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Abstract 

Near infrared spectroscopy combined with multivariate calibration such as partial least squares 
regression is a promising technique for on-line monitoring of anaerobic digesters. Different 
substrates are used in digesters, depending on their availability and their methanogen potential, to 
optimize the process. In Europe, the feedstock for anaerobic digesters is dominated by slurry and 
food waste which are respectively highly biodegradable and fat-containing substrates. The 
monitoring of the anaerobic digestion process based on digestates coming from these substrates 
presents some difficulties. The digestion of highly biodegradable substrates comes with the 
presence of water, which hinders spectroscopic calibration. And fat-containing substrates could 
lead to the accumulation of long chain fatty acids which are quite difficult to detect in the infrared 
region. While all existing studies have explored adapted spectroscopic measurements to improve 
the process monitoring, this study investigated the use of NIRS combined with multi-block 
analysis to track important anaerobic digestion stability parameters. Infrared measurements can 
come from several sources in the process monitoring. In addition, sequential and orthogonalized 
partial least squares have proven their ability of exploiting the underlying relation between several 
data blocks. These multi-block methods are powerful chemometric tools which can be applied in 
the monitoring of anaerobic digestion. Polarization light spectroscopy which is also known to 
improve the comprehension of scattering media like the digestate was also studied.  
Keywords: Anaerobic digestion monitoring, Near InfraRed Spectroscopy, Polarization Light 
Spectroscopy, SO-PLS. 

ABBREVIATIONS 

AD Anaerobic Digestion 

LCFA Long Chain Fatty Acids 

NH4
+ ammonium 

NIRS Near InfraRed Spectroscopy  

OLR Organic Load Rate 

PoLiS Polarization Light Spectroscopy  

R(λ) reflectance from the immersed probe 

Rbs(λ) total backscattered reflectance of the remote 
probe 

Rms(λ) multiple scattered reflectance of the remote 
probe 

Rss(λ) single scattered reflectance of the remote probe 

TS Total Solids 

VFA Volatile Fatty Acids 

VS Volatile Solids 
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1. INTRODUCTION 

Visible and Near InfraRed Spectroscopy (Vis & NIRS) are noninvasive and nondestructive 
analytical methods used to assess major compounds in different types of materials. These methods, 
especially NIRS, have a widespread usage in routine analysis in biomedical, agricultural and 
environmental fields, with generally no sample preparation. Among environmental applications is 
the monitoring of anaerobic digestion (AD) or methanization process. AD process is the microbial 
degradation of organic matter consisting of complex reaction chains, under anaerobic conditions, 
producing a biogas rich in methane (CH4) and carbon dioxide (CO2) and a digestate. AD process is 
influenced at different levels by environmental factors or inhibitors and requires the monitoring of 
several state indicators such as volatile fatty acids (VFA), Long chain fatty acids (LCFA) and 
ammonia/ammonium (NH3/NH4

+). These inhibitors can come from the digested substrates. For 
example, substrates with high lipid content, which are interesting because of their high 
methanogenic potential, also present the greatest inhibition risks in biological processes. Indeed, 
lipid degradation leads to LCFA accumulation whose toxicity and inhibitory effect on 
methanogenic flora have been highlighted by several studies [1–2]. These inhibitions create 
significant fluctuations in biogas production, sometimes until complete failure of the anaerobic 
process. While wet chemistry is time-consuming and increases reaction time in case of inhibition in 
the process, NIRS can overcome these flaws by quickly providing concentration estimation for 
these multiple parameters once calibrations have been developed for the parameter of interest [3]. 
Therefore, NIRS can provide an instantaneous response of the process state and give early warnings 
of instabilities. Calibrations for AD monitoring with NIRS are mainly achieved by the means of 
chemometric methods such as partial least square (PLS) regression.  

