar comments can bemade for years 2003 (large
value for the second HCI) and 1994 (large negative value for the third HCI).

Overall, the agreement between the estimated probabilities of occurrence and the actual flood occurrences
(green dots) is adequate in the sense that floods tend to occur where probabilities are high (blue dots) and
rarely occur where probabilities are close to zero (red dots). The reliability diagram in the right panel of
Figure 8 confirms the excellent reliability of estimated probabilities. More qualitatively, Figure 8 illustrates
that the HCI model is able to explain the tendency of flood occurrences to cluster in space: the spatial depen-
dence of the HCI effects (Gaussian spatial model of equation (3)) propagates to probabilities of occurrence,
and to occurrences themselves.
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It is also of interest to assess the ability of the HCImodel to reproduce the temporal variability of flood occur-
rences. To this aim, the percentage of available stations showing a flood occurrence can be computed each
year, yielding the time series shown as a solid line in Figure 9. If occurrences were iid, the number of stations
with a flood occurrence at year twould be a realization from a binomial distribution with success probability
0.2 and number of trials equal to the number of available stations nt. The green area in Figure 9 shows the
corresponding 95% probability interval expressed in percentage of stations: it fails to capture the large inter-
annual variability of flood occurrences, due to the fact that the latter are not iid. Under the assumptions of
the HCI model, flood occurrences are not iid since the probability of occurrence varies in both space and
time. On any given year t, the number of stations with a flood occurrence corresponds to the number of suc-
cesses among nt trials, with varying success probabilities π1;…;πntð Þ . The corresponding distribution is
known as the Poisson‐binomial distribution (Hong, 2013; Serinaldi & Kilsby, 2018). The red area in
Figure 9 shows the corresponding 95% probability interval, which closely follows the observed frequency
of occurrence. Overall, the results shown in this section emphasize the ability of the HCI model to capture
the observed variability of flood occurrences is both space and time.
5.2.3. Interpretation of HCIs
This section evaluates whether the three HCIs shown in Figure 7 can be interpreted in relation to climate.
All analyses described thereafter restrict to the period 1960–2014, for which the uncertainty in estimated
HCIs is small and relatively constant.

Figure 7. France case study: hidden climate indices (HCIs; τ1, τ2, and τ3) and their effect (λ1, λ2, and λ3). The vertical green lines denote the three particular years
illustrated in next Figure 8.

Figure 8. France case study: estimated probabilities of occurrence for years 1982, 1994, and 2003 (posterior medians). The green dots denote stations where a flood
did occur. Right panel: reliability diagram for all years.
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The first interesting observation is that all three HCIs of Figure 7 are essentially iid: A Mann‐Kendall test
(Kendall, 1975; Mann, 1945) reveals no significant trend (5% level), and no autocorrelation coefficient differs
significantly from zero. The three HCIs therefore mostly describe interannual variability, with no evidence
of long‐term trend, low‐frequency variability, or temporal clustering behavior. It is also worth noting that the
three HCIs remain quite stable when the threshold defining flood occurrence varies between the 2‐ and the
20‐year autumn flood (see sensitivity analysis in Figure S10).

Correlations between HCIs and the standard climate indices listed in Table 1 are in most cases negligible
(not shown): as expected, they are not related to these particular modes of climate variability. In order to
explore the relation between HCIs and climate in more depth, Figure 10 maps the correlation between
the first HCI and the atmospheric climate variables listed in Table 1. The top panels show that large values
of the first HCI (and hence large flood probabilities overmost of France) are associated with low geopotential
heights over the British Islands and strong westerly winds above the Gulf of Biscay: these can be interpreted
as the traces of large oceanic storms directly hitting France. The bottom panels suggest a more distant tele-
connection: large values of the first HCI are associated with large convection potential North of the
Caribbean Islands and with strong southerly winds in the West Atlantic. This might correspond to condi-
tions favoring the export of tropical moisture toward Western France. This hypothesis is also supported by

Figure 9. France case study: annual frequencies of occurrence. The solid line denotes observed frequencies, the green band denotes a 95% interval under a Binomial
assumption (corresponding to iid occurrences), and the red band denotes a 95% interval derived from the hidden climate index model.

Figure 10. France case study: correlation maps between the first hidden climate index τ1 and the four atmospheric variables described in Table 1, computed over
the period 1960–2014. Dashed and plain contours denote correlations larger than 0.4 and 0.6, respectively. HCI = hidden climate index.
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a moderate correlation (0.44) between the first HCI and the presence of atmospheric rivers over western
France during the OND season (variable AR in Table 1).

