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Abstract: 9 

Inequalities in exposure to environmental hazards and access to environmental amenities have 10 

been documented in many cities, in relation to residential segregation of low-income or 11 

minority groups. The literature on residential segregation measurement, however, has not yet 12 

been considered a source of insights for the measurement of environmental inequalities. Here, 13 

we propose two segregation-based indices – the Environmental Dissimilarity gap index 14 

(ΔEDK) and the Environmental Centralization index (ECd) – and a randomization method to 15 

make robust environmental inequality assessments. In addition, to help policy-makers target 16 

local policies better, we developed an original approach to identify and map hotspots that 17 

have a large influence on environmental inequalities. These methods are applied in Grenoble, 18 

France, to study the distribution of green spaces and industrial risks between poor and non-19 

poor households.  20 
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1. Introduction 26 

The overarching goal of environmental justice (EJ) studies is to inform EJ policies, whose 27 

objective according to Harner et al. (2002, p. 318) is “to create environmental equity: the 28 

concept that all people should bear a proportionate share of environmental pollution and 29 

health risk and enjoy equal access to environmental amenities”. More precisely, Boyce et al. 30 

(2016) underline the policy-relevance of studying both inter-individual (i.e. vertical) and 31 

between-group (i.e. horizontal) environmental inequalities. Many national constitutions as 32 

well as environmental statutes and regulations endorse the normative principle that every 33 

person has the right to clean and safe environment. And – in the United States at least – the 34 

requirement of equity across groups defined on the basis of race, ethnicity and economic 35 

status is explicitly inscribed in environmental policy.  36 

In practice, a large number of EJ studies are conducted at a city or metropolitan area scale. 37 

They focus on interactions between population groups unequally distributed in space and 38 

spatialized environmental amenities/disamenities. As an example, many studies consider the 39 

uneven distribution of urban green spaces (e.g., Apparicio et al., 2016; Frey, 2016; Schwarz et 40 

al., 2015; Shanahan et al., 2014; Wen et al., 2013; Zhou and Kim, 2013; Pham et al., 2012; 41 

Landry and Chakraborty, 2009) or unequal exposures to urban air pollutants (e.g., Carrier et 42 

al., 2014; Zwickl et al. 2014; Harner et al., 2002; Sheppard et al., 1999). They are concerned 43 

primarily with between-group inequalities, in accordance with the compelling idea that 44 

already disadvantaged groups – such as low-income and racial minorities – should not in 45 

addition face environmental disadvantages (Boyce et al., 2016). On a methodological level, 46 

these analyses are mainly based on between-group comparisons of means or medians, 47 

bivariate correlations and multivariate regressions (Mitchell and Walker, 2005).  48 

In an urban context, such environmental inequalities are likely to be linked to residential 49 

segregation, i.e. the spatial separation of population groups between urban neighbourhoods. 50 

This multidimensional phenomenon has been well conceptualized by Massey and Denton 51 

(1988) and its measurement has been abundantly and thoroughly discussed by sociologists, 52 

demographers, geographers and economists for the past half-century and more (e.g., Tivadar, 53 

forthcoming; Reardon and O’Sullivan, 2004; Wong, 1993; Morrill, 1991; White, 1983; 54 

Duncan and Duncan, 1955a). Surprisingly enough, however, this rich literature has not yet 55 

been considered a source of insights for conceptualizing and measuring environmental 56 

inequalities.  57 
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In this paper, we take advantage of this opportunity and suggest ‘segregation-based’ 58 

environmental inequality indices, measuring spatial distributions of social groups and 59 

environmental phenomena relative to one another. We propose the Environmental 60 

Dissimilarity gap index (ΔEDK) to analyse areal-level environmental data (such as vegetation 61 

cover or pollution loads in census blocks) and the Environmental Centralization (ECd) index 62 

to analyse multiple-points environmental data (such as geocoded hazardous sites or urban 63 

parks). In addition, following a recommendation made by Sheppard et al. (1999), we suggest 64 

a randomization strategy based on Monte Carlo experiments to make robust distribution-free 65 

environmental inequality assessments at a city-wide scale.  66 

The recent residential segregation literature points out that more attention needs to be paid to 67 

local areas if the ultimate goal is to contribute to public policies development (Brown and 68 

Chung, 2006; Folch and Rey, 2016). Accordingly, we also propose a procedure that allows 69 

identifying and mapping hotspots that have a large influence on environmental inequalities. 70 

This method uses Jackknife simulations to identify spatial units whose removal would result 71 

in significant decreases/increases in the values of ΔEDK or ECd. This approach may help 72 

urban policy-makers target EJ policies better. It could inform public decision about, for 73 

instance, where to implement greening policies, or priority actions to protect people from 74 

hazards or pollutants, or social housing policies, etc.  75 

To illustrate our proposals, we provide a case study with respect to spatial distributions of 76 

vegetation (i.e., areal-level data) and dangerous industrial sites (i.e., point data) in Grenoble-77 

Alpes Métropole, France. We examine segregation-based environmental inequalities between 78 

low-income households and other households, mobilizing gridded residential data provided at 79 

a very fine spatial scale.  80 

The next section presents the related literature and our conceptual framework. Section 3 81 

introduces methods for global and local environmental inequality analyses. Section 4 presents 82 

our case study. Section 5 concludes. 83 

 84 

  85 
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2. Related Literature and Conceptual Framework 86 

2.1. Environmental Justice Studies 87 

From its beginnings in the late 1970s to the present, Environmental Justice (EJ) has been both 88 

an area of academic research and the banner of a civil movement calling for policies to 89 

address inequalities in environmental conditions. Originally focused on racial and social 90 

inequalities in the distribution of toxics and hazardous waste in the United States, it has since 91 

continuously expanded its thematic and geographical scope (Schlosberg, 2013). Inequalities 92 

with respect to environmental ‘bads’ (nuisances or risks) have remained a prominent topic 93 

(see, for example, Hajat et al., 2015, for a review on air pollutants), but attention has also been 94 

paid to environmental ‘goods’ (see, e.g., Jennings et al., 2012, on green spaces). In addition, 95 

the field has shifted from documenting inequalities to analysing the underlying reasons for 96 

these inequalities (Timmons et al., 2018; Mohai et al., 2009). It has also moved from a 97 

conception of distributive equity to a more pluralistic conception of justice, including issues 98 

of recognition, participation, capabilities, community justice and justice beyond the humans 99 

(Schlosberg, 2013). In parallel, EJ literature and movement have spread out in various 100 

countries, with transnational links and consideration of global issues, such as climate justice 101 

(Mohai et al., 2009; Schlosberg and Collins, 2014).  102 

Today, we can consider that EJ refers to four different types of environmental inequalities 103 

(Laurent, 2011): (i) exposure and access inequalities, i.e. unequal distributions of 104 

environmental bads and goods between individuals and groups; (ii) policy-effect inequalities, 105 

i.e. unequal effects of environmental policies; (iii) policy-making inequalities, i.e. unequal 106 

access to environmental policy-making; and (iv) impact inequalities, i.e. unequal 107 

environmental impacts of different individuals and social groups. In this respect, our study 108 

falls within the first and oldest strand of the EJ literature, about exposure and access 109 

inequalities, and is underpinned by a distributive conception of justice such as the above-110 

mentioned one of Harner et al. (2002). More specifically, it focuses on measuring inequalities 111 

between social groups in urban contexts. We present here relevant examples of urban EJ 112 

studies, which provide an overview of the most standard methods used for this analysis.  113 

A first example is Carrier et al. (2014) on air pollutants in Montreal, Canada. They consider 114 

three statistical methods widely used in the EJ literature to analyse environmental inequalities 115 

with respect to visible minorities, low-income individuals, young and elderly people. First, for 116 

each social group, they compute weighted averages of several pollutant indicators at a small 117 
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dissemination subdivision (i.e. city block level, the weight of a city block being its share of 118 

the total group population), and compare them with t-tests to similar averages obtained for the 119 

rest of the population. Secondly, they compute Spearman’s correlation coefficients to examine 120 

statistical dependencies between rankings of proportions of groups and of pollutant indicators 121 

across city blocks. Finally, they perform multivariate regressions with each of the pollution 122 

indicators as the dependent variable in each case and proportions of groups as independent 123 

variables, controlling for spatial dependencies. Their results for low-income population and 124 

visible minorities are consistent with the bulk of EJ studies: they tend to reside in more 125 

polluted areas. 126 

Another example is Schwartz et al. (2015), who examine potential inequities in relationship to 127 

race/ethnicity and income associated with distributions of urban tree canopy (UTC) in seven 128 

U.S. cities. Data are analysed at the Census Block Group level using Spearman’s correlations 129 

and multivariate regressions. Schwartz et al. (2015, p. 11) stress that the key question – “is 130 

UTC cover distributed equally in the cities examined?” – is answered relying on Spearman’s 131 

correlations. A significant coefficient implies that: “regardless of what drives the pattern, the 132 

pattern exists”. This method provides a baseline picture that is comparable across all cities. 133 

Multivariate regressions help to get closer to causation and answer supplementary questions: 134 