There are numerous difficulties regarding PLS calibrations with NIRS for AD process monitoring. 
The main difficulty is the presence of water in digestate samples especially with highly 
biodegradable substrates which leads to low total solids (TS) content in the digester. Water is a 
hindrance that upsets PLS calibrations because its absorption masks a non-negligible part of the 
chemical information [4]. Indeed, water absorbance in the near infrared region is very important 
especially at two characteristic bands: 1450nm and 1940nm [5]. Therefore, digestate samples were 
often dried before infrared measurements [6], which greatly improved the prediction of some 
parameters [7]. In the particular case of anaerobic digestion, this improvement due to drying is 
detrimental to the efficiency of the method because drying requires a long preparation of the 
sample. It is also worth noting that liquid digestate samples come with particles that increase 
diffusion or light scattering effect which strongly influence the total absorbance of the samples. 
Diffusion also affects the baseline and the profile of the spectra especially with the lengthening of 
the average optical path of the light passing through the sample.   

Although, in existing literature, no work has been performed for LCFA prediction by NIRS in AD 
process, several studies have been conducted on raw digestates for VFA and ammonium. PLS 
models were able to produce interesting prediction results for VFA (0.84 ≤ R2 ≤ 0.94 and 200 mg/l 
≤ RMSEP ≤ 1590 mg/l) [8-10] and ammonium (0.91 ≤ R2 ≤ 0.97 and 160 mg/l ≤ RMSEP ≤ 250 
mg/l) [11-12]. However, the substrates used in these studies were municipal solid waste, maize 
silage, pig or cattle manure sometimes mixed with slurry (liquid manure) leading to a TS varying 
between 5% and 10% in the digester. In the case of digestate with low TS content (< 5%) as in this 



study performed on sewage sludge, the results were different [13]. For example, PLS model results 
obtained for VFA were less accurate (0.69 ≤ R2 ≤ 0.71 and 160 mg/l ≤ RMSEP ≤ 180 mg/l). It was 
also shown in the study that apparent absorbance of sewage sludge was strongly affected by the 
distribution of dry matter throughout the sludge. This suggests that PLS models used in these 
previous studies were based on spectra less impeded by water absorbance. In addition, pig slurry 
digestion or co-digestion is particularly developed in France and a Europe-wide survey showed that 
TS content of pig slurry is very low with an average of 5% [14]. Therefore, there is a real interest in 
modeling AD process stability indicators under diluted conditions and, consequently, additional 
work is required. To overcome water hindrance, most studies focused on using different 
measurement systems such as transflectance method with transflexive embedded near infrared 
sensor (TENIRS) [8, 15]. It was highlighted that transflectance technique outperformed the 
reflectance technique; however transflectance required the use of a small optical path length 
(1 mm). This physical limitation makes the technique less attractive as the nature of sludge and 
digestates will exclude the use of small optical path lengths due to the possibility of fouling [15]. 
Fourier Transform NIRS is also often used to improve AD process monitoring.  

While several studies are focused on improving NIRS measurement system, the regression method 
is another level of improvement. An unexplored potential solution is performing data fusion 
analysis by the means of multi-block methods to extract more relevant information from different 
sources to improve the process monitoring. Combining information from many datasets can 
improve the interpretation of the trends observed in the studied system [16]. It has been 
demonstrated, that it was more convenient to extract information from multi-block data sets 
handling all the blocks at the same time. Several statistical and chemometric multi-block methods 
are available and used for the purpose of exploring and modeling the relationships between several 
datasets to be predicted from several other datasets. These methods included: Hierarchical-PLS 
[17], Multi-Block-PLS (MB-PLS) [18], Sequential and Orthogonalized Partial Least Squares (SO-
PLS) [19], Parallel Orthogonalized Partial Least Squares (PO-PLS) [20], Predictive-ComDim [21], 
Sequential and Orthogonalized multi-way version of PLS (SO-N-PLS) [22], Sequential and 
Orthogonalized Covariance Selection (SO-CovSel) [23] …. Most of these multivariate linear 
projection methods are based on PLS regression and are generally used in biological systems as 
metabolomics, industrial pharmaceutical process or quality control. In all cases, data fusion 
increased the interpretability of the models and enabled important biological conclusions on the 
monitored process [16].  