These relations between the first HCI and large‐scale atmospheric variables are of interest because they sug-
gest that the former could be predicted to some extent from the latter (see section 6.4 for further discussions).
However, other results corresponding to a lack of correlation between HCIs and large‐scale climate are also
worth reporting:

1. No noticeable correlation was found between the first HCI and global SST; this cast doubt on the feasi-
bility of seasonal forecasting for flood occurrences, since seasonal predictability is often linked with
the inertia of oceans (although antecedent moisture conditions may also play a role in some catchments,
e.g., Singla et al., 2012).

2. No noticeable correlation was found between the second HCI and any of the climate variables listed in
Table 1, which includes variables specific to the Mediterranean area (SST and number of Medicane
events). This suggests that the predictability of this second HCI from large‐scale climate information
aggregated at a seasonal time step is limited, possibly because it corresponds to flood events that are
highly localized in both space and time.

3. Likewise, no noticeable correlation was found between the third HCI and any of the climate variables of
Table 1.

4. Lagging SCIs or climate variables does not improve correlations with HCIs (see Figure S9 for an
illustration).

6. Discussion
6.1. Relation With Probabilistic Principal Component Analysis

The reader familiar with principal component analysis (PCA, also known as empirical orthogonal functions
analysis in climate sciences) may have noted conceptual similarities with the HCI model. Indeed, both
approaches yield similar outputs when applied to space‐time data: a set of K time series and associated spa-
tial patterns. Interestingly, Tipping and Bishop (1999) demonstrated that PCA can be interpreted as the out-
put from a specific hierarchical Gaussian model which shares similarities with the HCI model presented
here. In a way, the HCI model can hence be interpreted as an adaptation of this probabilistic PCA model
for Bernoulli occurrence data (as opposed to Gaussian data). Another difference is that the HCI model takes
explicit advantage of the spatial nature of analyzed data by using a spatial model to describe the HCI effects,
which can be used to make predictions at ungauged sites. More generally, the advantage of building an expli-
cit probabilistic model over PCA‐like descriptive methods is that it allows making probabilistic statements
while subjecting the explicit probabilistic assumptions to empirical scrutiny.

6.2. Improving the Estimation Procedure

In this paper, parameters of the HCI model are estimated using a stepwise procedure (one HCI at a time).
This approach is not fully satisfying because at one given step, estimated parameters are conditional on
the particular parameter values estimated at the previous step. Potential interactions between parameters
of different HCIs are therefore ignored, which may lead to an underestimation of uncertainty (although
results from the case studies suggest it is limited). A more satisfying solution would hence be to estimate
the whole set of K HCIs at once. While deriving the full posterior distribution for a set of K HCIs poses no
difficulty, preliminary attempts at exploring it through MCMC sampling indicate that it is poorly behaved,
probably due to a nonidentifiability problem. The two identifiability constraints of equation (6) (HCIs have
mean zero and variance one) are hence sufficient to identify a single HCI at a time, but not several HCIs at
once. It is conjectured that the following third constraint may solve this identifiability problem: all HCIs are
uncorrelated. Unfortunately, implementing this third constraint is not straightforward because it does not
lead to an explicit solution such as equation (7).

Improvements in terms of computational efficiency may also be required to apply HCI models to thousands
of sites (rather than the hundreds of sites considered in this paper). Indeed, the computational bottleneck is
related to inversion/multiplications of theNx ×Nx covariance matrix of HCI effects (see MCMC algorithm in

Text S1 in the supporting information). The complexity of such operations isO N3
x

� �
, which becomes intract-

able when Nx is large. This is a common problem in Geostatistics, and various solutions have been proposed
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in the literature, as reviewed by Sun et al. (2012): heuristic speed‐up approximations, use of a special class of
covariance models with good computational properties, etc.

6.3. Generalizing the HCI model

Several assumptions were made for the sake of simplicity in this paper but could in principle be generalized.
For instance, the linear space‐time decomposition of equation (1) could be replaced by a nonlinear one. We
stress however that this linearity assumption acts on a probability of occurrence and does not imply any lin-
earity in the flood generating process. A similar argument can be made for the effect of covariates on the
hyperdistribution of HCI effects (equation (3)). The isotropic model used for the covariance of this hyperdis-
tribution (equation (4)) could also be extended by including directional effects or by using a distance
accounting for covariates such as elevation (e.g., Blanchet & Davison, 2011). The normality of this hyperdis-
tribution could also be evaluated using a normality test (e.g., Mardia, 1980), and a non‐Gaussian copula‐
based spatial process could be used if need be (e.g., Bárdossy & Li, 2008). Alternatively, it could be of interest
to use a time series model as a hyperdistribution for the HCI (similar to the spatial model used as a hyper-
distribution for the HCI effects). Such a time series model could then be used to forecast the value of the
HCI a few time steps ahead.