“what other variables drive the distribution of UTC cover?” and “do the data have significant 135 

spatial structure?” With respect to the baseline diagnostic, Schwartz et al. (2015) find a 136 

significant positive correlation with income across all cities, but less striking results for races. 137 

The two examples presented above analyse areal-level data, but EJ studies also deal with 138 

geocoded environmental data. In an older but still relevant study, Sheppard et al. (1999) 139 

examine associations between toxic sites and minority/poor populations in Minneapolis, MN, 140 

comparing commonly used spatial coincidence and analytical buffering methods. In the first 141 

method, proximate populations are defined as those residing in census enumeration units 142 

containing toxic sites. In the second, a GIS-based buffer analysis is performed, in which 143 

proximate populations are defined as those residing within a predefined distance from a toxic 144 

site. These proximity measures being defined, poverty rates of proximate and non-proximate 145 

subpopulations – or other socio-demographic or racial characteristics – can be compared. 146 
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Sheppard and colleagues examine the sensitivity of their results to proximity measures and 147 

buffer distances.1  148 

In addition, Sheppard et al. (1999) suggest a methodology for evaluating the statistical 149 

significance of their results. The hypothesis investigated is whether the ratios of poverty 150 

percentages between proximate and non-proximate subpopulations are large by comparison to 151 

what would have been observed if the toxic sites had been placed randomly within the city. 152 

They carried out a series of randomization experiments to simulate a hypothetical set of toxic 153 

sites distributions. Simulation results indicate that, broadly speaking, observed toxic site 154 

locations in Minneapolis were associated with unusually high poverty rates. However, as far 155 

we know, Sheppard et al. (1999) have not been followed (except by Chakraborty and 156 

Armstrong, 2001) in their recommendation to use randomization strategies for the generation 157 

of robust distribution-free environmental inequality assessments.  158 

On exposure to hazards in New York City, Jacobson et al. (2005) review advanced 159 

geostatistical techniques and discuss several inequity measures. As an alternative to analytical 160 

buffering, they adopt a distance-decay modelling approach (or gravity model) to measure 161 

exposure gradients to highways within ethnic groups at the block group level. They then 162 

define and advocate a class of inequity measures that equates statistical (or conditional) 163 

independence between exposure and demographics as ‘perfect equity’, with degree of 164 

inequity computed as degree of departure from independence. They underline that standard 165 

regression approaches (either bivariate or multivariate) look only at departures from zero 166 

correlations, which is different from independence. On the other hand, the Theil index, 167 

commonly used to study income inequality, is shown to be relevant to comparing exposure 168 

inequality under different grouping frameworks (e.g. race vs class). But again, this index is 169 

not grounded on the independence assumption. Jacobson et al. (2005) thus propose a 170 

graphical approach allowing a direct comparison of the empirical joint distribution of 171 

exposure and ethnic group and the one implied by the conditional independence model 172 

(conditioned on block groups’ median income). These plots show that Hispanics and Asians 173 

are more exposed than average to highways, whatever the income level.  174 

                                                           
1 On GIS-based analysis, see also, e.g., Harner et al. (2002), who test several methods for comparing 
subpopulations in at-risks and not-at-risks zones, or conversely the concentration of risks in disadvantaged areas 
and elsewhere; or Maantay (2002) and Maantay (2007), who consider issues of optimal study area, spatial 
resolution, data aggregation, data deficiencies, areal extent of exposure and areal interpolation; or Chakraborty et 
al. (2011), on similar topics and on emerging geostatistical techniques. 
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The above-mentioned studies provide an overview of methods used to analyse between-group 175 

environmental inequalities. In their review of statistical techniques used in EJ studies, 176 

Mitchell and Walker (2007) note that linear regression is by far the most popular method.2 177 

Although there is a long tradition of using inequality indices to study income and wealth 178 

distributions, few EJ studies have explored their relevance for analysing horizontal 179 

environmental inequalities, Jacobson et al. (2005) and Lopez (2002) being rare exceptions in 180 

this line.3 On the opposite, inequality indices have been widely mobilized and adapted for 181 

studying residential segregation, another kind of between-group (spatial) inequality.  182 

2.2. From Residential Segregation to Segregation-based Environmental Inequalities 183 

Residential segregation refers to the geographic separation of social groups, usually in an 184 

urban context. According to Park and Kwan (2017), it was only in the early 21st century that 185 

some scholars have sought to understand the association between segregation and 186 

environmental inequalities. This association has been investigated primarily with respect to 187 

air pollution in U.S. metropolitan areas. Several studies have confirmed that increased 188 

segregation tends to be associated with increased racial inequality in exposure to health risks 189 

(e.g., Morello-Frosh and Lopez, 2006; Lopez, 2002), but more ambiguous results have 190 

sometimes been obtained (Downey al., 2008). More recently, Saporito and Casey (2015) have 191 

investigated residential segregation and differences in exposure to green space in U.S. 192 

metropolitan areas. Findings show that lower-income people and members of minority groups 193 

live in neighbourhoods with much less vegetation than their wealthier, white counterparts, and 194 

these differences are exacerbated in racially and economically segregated cities.  195 

These studies have examined statistical links between residential segregation and 196 

environmental inequalities. Yet they have not reconsidered how horizontal environmental 197 

inequalities are defined and measured and the conceptual and methodological perspectives 198 

that the segregation literature could bring to this issue.  199 

The conceptual framework of our methodological proposals is as follows:   200 

� Environmental (dis-)amenities are defined as place-based environmental attributes that 201 

provide local (dis-)services to people, where geographical proximity between 202 

                                                           
2 But referring to Bowen (2002), they underline that few studies adequately report on diagnostic tests (non-
linearity, multi-collinearity, heteroscedasticity, etc.) so that the adequacy of this approach is questionable. 
3 Lopez (2002) adapts the net difference score, based upon cumulative frequency distributions, to measure 
Black/White inequality in exposure to air toxics. Inequality indices have also been suggested to measure vertical 
(i.e., inter-individual) environmental inequalities (Boyce et al., 2016). 
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attributes and people enhances the amounts of (dis-)services delivered (Schaeffer and 203 

Dissart, 2018). 204 

� We name ‘Environmental Segregation’ the geographic separation between a social 205 

group and an environmental (dis-)amenity. The more this group is segregated from an 206 

amenity, the less likely it is to benefit from it. The more it is segregated from a 207 

disamenity, the less likely it is to be harmed by it.  208 

� A ‘Segregation-based Environmental Inequality’ is then a difference between two 209 

social groups as for their respective degrees of environmental segregation. A social 210 

group is disadvantaged, relative to another group, when it is more segregated from an 211 

environmental amenity or less segregated from an environmental disamenity.  212 

Residential segregation is classically conceptualized and measured along five dimensions 213 

identified by Massey and Denton (1988): evenness, exposure, concentration, centralization, 214 

and clustering. Evenness refers to inequalities in the distribution of population groups 215 

between neighbourhoods. Exposure (or isolation) captures opportunities for contacts between 216 

members of different (or similar) groups within neighbourhoods. Concentration refers to 217 

inequalities in regard to the physical space occupied by groups. Centralization describes the 218 

distribution of groups around a city centre. Finally, clustering consider the proximity of 219 

groups within and across neighbourhoods. 220 

Some of these dimensions are interrelated and several simplifications of this typology have 221 

been suggested (Reardon and O’Sullivan, 2004; Brown and Chung, 2006; Wong, 2008). To 222 

study segregation-based environmental inequalities, we believe two dimensions are 223 

particularly relevant: evenness (incorporating clustering and concentration notions) and 224 

centralization. 225 

Evenness is the long-standing dominant dimension in segregation analysis. To date, the most 226 

standard measures of segregation still are Duncan and Duncan’s (1955a, 1955b) Dissimilarity 227 

(D) and Segregation (IS) indices. Yet, in the early 80s, these indices have been criticized for 228 

not taking account of local spatial interactions between social groups (White, 1983, Morrill, 229 

1991, Wong, 1993). In an urban residential context, it is indeed obvious that people interact 230 

with one another across neighbourhoods’ boundaries, so that the geographical configuration 231 

of the neighbourhoods matters. Morrill (1991), Wong (1993) and other scholars have thus 232 

proposed ‘spatial evenness’ indices (i.e., adjusted D indices) that incorporate the clustering 233 

dimension in an evenness framework. Concentration is also strongly connected to evenness. 234 
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Duncan and Duncan (1961) have proposed the Delta index, which is mathematically 235 

equivalent to the D index: the latter measures the extent to which two population groups’ 236 

distributions among spatial units differ, while the former measures the extent to which the 237 

distribution of a population group differs from the one of land.  238 

Centralization has been especially studied in relation to the ‘white flight’ hypothesis 239 

(Crowder, 2000): the idea that large and growing populations of Blacks spurred Whites to 240 

leave urban neighbourhoods in which they would have otherwise remained. But this 241 

dimension has been deemed less and less important due to the emergence of sprawled and 242 

polycentric cities (Brown and Chung, 2006, Wong, 2008), and the gentrification of many 243 

central districts (Hwang and Lin, 2016). Centralization measures have also been considered 244 

weaker as they require defining a city ‘centre’, which is not a straightforward geographical 245 

feature (Folch and Rey, 2016). Recently, however, scholars have shown that the standard 246 