Therefore, the objective of this study was to explore the applicability of the SO-PLS method, to 
predict relevant parameters in AD using two different sources of NIRS measurements on digestates. 
AD experiments were conducted with highly biodegradable and fat-containing co-substrates, known 
to induce inhibitions in the digester and to create interferences in infrared measurements. Two 
infrared probes were evaluated for the prediction of state indicators such as VFA, LCFA and NH4

+. 
Focus was put on interpretation as well as prediction ability of these multi-block models. Moreover, 
one of the probes used in this study was based on polarization light spectroscopy (PoLiS), which 
can provide a unique contrast mechanism due to its sensitivity to particle morphology and other 
polarization properties [24-25].  The collected polarized signals were explored and related to the 
different parameters. They allowed a better comprehension of infrared measurements on digestate in 
anaerobic digestion process. 



2. MATERIALS AND METHODS 

2.1. Samples and Reference analysis 

Samples used in this study come from a continuously stirred 35-liter tank reactor operating under 
mesophilic conditions (38 °C). The digester was fed once in the morning and several experiments 
were conducted with organic load rate (OLR) varying between 1.5 and 5kgCOD.m-3.d-1 (Table 1).  
All collected digestate samples went through different chemical analysis such as total solids, 
volatile solids, ammonium (NH4

+) and pH measured according to standard chemical methods [26]. 
VFA were determined, on the supernatant after centrifugation of the samples, with high 
performance liquid chromatography (HPLC, Varian©, U3000). Gas chromatography/mass selective 
(GC/MS, Agilent Technologies, 7890B/5977A) was used to determine LCFA. Biogas production 
was automatically determined with a wet tipping bucket flow meter connected to the acquisition 
program of the digester. 

Table 1: Operating conditions of performed co-digestion experiments (g.l-1: g of co-substrate per 
liter of pig slurry) 
N° Substrates Mixture OLR 

1 Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) + Food fats (20g.l-1) 4.9 
2 Pig slurry + Horse feed residues (20g.l-1) + Catering waste (200 g.l-1) 3.4 
3 Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270 g.l-1) 2.2 
4 Pig slurry + Horse feed residues (40g.l-1) + Fruit waste (540 g.l-1) 4.2 

5 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) 1.4 
Pig slurry + Horse feed residues (40g.l-1) + Fruit waste (540g.l-1) 3.0 

6 Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) 1.7 

7 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270g.l-1) 1.6 
Pig slurry + Fruit waste (135g.l-1) + Protein waste (20g.l-1) 3.8 

8 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270 g.l-1) 1.7 
Pig slurry + Horse feed residues (20g.l-1) + Fruit waste (270 g.l-1) + Food fats (20g.l-1) 3.4 

OLR: organic load rate  

2.2. Spectral acquisition 

Two spectroscopic measurement systems were tested at-line on the raw digestate samples. Both 
systems used the same light source, namely a Tungsten-Halogen source (Ocean Optics HL-200-
FHSA) and the same spectrometer (LabSpec1, ASD Boulder). The spectral range of measurement 
extended from 350nm to 2500nm with a step of 1nm, and a resolution of 3nm for the range 350nm - 
1000nm and 10nm for the range 1000nm - 2500nm.  