Finally, a more ambitious endeavor would be to generalize the (occurrence data/Bernoulli distribution)
setup described here, by considering for instance the case of (seasonal maxima/Generalized Extreme
Value distribution). This would be useful to consider climate effects on higher extremes (e.g., the 100‐year
flood), for which occurrence data are not well adapted. An even more general framework would enable
the consideration of any pair (variable/distribution). Such general frameworks already exist to describe
the effect of known covariates on the parameters of some distribution (e.g., Stasinopoulos & Rigby, 2007)
but would need to be extended to handle hidden covariates. It is also noted that HCI‐like models can be
of interest for modeling spatial extremes: indeed, the idea of using latent variables (here, HCIs and their
effects) to indirectly model spatial dependence has been used by, for example, Reich and Shaby (2012) to
derive a new class of max‐stable models for precipitation extremes. More generally, this indirect treatment
of spatial dependence should be compared with approaches modeling it more directly (e.g., the copula‐based
approach used by Renard, 2011).

6.4. Predicting HCIs and Potential Applications

In this paper, the HCIs are estimated from occurrence data, which allows evaluating the ability of the HCI
model to reproduce the observed space‐time variability of flood occurrences. While this corresponds to an
interesting descriptive exercise, an important development would be to develop an additional predictive
layer, where the value taken by the HCIs (and hence the probabilities of occurrence of extremes) could be
predicted from, for example, the large‐scale climate predictors used in section 5.2.3. Depending on the origin
of the climate predictors, this could lead to several practical applications. A seasonal forecasting application
could be explored if climate predictors are lagged with respect to the hydrologic predictand (e.g., predicting
autumn floods using summer SST) or arise from a climate seasonal forecasting system. Future projections of
flood hazard could be obtained by using climate predictors arising from global circulation models projec-
tions. Likewise, past reconstructions of flood hazard could be derived from climate predictors arising from
long‐term reanalyses such as ERA20C or 20CR: this could reveal flood “hot spots” and “hot moments” dur-
ing the late nineteenth to early twentieth century (at a time when hydrometric networks were very sparse),
which could be compared with historical and paleoflood evidence.

The development of this additional predictive layer is considered beyond the scope of this paper but will cer-
tainly be explored in future work given its potential for practical applications. Data mining methods may be
useful for this purpose, for example, self‐organizing maps (Schlef et al., 2019; Verdon‐Kidd & Kiem, 2009),
wavelets (Dieppois et al., 2013), empirical mode decomposition (T. A. McMahon et al., 2008), and informa-
tion theory approaches (Tozer & Kiem, 2017).

7. Conclusion

This paper proposes a Bayesian hierarchical model based on the notion of hidden climate indices to describe
the space‐time variability of hydrologic extreme occurrences. The model postulates the existence of several
hidden climate indices that drive the temporal variability of extreme occurrences within a set of sites. The
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effect of each hidden climate index is allowed to vary in space, making the model applicable at a fairly large
space scale. An efficient stepwise inference procedure is also proposed to estimate the model parameters.

A synthetic case study is used to demonstrate the feasibility of the proposed approach. In particular, hidden
climate indices can reliably be recovered using occurrence data alone. Moreover, the space‐time‐varying
probabilities of occurrence estimated from the model are in close agreement with the true probabilities of
occurrence used to generate the synthetic data.

The proposed approach is then applied to real‐life case studies based on flood occurrences in eastern
Australia and France. The first case study confirms that the HCI approach is able to recover the well‐known
ENSO driver behind flood occurrences. The second case study illustrates the benefit of the approach in a
region where standard climate indices are poor flood predictors. In particular, HCIs are able to explain
the observed space‐time variability of flood occurrences, including their tendency to cluster in space and
their large interannual variability. Moreover, a detailed analysis of the hidden climate indices yields valuable
insights on the climate drivers behind flood occurrences. It is first possible to assess the existence of trends or
low‐frequency variabilities affecting flood occurrences at a large spatial scale (both were found to be non-
significant in this particular case study). In addition, correlation analyses with large‐scale atmospheric fields
reveal specific climate patterns associated with the hidden climate indices. This suggests that the latter may
be predicted to some extent from large‐scale climate information. In turn, this opens the way for additional
applications such as seasonal forecasting, past reconstruction or future projection of flood hazard.
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