Relative Centralization index (RCE) – originally proposed by Duncan and Duncan (1955b) to 247 

study centralization at a city-wide scale – could easily be generalized to a polycentric context 248 

(Tivadar, forthcoming), or recast into a local centralization index useful for exploring local 249 

segregation around any relevant reference location (Folch and Rey, 2016).  250 

Hence, we propose: (i) to adapt D and its spatialized versions to the measurement of 251 

inequalities related to areal-level environmental data (such as vegetation cover or pollution 252 

loads), and (ii) to adapt RCE and its local version to the measurement of inequalities related to 253 

multiple points environmental data (such as urban parks or hazardous sites). The following 254 

section presents these proposals. It also suggests a method based on randomization 255 

experiments to perform global (i.e. city-wide) environmental inequality assessments, and a 256 

procedure that allows identifying and mapping hotspots that have a large influence on 257 

segregation-based environmental inequalities. 258 

 259 

  260 
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3. Measuring Environmental Inequalities 261 

3.1. Segregation-based Environmental Inequality Indices  262 

3.1.1. Environmental Dissimilarity 263 

Duncan and Duncan’s (1955a) Dissimilarity index D is one of the most widely used measures 264 

of segregation. It measures – for two social groups – departure from the perfectly 265 

unsegregated situation, where relative distributions of minority and majority groups across 266 

spatial units are similar. It ranges theoretically between 0 and 1 and corresponds to the share 267 

of the minority group that would have to change its place of residence – moving from one 268 

spatial unit to another – to make the unsegregated situation occur.  269 

,
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As mentioned above, this framework has already been adapted by Duncan and Duncan (1961) 274 

to analyse the relation between the people and an environmental data (the amount of land). 275 

The Delta index measures the concentration of a given social group, that is, the dissimilarity 276 

between its distribution and the one of the land among spatial units.   277 

Following them, we propose that the Environmental Dissimilarity index ED measures the 278 

dissimilarity between the distribution of a population group and the one of an environmental 279 

(dis-)amenity among spatial units. The Delta index then corresponds to a particular ED index, 280 

where land area is supposed to be an environmental amenity.  281 

Formally, ED is given by: 282 
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=∑  the total value of the 285 

environmental variable. 286 
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ED measures – for a social group – the departure from the ‘environmentally unsegregated’ 287 

situation, where the distribution of this group among spatial units is similar to the one of the 288 

environmental (dis-)amenity. It ranges between 0 and 1 and can be interpreted as the share of 289 

the population group that would have to move to reach the ‘environmentally unsegregated’ 290 

state. 291 

ED has a geometrical interpretation based on an adaptation of the Lorenz curve, standard in 292 

economic inequality analysis. Figure 1 presents a Lorenz-like curve, where the horizontal axis 293 

shows the cumulative proportion of population x in spatial units ordered by the density of the 294 

environmental variable per inhabitant, and the vertical axis shows the cumulative proportion 295 

of a. ED is the maximum distance between this ‘environmental segregation curve’ and the 296 

diagonal corresponding to the environmentally unsegregated situation. A spatialized Gini 297 

index applied to environmental segregation could also be defined based on this curve: it 298 

would correspond to the grey surface between the curve and the diagonal. 299 

 300 

Fig. 1.: Environmental Segregation curve 301 

Notes: The curve indicates, e.g., that 50% of the population X located in the spatial units where the density 302 

of the amenity A is the lowest benefits from less than 40% of the total amount of amenity; The 303 

Environmental Dissimilarity index corresponds to the maximal distance between the diagonal (i.e. the 304 

perfectly unsegregated state) and the environmental segregation curve; An environmental Gini index 305 

would correspond to the grey area between the diagonal and the curve. 306 

 307 

The first strength of ED is its ease of interpretation. It has a more intuitive meaning than the 308 

corresponding Gini index, or than the Theil index used by Jacobson et al. (2005). The second 309 

strength of the ED index is that it can be adjusted to account for local spatial interactions. 310 

Morrill (1991) has first developed an adjusted D index, where D is scaled down when 311 

opportunities to interact across adjacent spatial units are present. As it is possible that relevant 312 

local interactions go beyond the first order contiguity, the Morrill’s adjusted D index has been 313 



13 

 

generalized to the k-th order contiguity (Tivadar, forthcoming). We can adapt this approach to 314 

define an adjusted ED index, given by: 315 

( )
,

1 1, ,
0

1

1 1

n n
k x a

ij ijK
i jx a x a

K n n
kk
ij

i j

c ED

ED ED f k
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= =

=
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∑∑
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       (3) 316 

where 
, ,

0
x a x a

ED ED= , ( )f k  is a distance-decay function defined by contiguity order k, with 317 

( ) 0f k′ < , ( )1 1f =  and ( ) 0
k

f k
→∞

= . In the empirical case below, we use the usual negative 318 

exponential function: ( ) exp(1 )f k k= − . 
k

ij
c  are the elements of the spatial weights matrix 319 

defined as the k order contiguity matrix. For each level of contiguity, these elements equal 1 320 

when spatial units i and j are contiguous of order k, 0 otherwise. ,x a

ij
ED  captures the potential 321 

of interactions across borders between the population and the (dis-)amenity located in two 322 

contiguous (of order k) spatial units i and j: the more dissimilar their spatial distributions are, 323 

the more local interactions across borders are likely to occur, in the spirit of Morrill’s original 324 

expression of local interactions between two population groups.4  325 

After Morrill, Wong (1993) has developed more refined spatial weights matrices: one where 326 

interactions between two contiguous spatial units are proportional to the length of their shared 327 

boundary, and another that takes account of spatial units’ shapes (i.e., their perimeter/area 328 

ratios). These methods can also be transposed to environmental dissimilarity measurement 329 

and would be particularly relevant when spatial units have irregular forms (e.g., Census Block 330 

Groups), which is not the case in our empirical case. 331 

So far we have presented environmental segregation measures, but we are more specifically 332 

interested in between-group environmental inequalities. Thus we define the Environmental 333 

Dissimilarity Gap (ΔED) to measure – for two social groups – the difference in their degrees 334 

of environmental segregation. ΔED ranges between -1 and 1 and is given by: 335 

, , ,
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x a y a
ED ED ED
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 ∆ = − = − − − 
 

∑      (4) 336 

We also define an adjusted version of the Environmental Dissimilarity gap: 337 

                                                           
4 Morrill’s original interaction term for adjusting the D index is based on group proportions in contiguous spatial 

units: between-group interactions across borders are more likely to occur when spatial units have very distinct 

shares for the two groups (e.g. one is dominated by black people and the other by white people). 
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which can be rewritten as: 339 
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where 
, ,

0
x y x y

ED ED∆ = ∆ . 341 

3.1.2. Environmental Centralization 342 

The Relative Centralization (RCE) index has been proposed by Duncan and Duncan (1955b). 343 

It allows comparing the locations of two social groups around a point, typically the Central 344 

District of a city. It equals 0 when the two groups have similar locations relative to the centre 345 

and ranges between -1 and +1 otherwise, the sign indicating which group is closer to this 346 

centre. It is given by: 347 
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n n
x y

i i i i

i i

RCE x y x y− −
= =

   = −   
   
∑ ∑         (7) 348 

where i
x  and i

y  are ordered by the distance to the city centre. If , 0x y
R C E > , population x is 349 

located closer to the centre than population y, and conversely if , 0x y
R C E < . 350 

This index is a particular form of the spatialized Gini index, based on a Lorenz-like curve 351 

similar to the one presented on Fig. 1, but where the vertical axis is the cumulative proportion 352 

of y and the spatial units are ordered according to their distance to the centre: RCE is the 353 

surface between the curve and the diagonal. 354 

RCE can be used to compare locations around a specific environmental (dis-)amenity (Folch 355 

and Rey, 2016). But EJ studies are generally interested in (dis-)amenities present in multiple 356 

locations (e.g., U.S. toxic release inventory sites, as in Harner et al., 2002 or Sheppard et al., 357 

1999). The easiest way of generalizing the RCE index to multiple locations is to consider, for 358 

each spatial unit, its distance to the closest (dis-)amenity (Tivadar, forthcoming). Another 359 
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option – advantageous when all (dis-)amenities do not have the same importance and/or their 360 

impacts are cumulative – could be to consider weighted distances to multiple (dis-)amenities.5  361 

Folch and Rey (2016) have defined a local version of RCE, by selecting either the k nearest 362 

neighbours to the reference centre, or the spatial units that fall within a set distance band 363 

around this centre. We propose to recast this method in a polycentric context to obtain a 364 

spatially constrained global index. This Environmental Centralization (ECd) index is thus 365 

formally equivalent to RCE, but generalized to polycentrism and applied to spatial units 366 

located at a distance less than d from their closest environmental (dis-)amenity: 367 