2.2.1. Immersed or diffuse reflectance probe 

This first probe (figure 1a) consisted of two fibers, one fiber for illumination and a second fiber for 
signal collection. The core diameter Ø of the two fibers was equal to 1000μm and a Numerical 
Aperture (NA) equal to 0.39 (BFY1000, Thorlabs). The principle of this probe was based on diffuse 
optical spectroscopy. For each sample, the intensity of the reflected light (I(λ)) was measured. Dark 
current (In(λ)) i.e. signal without light, was recorded from all measured spectra and subtracted. A 
white reference (SRS99, Spectralon®) (I0(λ)) was measured to standardize spectra and prevent 
nonlinearities of all the instrumentation components (light source, fibers and spectrometer). From 



these measurements, a reflectance (R(λ)) was calculated for each sample, as follows: 
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2.2.2. Remote or polarized diffuse reflectance probe 

The second spectroscopic system was also based on diffuse reflectance spectroscopy (figure 1b), 
but the measurement was made at a distance of 5 cm from the sample. The other particularity of this 
probe was the use of polarization light spectroscopy. The source’s emitted light was injected in an 
optical fiber (Thorlabs FG910LEC, Ø 910µm, NA 0.22) and a biconvex lens (Thorlabs LB1723-B, 
f= 60mm, d=50.8mm), forming a ≈ 2mm spot on the surface. The incident light cone was s-
polarized using a wire-grid polarizer (Thorlabs WP25L-UB) offering a broadband polarization 
range (250nm - 4µm).  The sample backscattered light was collected by a biconvex lens (Thorlabs 
LB1092, f=15mm, d=12.5 mm), forming a ≈ 1mm image of the lighted spot. This image was then 
split into an s-polarized image and a p-polarized image with a calcite Wollaston polarizer (Thorlabs 
WP10P) corresponding respectively to parallel III(λ) and perpendicular I┴(λ) emitted lights picked 
up by two optical fibers (Thorlabs FG910LEC, Ø 910µm, NA 0.22), allowing easy coupling to a 
spectrometer. As previously, a dark current In(λ) was systematically recorded for all measured 
spectra with the same optical configuration and subtracted to each measurement. A reference 
measurement (SRS99, Spectralon®) was also taken as I0(λ) = I0(λ)II + I0(λ)┴ . From these 
measurements, the weakly scattered reflectance Rss(λ) (Eq.2) and the multiple scattered reflectance 
Rms(λ) (Eq.3) were computed for each sample and summed in the total backscattered reflectance 
Rbs(λ) (Eq.4) according to Bendoula et al. (2015) [27] as follows: 
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                 (a)                                                                  (b) 

Figure 1: Schematic (a) the immersed probe and (b) the remote probe. 

2.3. Pre-processing  

Absorbance or reflectance spectra were preprocessed depending on the used probe and the 
parameter to predict. It is customary to calculate absorbance as A(λ) = log (1/R(λ)) from spectra 



acquired in reflectance (R(λ)) to comply with the natural law of Beer Lambert. However, this 
logarithmic transformation is an intrinsic preprocessing which might not be necessary, especially 
for poor reflectance spectra. Several preprocessing methods such as smoothing or derivate using 
Savitsky–Golay (SG) algorithm [28]; detrending [29] and Standard Normal Variate (SNV) [30] 
were also tested on these spectra. Finally, these spectra were truncated in order to focus on most 
relevant ranges for each parameter, depending of the baseline deviation effect and noise presence, 
as indicated in Table 2 below. 

Table 2: Preprocessing performed on the spectra with respect to the parameters and on each probe. 
Signals  Pre-processing 

Total VFA 
R(λ) Reflectance, 1st Derivative SG 71pt window, SNV, 450–1700nm 
Rbs(λ) Reflectance, Smoothing SG 71pt window, 450–1700nm 
Rms(λ) Reflectance, Smoothing SG 71pt window, 450–1700nm 
Rss(λ) Reflectance, Smoothing SG 71pt window, 450–1700nm 

Total LCFA 
R(λ) Reflectance, 2nd Derivative SG 71pt window, 450–1700nm 
Rbs(λ) Reflectance, 1st Derivative SG 71pt window, 2-order Detrend, 450–1700nm 
Rms(λ) Reflectance, 1st Derivative SG 71pt window, 2-order Detrend, 450–1700nm 
Rss(λ) Reflectance, 1st Derivative SG 71pt window, 2-order Detrend, 450–1700nm 