,
1 1

2 2

k k
x y

d i i i i

i i

EC x y x y− −
= =

   = −   
   
∑ ∑         (8) 368 

where i
x  and i

y  are ordered by the distance to the closest environmental (dis-)amenity, and 369 

k is the rank of the last spatial unit who respect the spatial constraint: { }min a

i i
a

d d d= ≤ . If 370 

, 0x y

d
E C >  population x is located closer to environmental (dis-)amenities than population y, 371 

and conversely if , 0x y

a
E C < . 372 

If we take into account all spatial units, k n= , we obtain the unconstrained form of the index 373 

max

,
1 1

2 2

n n
x y

d i i i i

i i

EC x y x y− −
= =

   = −   
   
∑ ∑ , where { }max max i

i
d d=  is the maximal distance to the 374 

closest (dis-)amenity in the study zone. 375 

3.2. Statistical Approaches 376 

3.2.1. Method for Global Analysis 377 

To make a robust global (i.e., city-wide) environmental inequality analysis, one also needs a 378 

statistical approach appropriate to spatial data. Following Sheppard et al. (1999), we propose 379 

a randomization strategy. The general idea is to test whether the empirical value of an 380 

environmental inequality index (which measures differences in locations between groups in 381 

relation to spatialized environmental attributes) is statistically different from its expected 382 

                                                           
5 The population-weighted distance approach (Zhang et al., 2015) would be particularly relevant for 

implementing this option since it uses a measure of spatial interaction (a gravity model incorporating a distance 

decay function and a factor of importance for amenities) as weights to calculate a weighted distance measure. 
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value under the null hypothesis that all groups come from the same population (i.e. are 383 

distributed in space in a similar way).6  384 

In practice, we developed a Monte Carlo permutation test. In a simulation, all households in 385 

both groups (poor and non-poor) are randomly assigned to residential locations, and their 386 

probability of being assigned to a given location is proportional to the residential capacity of 387 

that location (i.e. the actual number of households observed in it).7 Thus a simulation 388 

generates a counterfactual spatial distribution of the population on which an inequality index 389 

(ΔEDK or ECd) can be calculated. We make 499 simulations to obtain a distribution of 390 

simulated values for this index. Adding the empirical value in this distribution and looking at 391 

its position allows computing a (pseudo) p-value and test the null hypothesis.  392 

This statistical approach is consistent with our overall conceptual framework, inspired by the 393 

residential segregation literature. Randomizing the spatial distribution of households 394 

eliminates every kind of between-group inequalities related to places of residence. It thus 395 

provides counterfactual simulations for testing the significance of both residential segregation 396 

measures and segregation-based environmental inequalities indices.   397 

3.2.2. Method for Local Analysis 398 

The global environmental inequality analysis provides answers to environmental inequality 399 

questions at the study zone level. But policy-makers, to implement EJ policies, must target 400 

their interventions on the ground. They have to decide for instance where to implement 401 

greening policies, or priority actions to protect people from hazards or pollutants, or social 402 

                                                           
6 That is, we randomize the spatial distribution of households rather than the one of amenities or dis-amenities. 

Sheppard and colleagues test whether their empirical measures of unequal exposition to industrial toxics are 

statistically different from those obtained when randomizing the locations of toxic installations (i.e. selecting 

Cartesian coordinates within municipal boundaries). In other words, they test whether the observed spatial 

distribution of toxic sites is more socially unequal than a random one. One obvious advantage of this strategy is 

computational since toxic sites are much less numerous than households. However, it is far from realistic to 

consider that every point in space could have been a possible candidate for a facility (e.g. topographical 

reasons make some points unsuitable). Instead, toxic facilities could be randomly assigned only to sites that 

could have been elected (but these latter are generally unknown to the researcher). Randomizing households is 

an alternative which we believe is much more compelling.  
7 We test whether population groups are distributed unequally in the existing housing stock in relation to 

environmental (dis-)amenities. So the spatial distributions of dwellings and residential areas are considered 

exogenous. Alternatively, we could have considered counterfactual spatial distributions of dwellings and/or 

non-developed areas. But we don’t know the constraints on the spatial distribution of dwellings and whether 

non-developed areas are so for choice or because they are improper to be developed. Physical geography, 

density regulations and growth control policies would have to be taken into account. In that respect, an 

analysis making endogenous all the space would be much more difficult to justify and implement. We thank an 

anonymous reviewer for raising this issue.  
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housing policies, etc. Thus we also provide a statistical approach that allows identifying – and 403 

mapping – the local hotspots that have the largest influences on environmental inequalities. 404 

This method is based on Jackknife simulations, where the spatial units of the study zone are 405 

successively withdrawn.8 For each simulation, the inequality index (ΔEDK or ECd) is 406 

computed, and we obtain at the end of the process a distribution of simulated index values. 407 

Then we look at outliers in the tails of this distribution.9 Each of these outlier values is 408 

attached to a particular simulation, where one spatial unit has been removed from the whole 409 

set of spatial units. So we can identify the ‘outlier’ spatial units whose removal has the 410 

greatest impacts on the inequality index. We can map them and thus visualize hotspots for 411 

potential policy interventions. 412 

 413 

4. Empirical example  414 

This section is not intended to be a comprehensive analysis of environmental inequalities in 415 

Grenoble-Alpes Métropole, but aims to illustrate our methodological proposals.  416 

4.1. Background and Data  417 

In France, a Métropole is an administrative entity organized around a large city, in which 418 

several municipalities co-operate to plan their development. Grenoble-Alpes Métropole is 419 

located at the foot of the French Alps in the South-East of France. It comprises the city of 420 

Grenoble and 48 neighbouring municipalities, hosting altogether a population of about 421 

450,000 inhabitants on an area of about 550 km². It is an attractive place for students and 422 

highly-skilled workers, thanks to its renowned university and advantageous labor market. The 423 

unemployment rate is low and job opportunities are numerous in international high-tech 424 

companies and more generally in a very dynamic industrial sector. Households are thus on 425 

average wealthier and more educated than in most French urban areas of comparable size. 426 

However, this generally favourable situation does not come without strong income 427 

inequalities and residential segregation dynamics. Indeed, Grenoble-Alpes Métropole is also 428 

known for its deprived urban districts, with a high concentration of poor, unemployed, low-429 

skilled and immigrant people, and its hilly suburbs, where affluent households flock.  430 

                                                           
8 The number of simulations is thus equal to the number of spatial units. 
9 Several approaches can be used to define outlier values. In the example presented below, outliers are obtained 
using the boxplot method: they are values that deviate from the mean of the simulated distribution by two 
standard deviations or more. Other standard techniques that could be employed are the different scores methods 
(normal, t Student and chi-squared scores) and the median absolute deviation method. 
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In this respect, it is a place where issues of environmental equity could be quite acute. 431 

Specifically, some industrial sites pose risks to the people living in their vicinity, and the 432 

exposition to these risks might be socially unequal due to residential segregation. Another 433 

potential problem concerns access to vegetation and the resulting health benefits. Although 434 

there are underprivileged neighborhoods with large urban parks, disadvantaged populations 435 

tend to live in the central part of the Métropole, which has little vegetation in general, while 436 

richer populations tend to live in the green urban periphery. 437 

The study uses gridded socio-economic data provided by the National Institute of Statistics 438 

and Economic Studies (Insee), based on administrative fiscal data for 2010. For each 439 

inhabited cell of a rectangular 200x200m grid, we have estimations of both the total number 440 

of households and the number of low-income households. Low-income households are those 441 

whose income per consumption unit (before taxes and benefits) is less than 60% of the 442 

median of Metropolitan France distribution (i.e. 11,249.40 euros). In what follows, for the 443 

sake of simplicity, low-income households will often be referred to as ‘poor’ and the other 444 

households as ‘non-poor’. The right panel of Figure 2 presents the share of low-income 445 

households in the 4,342 inhabited cells of the study area. The ‘holes’ in the map, covering 446 

about two thirds of the total area of the Métropole, correspond to uninhabited areas occupied 447 

either by infrastructures, industrial and commercial zones, water bodies and agricultural 448 

fields, or – mainly – by forests and natural areas located on mountains. 449 

As an example of areal environmental data, we consider vegetation cover. Each pixel of 5x5m 450 

located in the study zone is classified as vegetated or not, depending on the value of a 451 

Normalized Difference Vegetation Index (NDVI) obtained by remote sensing (RapidEye 452 

images, 2010). A pixel is considered vegetated for NDVI values greater than 0.35. Then we 453 

count the number of vegetated pixels in each inhabited cell and thus obtain a proxy for the 454 

vegetation cover. In this example, we focus on the distribution of vegetation across inhabited 455 

cells. The vegetation of the uninhabited part of the study zone also provides services to the 456 

population and would be important to consider in further research. 457 

As for point data, we consider hazardous industrial sites located in the metropolitan area. This 458 

geocoded data is provided by the French Ministry of Ecology 2016, as an application of the 459 

European Seveso-III Directive (Directive 2012/18/EU) on Technological Disaster Risk 460 

Reduction. It provides the location of industrial establishments where dangerous substances 461 

are used or stored in large quantities, with either a low or a high threshold of risk. 462 
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 463 

Fig. 2. Vegetation cover, industrial hazards and low-income households 464 

Sources: Own treatments based on French tax database Insee RFL, 2010, RapidEye, 2010, French Ministry 465 

of Ecology Seveso database 2016.  466 

Notes: Variables are classified based on Jenks natural breaks. 467 

 468 

 469 

Table 1 presents basic descriptive statistics for socio-economic and environmental data. 470 

Overall, there are 184,485 households and 18% of low-income households in our study zone, 471 

which comprises 4,342 inhabited cells. The mean value of the number of households is quite 472 

low (42.5) and the one of the vegetation cover is quite high (3.1 ha) due to the high number of 473 

cells located in outer suburbs or peri-urban areas. The standard deviation of the number of 474 

poor households is very high (21.9) relative to the mean (7.7), as a result of their strong 475 

concentration in cells of the urban core and the inner suburbs (see Figure 2). 476 

  477 
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Table 1 478 
Basic statistics for environmental and socio-economic data 479 

 Grid cell level  Study zone level 

Mean SD Min Max   

Households a,d 42.5 10.9 0.3 684  184,485 

Low-income households a,d 7.7 21.9 0 385  33,537 

Low-income households (%) a,d   10.5 10.9 0 0.8  18.2 

Vegetation (ha) b,e 3.1 0.9 0.03 4  13,271 

Vegetation (%) b,e 76.5 23.4 0.01 100  76.5 

Number of dangerous industrial sites c      14 

Number of high-risk industrial sites c      9 

Distance to the closest industrial site (km) c 4 2.6 0 17.8   

Distance to the closest high-risk site (km) c 4.5 2.6 0 17.8   

Sources: Own calculations based on: a French tax database Insee RFL, 2010; b RapidEye, 2010 (treatments 480 

L. Martinez); c French Ministry of Ecology Seveso database 2016. 481 

Notes: d These proxies provided by Insee accept values below 1; shares of low-income households are 482 

bounded to 0.8 for confidentiality reason (see insee.fr/fr/statistiques/2520034#documentation); e A pixel 483 

is considered vegetated for NDVI values greater than 0.35. 484 

 485 

 486 

4.2. Results 487 

4.2.1. Global Dissimilarity Analysis for the Vegetation Cover  488 

The first empirical case considers the environmental segregation of poor and non-poor 489 

households with respect to vegetation. Figure 3 shows the environmental segregation curves 490 

corresponding to ED0 indices for poor and non-poor households, and Table 2 (and Figure 4) 491 

displays values of EDK and ΔEDK for distinct K. Obviously, as they are always many more 492 

people and much less vegetation in the centre of an urban region than in its fringe, obtaining 493 

low values for EDK indices would be rather odd. Indeed, both poor and non-poor households 494 

appear to be highly segregated from green spaces: ED0 values (respectively 0.79 and 0.64) 495 

indicate that more than a half of them would have to be displaced to reach the unsegregated 496 

state (the diagonal line on Fig. 3). Regarding inequalities, and as might be expected given the 497 

local context (see 4.1), these values show that the poor are more segregated from green spaces 498 

than the non-poor, with a difference of 15 points in the shares of households to be displaced.  499 

Incorporating local interactions, the environmental segregation of poor and non-poor 500 

households decrease strongly (from K=0 to 4) and then stabilize as the spatial scale of the 501 
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adjustment widens (for K ≥ 5).10,11 Since poor people are more segregated from green spaces 502 

than non-poor people at the residence cell scale (without spatial adjustment), we expect that 503 

the former benefit more than the latter from local interactions with neighbouring cells. Indeed, 504 

the absolute decrease of EDK with K is larger for poor than for non-poor households: ΔEDK 505 

decreases strongly and then stabilize around 0.05. In sum, there are opportunities of local 506 

interactions with green spaces in our study zone, which contribute to reducing the 507 

environmental inequality, but that do not make it disappear.  508 

 509 

 510 

Fig. 3. Environmental Segregation curve for vegetation cover 511 

Notes: e.g., the 80% of the poor households living in the less vegetated grid cells benefits from less than 512 

10% of the total amount of vegetation (as indicated by the red curve), whereas the same proportion of 513 

non-poor households benefits from nearly 20% (as indicated by the blue curve). 514 

 515 

  516 

                                                           
10 Adjusted-ED indices equal the ED index less the mean value of the local spatial interactions. The fact that ED1 
is much lower than ED0 means there are strong local interactions: indeed, many densely inhabited cells with low 
greenery are neighbouring low density cells with high greenery, especially along the urban fringe.  
11 Interactions are weighted by a distance decay function, which explains the stabilization of EDK values when K 
is increased from 5 to 10. Interactions at the firth, second, third, fourth and fifth order contiguity are weighted 
respectively by a factor of 1, 0.37, 0.14, 0.05, 0.02 and 0.01, and weights beyond the fifth contiguity are very 
close to zero. The choice of a negative exponential in this empirical example reflects the assumption that 
proximity is of great importance for people’s interactions with the greenery. In a comprehensive analysis, the 
choice of the distance decay function and its implications should be considered more in depth. 
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Table 2 517 
Global dissimilarity analysis for vegetation cover: observed and simulated indices  518 

  
Empirical EDK 

 

Simulated EDK 

(mean) 
Rank a 

Pseudo  

P-value  

K=0 Poor 0.789 0.67 500 0.002 

 Non-poor 0.642 0.664 1 0.002 

 Difference 0. 147 0.006 499 0.004 

K=1 Poor 0.498 0.401 500 0.002 

 Non-poor 0.411 0.411 340 0.322 

 Difference 0.087 -0.01 500 0.002 

K=2 Poor 0.377 0.292 500 0.002 

 Non-poor 0.316 0.308 500 0.002 

 Difference 0.061 -0.016 500 0.002 

K=3 Poor 0.330 0.251 500 0.002 

 Non-poor 0.278 0.269 500 0.002 

 Difference 0.052 -0.017 500 0.002 

K=4 Poor 0.313 0.236 500 0.002 

 Non-poor 0.265 0.254 500 0.002 

 Difference 0.048 -0.018 500 0.002 

K=5 Poor 0.306 0.23 500 0.002 

 Non-poor 0.259 0.248 500 0.002 

 Difference 0.047 -0.018 500 0.002 

Notes: a The rank is the position of the observed index value in the distribution of simulated values.  519 

 520 

521 
Fig. 4. Environmental Dissimilarity indices for vegetation cover 522 

 523 
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To reach robust conclusions, we must check that the observed differences between the EDK 524 

values of the poor and the non-poor do not reflect random differences in the spatial 525 

distributions of the two groups. Table 2 provides pseudo p-values for EDK and ΔEDK indices, 526 

computed based on 499 Monte Carlo spatially constrained random draws (see section 3.2.1 527 

for details). It shows that all but one value is highly statistically significant. Most importantly, 528 

the environmental segregation of poor households is always significantly higher in the 529 

empirical case than in the random scenario, as well as the degree of environmental inequality 530 

between poor and non-poor households. The only non-significant value is the ED1 index 531 

computed for the non-poor (see below for more explanations).  532 

Since the results presented in Table 2 are qualitatively equivalent for K=2 to 5, we comment 533 

more on K=0, K=1 and K=5. Figure 5 presents the position of the empirical value in the 534 

distribution of simulated values for the EDK indices of the poor (first column) and the non-535 

poor (second column), and for ΔEDK (third column), either without adjustments for local 536 

spatial interactions (first row) or with adjustments at the 2nd (second row) or 5th contiguity 537 

order (third row). 538 

As expected, on subfigures a, d, g, empirical EDK values are much larger than simulated 539 

values: poor households always have a highly significant degree of environment segregation: 540 

non-random factors push them away from green spaces. Similarly, on subfigures c, f, i, 541 

environmental inequality, as measured by ΔEDK, is always positive and statistically 542 

significant. The poor are always more environmentally segregated than the non-poor.  543 

Results concerning non-poor households require further reflection. The subfigure b reveals 544 

that non-poor households are significantly less environmentally segregated than when 545 

allocated randomly: there are non-random factors that make the non-poor choose greener 546 

locations. But at the 1st order contiguity (subfigure e), the empirical ED1 index of non-poor is 547 

in the middle of the simulated distribution: they are segregated ‘just as expected’ in the 548 

random case. Lastly, at the 5th order (subfigure h), non-poor households are significantly more 549 

environmentally segregated than expected (and the graphic would be equivalent for all K ≥ 2).  550 

Here we should recall that the adjusted index equals the unadjusted index less the mean value 551 

of the local interactions. This implies that simulated local interactions for non-poor 552 

households are larger than observed local interactions for K=1, and even more for K=5: there 553 

are fewer local interactions than would be in a random scenario. Our interpretation is as 554 

follows: non-poor households have fewer local interactions with the vegetation than when 555 
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allocated randomly – with probabilities based on housing stocks – because they are more 556 

dispersed than the dwellings: they are disproportionately more represented in low-density 557 

areas and less in dense urban neighbourhoods. Since local interactions are maximal between 558 

high-density highly artificialized neighbourhoods and low-density heavily vegetated ones and 559 

minimal between neighbourhoods of similar population density and vegetation cover, a 560 

greater dispersion of non-poor households is associated with fewer local interactions.  561 

 562 

Fig. 5. Global dissimilarity analysis for the vegetation cover: empirical and simulated indices  563 