NH4
+ 

R(λ) Absorbance, Smoothing SG 71pt window, 450–1800nm 
Rbs(λ) Absorbance, Smoothing SG 71pt window, SNV, 450–1800nm 
Rms(λ) Absorbance, Smoothing SG 71pt window, 2-order Detrend, 450–1800nm 
Rss(λ) Reflectance, 1st Derivative SG 71pt window, 450–1800nm 

2.4. Data sets 

166 samples were used in this study and analyzed by each spectroscopic technique. In order to 
validate the models, the samples were split in a training set with spectra collected from experiments 
N°1, 2, 3, 4 & 7 (107 spectra) and a test set with spectra collected from experiments N°5, 6 & 8 (59 
spectra). Exploratory data analysis was performed to check that both sets spanned the whole 
variability domain. Moreover, as each experiment was independent, validation samples allowed the 
monitoring of entire AD process experiments with spectra having different characteristics. Cross-
validation (CV) procedures were first performed on the training set to deduce the size of the model 
also corresponding to the number of latent variables (LV). The same CV blocks (i.e. 7±1 
consecutive spectra with respect the experimentation duration, thus making 15 blocks) were used 
for all models computations (PLS and SO-PLS models) made in this study.  
Hence, PLS models were calculated for each acquired data set (Rms(λ), Rss(λ), Rbs(λ) & R(λ)) and 
validated on their respective test set. SO-PLS was next performed on different infrared data 
combinations. All computations and multivariate data analysis were performed with Matlab 
software v. R2013b (The Mathworks Inc., USA). 

3. THEORY 

3.1. PLS regression 



PLS links a block of Xi descriptors with a block of responses Y. The general idea of PLS is to 
extract the latent variables (LVs) T and U, by simultaneous factorization of the independent and 
dependent blocks into their respective scores (T & U) and loadings vectors (P & Q) as (equation 5):  

X = TPT+ E & Y =UQT+F  Eqs.5 
E and F are residual matrices. PLS assume a linear relationship between X and Y so that:  

 Y�= TQT Eq.6 

. In this study, four predictor blocks were considered which are: X1, X2, X3 and X4 respectively from 
the multiple scattered reflectance Rms(λ), the weakly scattered reflectance Rss(λ) and the total 
backscattered reflectance Rbs(λ) of the polarized probe and the reflectance R(λ) from the immersed 
probe. The response block Y consists of state indicators VFA, LCFA and ammonium. A Partial 
Least Square (PLS) algorithm was used to model each Xi block for each response Y. As mentioned 
above, standard validation methods were next used to determine the number of components to 
incorporate in each regression model and to assess the quality of the predictor obtained. These 
models feature performance parameters such as the coefficient of determination (R2), the Root 
Mean Squared Error (RMSE) of Cross-validation or Prediction (RMSECV/RMSEP).  

3.2. SO-PLS regression 

The SO-PLS regression method [19, 31] is developed for estimating regression equations with N 
blocks of independent variables, i.e.  

Y=X1B1+X2B2+...+XNBN+E        Eq.7 
where X1(A×J), X2(A×M) and XN(A×N) are the predictors blocks with the same number of 
observation A; B1(J×R), B2(M×R) and BN(N×R) are the regression coefficients; E(A×R) is 
the residual matrix and Y(A×R) the response block. The SO-PLS method is assumed to be linear 
and the formula with two blocks of independent variables can be represented by the equation:  

Y = X1B1 + X2B2 + E  Eq.8 
The algorithm is simple and requires four steps after centering and possibly scaling the data:  

- Y is fitted to X1 by PLS-regression, giving PLS scores 
1XT , 

- X2 is orthogonalized (obtaining orth
2X ) with respect to 

1XT : 2
T

X
1

X
T

XX2
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−−=   

- The estimated Y residuals from the first PLS are fitted to orth
2X using PLS regression, giving 