Notes: Each subfigure provides the probability density function for simulated values, the mean of the 564 

simulated values and the empirical value of the index, for ED indices computed for the poor (1st column), 565 

the non-poor (2nd column), and for ΔED (3rd column), either without adjustments for local spatial 566 

interactions (1st row) or with adjustments at the 2nd (2nd row) or 5th contiguity order (3rd row).  567 
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Non-poor households are thus segregated ‘just as expected’ for K=1 and more segregated than 569 

in a random scenario for K≥2, but in any case they remain less environmentally segregated 570 

than the poor: the significant (non-random) environmental segregation of the poor always 571 

generates a significant (non-random) environmental inequality with the non-poor.   572 

4.2.2. Local Dissimilarity Analysis for the Vegetation Cover 573 

The global analysis has confirmed that the poor are more segregated from green spaces than 574 

the non-poor. Against this background, we may consider alternatively two political goals: (i) 575 

the first focuses on the poor and aims to bring closer together the poor and the vegetation 576 

cover; (ii) the second focuses on reducing the environmental inequality between the poor and 577 

the non-poor. The former is focused on the absolute situation of the poor, and the second on 578 

their relative situation compared to the non-poor. In accordance with these goals, the local 579 

analysis may focus on identifying: (i) the hotspots having the largest influences on the ED0 of 580 

the poor; or (ii) the ones that have the largest influences on ΔED0.12 581 

In line with the first goal, the left panel of Figure 6 shows the box plot of the Jackknife 582 

simulations of ED0 for poor households, and maps the cells whose removal is associated with 583 

an important decreasing ED0 (i.e., corresponding to low outliers on the box plot, see 3.2.2). 584 

We will call them ‘A’ cells. Compared to others, they are much less vegetated and much more 585 

populated, with higher shares of low-income households (Table 3). On the map (subfigure a), 586 

we can distinguish a group of cells (say ‘A1’ cells, coloured in blue) located in the centre of 587 

the city, where vegetation is scarce (see Fig. 2a), and a second group of cells (say ‘A2’ cells, 588 

coloured in red) located mainly in the South-East suburb of the city, where shares of poor are 589 

very high (see Fig. 2b).13  590 

In line with the second goal, the right panel of Figure 6 shows the box plot corresponding to 591 

Jackknife simulations of ΔED0, and maps the hotspots having the largest positive impacts on 592 

the environmental inequality between the poor and the non-poor (i.e., corresponding to low 593 

outliers on the box plot). Clearly, this second set of cells – say ‘B’ cells – is quite different 594 

from the former. Overall, B cells appear much more vegetated and less inhabited than A cells 595 

(see Table 3). The B set comprises cells (say ‘B1’ cells, coloured in blue on Fig. 6) with very 596 

low shares of poor, mainly located in the peri-urban part of the study zone. They also contain 597 

                                                           
12 For space reasons, we perform the local analysis only on non-adjusted ED values.  
13 The value of 0.3 retained to highlight red cells with high shares of poor households (vs blue cells with low 

shares) corresponds to the threshold of high outliers in the distribution of this variable (see Table 1). 
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cells (say ‘B2’ cells, coloured in red, cf. footnote 14) that were also part of the A2 group, with 598 

high shares of poor and located in the suburbs of Grenoble. But the cells of the A1 group –599 

 precisely the less vegetated and the most populated – do not pertain to this new set.  600 

These results are interesting as they show that the two political goals stated above should not 601 

be confused and may require different spatial targets. If the political goal is focused on the 602 

absolute situation of the poor, it may be worth targeting the urban heart of the city (A1 cells), 603 

where the poor are numerous, to introduce more vegetation where possible. But the centre of 604 

the city is populated by poor as well as non-poor households, so that this targeting may not be 605 

the most relevant to reduce the environmental inequality. If the political goal is primarily to 606 

reduce this inequality, then targeting more specifically the places where the shares of low-607 

income households are the highest (A2 and B2 cells) may be more effective. Also, the 608 

environmental inequality stems from the quasi-absence of poor households in peri-urban 609 

communities. Thus, helping more low-income households to settle in these areas (B1 cells), 610 

for instance through social housing programmes, may be another relevant political option.  611 

4.2.3. Global Centralization Analysis for Industrial Hazards 612 

The second empirical example concerns disamenities, namely hazardous industrial sites. The 613 

values of the unconstrained EC index (ECd=dmax) are positive (0.036 and 0.99 respectively for 614 

all and high risks), showing that the poor are globally more centralized than the non-poor with 615 

respect to dangerous sites (Table 4). The Monte Carlo significance tests confirm this 616 

environmental inequality: observed values do not reflect random differences in the spatial 617 

distributions of the two groups. These results aren’t surprising given the local context (see 618 

again 4.1): the segregation dynamics that separates poor and non-poor people is likely to be 619 

linked to both amenities (e.g., vegetation) and disamenities (e.g. industrial risks) and the 620 

presence of environmental inequalities was the expected outcome. 621 

These inequalities can be visualized on Figure 7, which shows the segregation curves for all 622 

risks or high risks, where the EC index is the area between the curve and the diagonal (see 623 

section 3.1.2). For all risks (subfigure a), considering spatial units at short distances from 624 

dangerous sites (the left side of the graph), either poor or non-poor households can be 625 

overrepresented (the curve is successively under or above the diagonal), but considering the 626 

whole area, poor households are clearly closer to dangerous sites. For high risks, poor 627 

households are unambiguously closer to dangerous sites (the curve is always under the 628 

diagonal); the curve deviates more from the diagonal when more distant spatial units are taken 629 
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into account. We can conclude that the inequality is mainly driven by a strong over-630 

representation of non-poor households in residential locations that are the farthest from 631 

industrial hazards. 632 

Table 3 633 
Local dissimilarity analysis for the vegetation cover: descriptive statistics of hotspots 634 

  A cells  B cells 

 Mean SD Min Max  Mean SD Min Max 

Households  397.4 135.1 158 684  106.5 126.2 29.7 684 

Low-income households  145.7 51 90 385  44.4 79.4 0 385 

Low-income households (%)  40.7 17 17 74.2  16.4 25.5 0 79.5 

Vegetation (ha)  1.3 0.7 0.1 2.7  3.1 0.7 0.6 3.9 

Vegetation (%)  32 17.4 2.5 68.6  71.7 17.7 13.8 98.7 

635 
Fig. 6. Local dissimilarity analysis for the vegetation cover: box plots and hotspots  636 

Notes: Subfigure a shows the box plot of Jackknife simulations of ED0 for the poor, and the map of those 637 

hotspots whose removal is associated with a lower environmental segregation (i.e., low outliers); 638 

subfigure b shows the same box plot for ΔED0 and the map of those hotspots whose removal is associated 639 

with a lower environmental inequality (i.e., low outliers). The value of 0.3 retained to highlight cells with 640 

high shares of poor households corresponds to the threshold of high outliers (mean+2*SD) in the 641 

distribution of this variable in the study zone (see Table 1). 642 

 643 
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Table 4 644 
Global centralization analysis for industrial hazards: observed and simulated indices  645 

 
Distance bound (d) 

Empirical ECd 

  

Simulated ECd 

(mean) 
Rank a 

Pseudo  

P-value  

All dangerous 

industrial sites  
Maximum distance b 0.036 0 500 0.002 

15 km 0.036 0 500 0.002 

12 km 0.035 0 500 0.002 

9 km 0.033 0 500 0.002 

6 km 0.01 0 497 0.008 

3 km -0.066 0 1 0.002 

1 km 0.07 0 500 0.002 

High-risk industrial 

sites only 
Maximum distance b 0.099 0 500 0.002 

15 km 0.099 0 500 0.002 

12 km 0.098 0 500 0.002 

9 km 0.096 0 500 0.002 

6 km 0.059 0 500 0.002 

3 km -0.046 0 1 0.002 

1 km 0.097 -0.001 500 0.002 

Notes: a The rank corresponds to the position of the observed index value in the distribution of simulated 646 

values; b The maximum distance between a grid cell and a dangerous site in the study zone equals 17.9 km; 647 

the corresponding ECd index covers all spatial units and population comprised within the study zone. 648 

 649 

To confirm this conclusion, we now consider spatially constrained ECd indices, with the 650 

spatial scope of the analysis – d – varying from 1 to 15 km by steps of 200m. For each d, the 651 

analysis is restricted to spatial units located at a distance less than d from the closest 652 

hazardous site. In other words, we make a focus on ‘intra-buffers’ environmental inequalities. 653 

The results obtained (subfigures c and d on Figure 7 and Table 4, which offers significance 654 

tests) show as expected that either one group or the other can be significantly more centralized 655 

for small value of d. But as d becomes sufficiently large (d ≥ 9 km), the constrained indices 656 

converge toward the unconstrained ones, and the poor appear significantly more centralized.  657 

The sensitivity for small values of d reflects complex social segregation patterns around and 658 

moving away from dangerous sites: spatial units where poor people are overrepresented are 659 

followed by spatial units where they are underrepresented and so on; as the spatial scope of 660 

the analysis is extended, new rings of cells are included gradually in the calculation of the 661 

index, and the relative centralization of poor households decreases (resp. increases) when 662 

these new and most distant rings have high (resp. low) shares of poor households. However, 663 

non-poor households are unambiguously overrepresented in the spatial units that are the 664 

farthest from the dangerous sites, what explains the convergence toward unrestricted values. 665 
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 666 