PLS scores
orth

X2
T . The original Y could also have been fitted to the deflated X2 without 

changing the results.  
- The full predictive model is then computed as the ordinary least squares fit 
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where 
iXV̂ are the weight matrices needed for the PLS scores calculation and 

iXQ̂  are the associated 

loading vectors. As shown, SO-PLS is a sequential use of PLS regression in combination with 
orthogonalization which focuses on the incremental contributions of each new block. SO-PLS and 
especially orthogonalization allows (i) the independence of the relative scaling of the blocks, (ii) 
scale or dimensionality invariance and (iii) a non-iterative estimation procedure [19, 31]. The 
optimal number of components in the model can be defined for each block (independently on the 



others) by: incremental or global estimation of components giving the lowest RMSECV errors [19, 
31]. In the incremental strategy, the number of latent variables to be used is separately optimized for 
each regression; with the best number of LVs for the regression model between X1 and Y as the start 
point. And, the number of components for next blocks is successively chosen, for separate 
optimization. In the global approach, the best possible combination is determined by evaluating a 
graph called Måge plot [19, 31] which shows all the possible combinations of LVs reporting the 
RMSECVs as a function of the total number of components. Both approaches were tested in this 
study. RMSECV reduction is regularly used to qualify multi-block models [32]. However, it is still 
recommended to test the method with the selected number of LV with an independent dataset. 

4. RESULTS AND DISCUSSION 

4.1. Digestate characteristics  

In AD, load rates influence the process operation. Increases in the OLR can improve biogas 
production but can also induce failures of the digester in case of overload. Moreover, in the 
particular case of the digestion of substrates such as fats and proteins, there can be a rapid 
accumulation of the associated inhibitory compounds. In this study, various failures occurred in the 
digester as illustrated on figure 2, showing biogas production with VFA, LCFA and NH4

+ evolution 
over time.  

   
Figure 2: Evolution of the biogas production and VFA/LCFA/ NH4

+ concentrations over time 

In parallel with increases in the OLR, failures were mainly caused by inhibition due to protein, 
lipids or carbohydrates co-substrates. LCFA and ammonium accumulation occurred especially in 
co-digestion experiments of fats and protein waste substrate, respectively. VFA accumulation was 
common to all failures in the digester. Total and volatile solids varied little in all experiments due 
the highly biodegradable co-substrates added. TS content varied between 1.4% and 2.6% in all 
experiments. Different states of the process were observed in the digester. The digester went from 
steady state without VFA and LCFA accumulation to imbalance state with LCFA and VFA 
accumulation up to 2200 mg/l and 13500 mg/l respectively and often until acidosis state. These 
different states created wide ranges for the performance parameters. Particularly for VFA and 
LCFA, in steady state, reference analysis values were null. In the whole dataset, 75% of the 
reference values were null for LCFA and 46% for total VFA. Subsequently, for VFA and LCFA 
prediction with infrared spectra, negative values were systematically corrected to null for all 



calculations performed in the present study.  

4.2. Spectral Features 

The collected digestate samples contain less than 3% of dry matter (total solids). As expected, all 
spectra of digestate have water spectral signature with absorption bands at 970nm, 1200nm, 
1440nm and 1940nm, regardless of the used probe (immersed or remote probe). The difference 
between various spectra is a function of the reflectance intensity as a result of a combination of 
digestate chemical composition and the light’s optical path, related to the light scattering, in the 
digestate. Indeed, all collected spectra had a reflectance intensity varying between 1% and 5% for 
the two probes except for some samples where it had reached 7% for the remote probe and between 
10% and 18% for the immersed probe. These levels of intensity were coherent considering the 
digestate samples and their very liquid appearance. The signal of the remote probe was noisier than 
the signal of immersed probe, especially between 2000nm and 2500nm. Another characteristic of 
the immersed probe is the presence in some reflectance spectra of a feature at 2200nm, which is a 
peak between two absorption bands of water. This peak-like feature might be due to the appearance 
of another water adsorption peak at 2250nm characterizing a change in the optical path of the light. 
These characteristics are mostly related to physical particles in the digestate. This suggests that the 
physical aspect and light scattering of the digestate have a great influence on the infrared signal. 
However, changes in absorption bands of water could bring some non-negligible chemical 
information. 