Fig. 7. Global centralization analysis for industrial hazards: graphical approaches 667 

Notes: The left panel refers to all hazardous sites and the right one to very dangerous sites; Subfigure a 668 

and b are Lorenz-like curve: the curve on b shows that the spatial units which are the closest from hazards 669 

and that house, e.g., 80% of the poor, only house 70% of the non-poor (subfigure a reads in the same way); 670 

ECd=dmax is the area between the curve and the diagonal; Subfigures c and d provide the values of ECd 671 

indices calculated by varying d in steps of 200m. 672 

 673 

4.2.4. Local Centralization Analysis for Industrial Hazards 674 

Since the EC index measures a relative centralization, it is tailored to inform a policy aiming 675 

at reducing the inequality between the poor and the non-poor. The local analysis allows 676 

identifying the hotspots that have the largest influences on this inequality. In this example, we 677 

focus specifically on the uneven exposure to very dangerous industrial sites, without assuming 678 

any spatial constraint for the analysis.  679 
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Figure 8 shows the box plot of the distribution of simulated EC values, and maps the spatial 680 

units associated with low (map a) and high (map b) outlier values of this distribution (see 681 

section 3.2.2). The former spatial units have the largest positive impacts on the environmental 682 

centralization of the poor (i.e., their removal makes EC increase), whereas the latter have the 683 

largest negative impacts (i.e., it makes EC decrease). 684 

 685 

Fig. 8. Local centralization analysis for industrial hazards: box plot and hotspots  686 

Notes: Subfigure a shows the map of hotspots whose removal is associated with a lower environmental 687 

inequality (i.e. low outliers on the box plot of the Jackknife simulations of EC values); subfigure b presents 688 

the hotspots associated with a higher environmental inequality (i.e. high outliers). The value of 0.3 689 

retained to highlight cells with high shares of poor households corresponds to the threshold of high 690 

outliers (mean+2*SD) in the distribution of this variable in the study zone (see Table 1). 691 

 692 

On the map a, we can distinguish spatial units with higher shares of low-income households 693 

(say ‘C’ cells, coloured in red), and others with lower shares (say ‘D’ cells, coloured in blue). 694 

As expected, C cells are close to dangerous sites, whereas D cells are quite distant from all 695 

sites. This map highlights well the hotspots which make the poor more centralized than the 696 

non-poor. It may help policy-makers target their policies: for instance, if a new social housing 697 

programme were to be implemented, or if new hazardous facilities were to be installed, then 698 
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the political goal of reducing environmental inequality with respect to hazards would 699 

recommend avoiding C cells and wherever possible choosing locations in D cells.  700 

Conversely, the map b shows cells that ‘play against’ the environmental inequality. Although 701 

the poor are globally more centralized than the non-poor with respect to dangerous sites, there 702 

are cells nearby high-risk sites where non-poor households are numerous and more distant 703 

cells with high shares of poor households. This map illustrates the complexity of the 704 

environmental segregation patterns already emphasized in the previous section. It also shows 705 

the ‘egalitarian’ hotspots in the current spatial distribution of households that should not be 706 

compromised by inappropriate actions.  707 

 708 

5. Conclusion 709 

Robust methods for assessing environmental inequalities are needed to help define and 710 

evaluate environment justice policies. We have developed such methods to measure between-711 

group environmental inequalities related to residential segregation patterns. All will soon be 712 

available in a dedicated R package called SegEnvIneq. This approach is particularly suited to 713 

environmental inequality assessments in urban context.  714 

Inspired by the residential segregation literature, we propose the Environmental Dissimilarity 715 

index (ΔEDK) and the Environmental Centralization index (ECd) to analyse ‘segregation-716 

based’ environmental inequalities. These indices allow working with, respectively, areal-level 717 

(e.g., vegetation cover) or multiple-points (e.g., dangerous sites) environmental data. Both 718 

indices are genuinely spatial: ΔEDK can incorporate local interactions between people and 719 

environment across spatial units’ borders, and ECd can be spatially constrained to better 720 

understand segregation patterns around and moving away from environmental centralities. To 721 

ensure the robustness of this analysis, we also suggest a distribution-free significance test 722 

based on Monte Carlo experiments, relevant for ΔEDK and ECd indices.  723 

Beyond these useful tools for carrying global (city-wide) analyses, we propose a consistent 724 

method to identify local (neighbourhood scale) hotspots. The procedure based on Jackknife 725 

simulations highlights the spatial units most responsible for environmental inequalities, as 726 

measured by ΔEDK or ECd.  727 
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These methods are applied in Grenoble-Alpes Métropole, France, and reveal inequalities 728 

between poor and non-poor households in terms of access to green spaces and exposure to 729 

industrial risks. This illustration uses data available at very fine spatial scales (i.e. a 200 m x 730 

200 m grid for population data, and even finer scales for environmental data). To explore the 731 

sensitivity of our methods, an extension left for future research would be to compare these 732 

results with additional results obtained at coarser and less regular spatial scales (e.g. using 733 

population data from French census tracks). 734 

We believe that designing global and local segregation-based approaches to measuring 735 

environmental inequalities is a useful step forward in the environmental justice literature. Past 736 

research has shown that taking the environment into account help understanding residential 737 

segregation dynamics (Wu, 2006; Schaeffer et al., 2016). Further researches are still required 738 

to deepen our comprehension of theoretical and empirical relationships between residential 739 

segregation and segregation-based environmental inequalities. 740 

 741 

 742 

Acknowledgments 743 

This work is part of the EFFIJIE project, funded jointly by the French National Research 744 

Agency (grant ANR-13-SENV-0001-01) and Irstea. We would like to thank Laurent Martinez 745 

and Frédéric Bray for research assistance and the Grenoble Urban Planning Agency for 746 

stimulating talks at the beginning of the project and for help with the data. We also thank an 747 

anonymous reviewer for relevant suggestions.  748 

 749 

  750 



33 

 

References 751 

 752 

1. Apparicio, P., Pham, T., Séguin, A., & Dubé, J. (2016). Spatial distribution of vegetation 753 

in and around city blocks on the Island of Montreal: A double environmental 754 

inequity? Applied Geography, 76, 128-136. doi:10.1016/j.apgeog.2016.09.023 755 

2. Bowen, W. (2002). An Analytical Review of Environmental Justice Research: What Do 756 

We Really Know? Environmental Management, 29(1), 3-15. doi:10.1007/s00267-001-757 

0037-8 758 

3. Boyce, J. K., Zwickl, K., & Ash, M. (2016). Measuring environmental 759 

inequality. Ecological Economics, 124, 114-123. doi:10.1016/j.ecolecon.2016.01.014 760 

4. Brown, L. A., & Chung, S. (2006). Spatial segregation, segregation indices and the 761 

geographical perspective. Population, Space and Place, 12(2), 125-143. 762 

doi:10.1002/psp.403 763 

5. Carrier, M., Apparicio, P., Séguin, A., & Crouse, D. (2014). The application of three 764 

methods to measure the statistical association between different social groups and the 765 

concentration of air pollutants in Montreal: A case of environmental equity. 766 

Transportation Research Part D: Transport and Environment, 30, 38-52. 767 

doi:10.1016/j.trd.2014.05.001 768 

6. Chakraborty, J., & Armstrong, M. P. (2001). Assessing the Impact of Airborne Toxic 769 

Releases on Populations with Special Needs. The Professional Geographer, 53(1), 119-770 

131. doi:10.1111/0033-0124.00274 771 

7. Chakraborty, J., Maantay, J. A., & Brender, J. D. (2011). Disproportionate Proximity to 772 

Environmental Health Hazards: Methods, Models, and Measurement. American Journal 773 

of Public Health, 101(S1), S27-S36. doi:10.2105/ajph.2010.300109 774 

8. Crowder, K. (2000). The Racial Context of White Mobility: An Individual-Level 775 

Assessment of the White Flight Hypothesis. Social Science Research, 29(2), 223-257. 776 

doi:10.1006/ssre.1999.0668 777 

9. Downey, L., Dubois, S., Hawkins, B., & Walker, M. (2008). Environmental Inequality 778 

in Metropolitan America. Organization & Environment, 21(3), 270-294. 779 

doi:10.1177/1086026608321327 780 

10. Duncan, O. D., & Duncan, B. (1955a). A Methodological Analysis of Segregation 781 

Indexes. American Sociological Review, 20(2), 210. doi:10.2307/2088328 782 

11. Duncan, O. D., & Duncan, B. (1955b). Residential Distribution and Occupational 783 

Stratification. American Journal of Sociology, 60(5), 493-503. doi:10.1086/221609 784 

12. Duncan, O.D., & Duncan, B. (1961). Statistical Geography: Problems in Analyzing Area 785 

Data. Free Press, Glencoe, Illinois. 786 

13. Folch, D. C., & Rey, S. J. (2014). The centralization index: A measure of local spatial 787 

segregation. Papers in Regional Science, 95(3), 555-576. doi:10.1111/pirs.12145 788 

14. Frey, N. (2016). Equity in the distribution of urban environmental amenities: the case of 789 

Washington, D.C. Urban Geography, 38(10), 1534-1549. 790 

doi:10.1080/02723638.2016.1238686 791 

15. Hajat, A., Hsia, C., & O’Neill, M. S. (2015). Socioeconomic Disparities and Air 792 

Pollution Exposure: a Global Review. Current Environmental Health Reports, 2(4), 440-793 

450. doi:10.1007/s40572-015-0069-5 794 

16. Harner, J., Warner, K., Pierce, J., & Huber, T. (2002). Urban Environmental Justice 795 

Indices. The Professional Geographer, 54(3), 318-331. doi:10.1111/0033-0124.00333 796 

17. Hwang, J., & Lin, J. (2016). What Have We Learned About the Causes of Recent 797 

Gentrification? Cityscape, 18(3), 9-26. http://www.jstor.org/stable/26328271 798 



34 

 

18. Jacobson, J. O., Hengartner, N. W., & Louis, T. A. (2005). Inequity Measures for 799 

Evaluations of Environmental Justice: A Case Study of Close Proximity to Highways in 800 

New York City. Environment and Planning A, 37(1), 21-43. doi:10.1068/a36225 801 

19. Jennings, V., Johnson Gaither, C., & Gragg, R. S. (2012). Promoting Environmental 802 

Justice Through Urban Green Space Access: A Synopsis. Environmental Justice, 5(1), 1-803 

7. doi:10.1089/env.2011.0007 804 

20. Landry, S. M., & Chakraborty, J. (2009). Street Trees and Equity: Evaluating the Spatial 805 

Distribution of an Urban Amenity. Environment and Planning A, 41(11), 2651-2670. 806 

doi:10.1068/a41236 807 

21. Laurent, É. (2011). Issues in environmental justice within the European 808 

Union. Ecological Economics, 70(11), 1846-1853. doi:10.1016/j.ecolecon.2011.06.025 809 

22. Lopez, R. (2002). Segregation and Black/White Differences in Exposure to Air Toxics in 810 

1990. Environmental Health Perspectives, 110(s2), 289-295. 811 

doi:10.1289/ehp.02110s2289 812 

23. Maantay, J. (2002). Mapping Environmental Injustices: Pitfalls and Potential of 813 

Geographic Information Systems in Assessing Environmental Health and 814 

Equity. Environmental Health Perspectives, 110(s2), 161-171. 815 

doi:10.1289/ehp.02110s2161 816 

24. Maantay, J. (2007). Asthma and air pollution in the Bronx: Methodological and data 817 

considerations in using GIS for environmental justice and health research. Health & 818 

Place, 13(1), 32-56. doi:10.1016/j.healthplace.2005.09.009 819 

25. Massey, D. S., & Denton, N. A. (1988). The Dimensions of Residential 820 

Segregation. Social Forces, 67(2), 281-315. doi:10.1093/sf/67.2.281 821 

26. Mitchell, G., & Walker, G. (2007). Methodological issues in the assessment of 822 

environmental equity and environmental justice. Sustainable Urban Development: The 823 

Environmental Assessment Methods, 2, 447-472. 824 

27. Mohai, P., Pellow, D., & Roberts, J. T. (2009). Environmental Justice. Annual Review of 825 

Environment and Resources, 34(1), 405-430. doi:10.1146/annurev-environ-082508-826 

094348 827 

28. Morrill, R. (1991). On the Measure of Geographic Segregation. Geography Research 828 

Forum, 11, 25-36. 829 

http://raphael.geography.ad.bgu.ac.il/ojs/index.php/GRF/article/view/91 830 

29. Morello-Frosch, R., & Lopez, R. (2006). The riskscape and the color line: Examining the 831 

role of segregation in environmental health disparities. Environmental Research, 102(2), 832 

181-196. doi:10.1016/j.envres.2006.05.007 833 

30. Park, Y. M., & Kwan, M. P. (2017). Multi-Contextual Segregation and Environmental 834 

Justice Research: Toward Fine-Scale Spatiotemporal Approaches. International Journal 835 

of Environmental Research and Public Health, 14(10), 1205. 836 

doi:10.3390/ijerph14101205 837 

31. Pham, T., Apparicio, P., Séguin, A., Landry, S., & Gagnon, M. (2012). Spatial 838 

distribution of vegetation in Montreal: An uneven distribution or environmental 839 

inequity? Landscape and Urban Planning, 107(3), 214-224. 840 

doi:10.1016/j.landurbplan.2012.06.002 841 

32. Reardon, S. F., & O’Sullivan, D. (2004). Measures of Spatial Segregation. Sociological 842 

Methodology, 34(1), 121-162. doi:10.1111/j.0081-1750.2004.00150.x 843 

33. Saporito, S., & Casey, D. (2015). Are There Relationships Among Racial Segregation, 844 

Economic Isolation, and Proximity to Green Space? Human Ecology Review, 21(2). 845 

doi:10.22459/her.21.02.2015.06 846 



35 

 

34. Schaeffer, Y., & Dissart, J. (2018). Natural and Environmental Amenities: A Review of 847 

Definitions, Measures and Issues. Ecological Economics, 146, 475-496. 848 

doi:10.1016/j.ecolecon.2017.12.001 849 

35. Schaeffer, Y., Cremer-Schulte, D., Tartiu, C., & Tivadar, M. (2016). Natural amenity-850 

driven segregation: evidence from location choices in French metropolitan 851 

areas. Ecological Economics, 130, 37-52. doi:10.1016/j.ecolecon.2016.05.018 852 

36. Schlosberg, D. (2013). Theorising environmental justice: the expanding sphere of a 853 

discourse. Environmental Politics, 22(1), 37-55. doi:10.1080/09644016.2013.755387 854 

37. Schlosberg, D., & Collins, L. B. (2014). From environmental to climate justice: climate 855 

change and the discourse of environmental justice. Wiley Interdisciplinary Reviews: 856 

Climate Change, 5(3), 359-374. doi:10.1002/wcc.275 857 

38. Schwarz, K., Fragkias, M., Boone, C. G., Zhou, W., McHale, M., Grove, J. M., … 858 

Cadenasso, M. L. (2015). Trees Grow on Money: Urban Tree Canopy Cover and 859 

Environmental Justice. PLOS ONE, 10(4), e0122051. doi:10.1371/journal.pone.0122051 860 

39. Shanahan, D., Lin, B., Gaston, K., Bush, R., & Fuller, R. (2014). Socio-economic 861 

inequalities in access to nature on public and private lands: A case study from Brisbane, 862 

Australia. Landscape and Urban Planning, 130, 14-23. 863 

doi:10.1016/j.landurbplan.2014.06.005 864 

40. Sheppard, E. R., Leitner, H. E., McMaster, R. B., & Tian, H. O. (1999). GIS-based 865 

measures of environmental equity: Exploring their sensitivity and significance. Journal 866 

of Exposure Analysis and Environmental Epidemiology, 9(1), 18-28. 867 

doi:10.1038/sj.jea.7500023 868 

41. Timmons Roberts, J., Pellow, D., & Mohai, P. (2018). Environmental 869 

Justice. Environment and Society, 233-255. doi:10.1007/978-3-319-76415-3_11 870 

42. Tivadar, M. OasisR: an R Package to Bring Some Order to the Word of Segregation 871 

Measurement. Forthcoming in Journal of Statistical Software. 872 

43. Wen, M., Zhang, X., Harris, C. D., Holt, J. B., & Croft, J. B. (2013). Spatial Disparities 873 

in the Distribution of Parks and Green Spaces in the USA. Annals of Behavioral 874 

Medicine, 45(S1), 18-27. doi:10.1007/s12160-012-9426-x 875 

44. White, M. J. (1983). The Measurement of Spatial Segregation. American Journal of 876 

Sociology, 88(5), 1008-1018. doi:10.1086/227768 877 

45. Wong, D. W. (1993). Spatial Indices of Segregation. Urban Studies, 30(3), 559-572. 878 

doi:10.1080/00420989320080551 879 

46. Wong, D. W. (2008). A Local Multidimensional Approach to Evaluate Changes in 880 

Segregation. Urban Geography, 29(5), 455-472. doi:10.2747/0272-3638.29.5.455 881 

47. Wu, J. (2006). Environmental amenities, urban sprawl, and community 882 

characteristics. Journal of Environmental Economics and Management, 52(2), 527-547. 883 

doi:10.1016/j.jeem.2006.03.003 884 

48. Zhang, X., Lu, H., & Holt, J. B. (2011). Modeling spatial accessibility to parks: a 885 

national study. International Journal of Health Geographics, 10(1), 31. 886 

doi:10.1186/1476-072x-10-31 887 

49. Zhou, X., & Kim, J. (2013). Social disparities in tree canopy and park accessibility: A 888 

case study of six cities in Illinois using GIS and remote sensing. Urban Forestry & 889 

Urban Greening, 12(1), 88-97. doi:10.1016/j.ufug.2012.11.004 890 

50. Zwickl, K., Ash, M., & Boyce, J. K. (2014). Regional variation in environmental 891 

inequality: Industrial air toxics exposure in U.S. cities. Ecological Economics, 107, 494-892 

509. doi:10.1016/j.ecolecon.2014.09.01 893 