 
(a)                                                                  (b) 

Figure 3: Collected spectra for (a) the immersed probe and (b) the remote probe 

As previously stated, the remote probe is based on polarization light spectroscopy which is 
unexplored among NIRS measurement systems used in AD process monitoring. Indeed, light 
scattering in biological media such as digestates leads to deformations of the measured spectra. 
These deformations result in nonlinearities which can degrade the quality of calibrations and lead to 
lack of robustness of PLS models. The use of polarization can reduce these distortions. There has 
been an increasing interest toward propagation of polarized light in highly scattering media, 
especially biological materials [33]. Mueller matrix, often used to completely characterize sample 
polarization properties [33], allowed decomposition of the total backscattered light of the remote 
probe into multiple scattered reflectance signal Rms(λ) and weakly scattered reflectance signal Rss(λ) 
(Figure 4). Globally, Rms(λ) and Rss(λ) had the same levels of reflectance intensity which varied 
between 1% and 4% except for some Rms(λ) spectra where the intensity reached 5%. Rss(λ) detected 
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photons which have low penetration in the digestate and corresponded to single scattering. This is 
confirmed by the collected Rss(λ) spectra as water absorption bands were less pronounced or 
nonexistent (at 970nm and 1200nm), characteristic of a short optical path in the media. Rms(λ) 
spectra detected photons having a longer optical path in the digestate. Indeed, in contrast to Rss(λ), 
these spectra showed defined absorption bands of water with shapes closer to those of the bands in 
the initial signal Rbs(λ). The main advantage of light polarization in the present study is that the 
method provided several polarization components of the backscattered light related to the studied 
media.  

 
                 (a)                                                                  (b) 

Figure 4: Collected spectra for (a) Rms(λ) and (b) Rss(λ) signals 

4.3. Mono-block PLS model results 

PLS models results on the training set as well as on the test set (LV, RMSECV, RMSEP and R2), 
for mono-block regression, are shown in Table 3 for each response Y.  

Table 3: PLS models results based each infrared signal Rms(λ), Rss(λ), Rbs(λ) and R(λ)  

Training 
Range 
(mg/l) 

Rms(λ) (X1) Rss(λ) (X2) Rbs(λ) (X3) R(λ) (X4) 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

VFA 0 – 13548 5 0.05 3904 3 0.01 4520 11 0.54 2500 16 0.81 1711 

LCFA 0 –  2269 4 0.42 353 7 0.19 412 7 0.31 391 4 0.39 357 

NH4
+ 1180–4090 11 0.27 541 6 0.22 592 11 0.44 474 10 0.43 472 

Test 
Range 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 0 – 10096 5 0.73 1570 3 0.00 2982 11 0.55 2737 16 0.68 2366 

LCFA 0 –  251 4 0.52 275 7 0.00 223 7 0.62 188 4 0.44 110 

NH4
+ 1420–2530 11 0.43 407 6 0.52 313 11 0.57 409 10 0.63 516 

From these PLS model results, it is noted that all RMSEP errors were lower than in training set. In 
the case of LCFA prediction, the test set was really shortened because LCFA is inhibitory at very 
low concentrations in the digester [34] as shown for example in experiment 8. It is therefore 
relevant to predict these low concentrations.  

VFA prediction from Rms(λ) also provides an interesting result as prediction results were way better 
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than cross-validation results. By looking at the convergence curves of calibration and CV errors 
(Figure 5), 2 or 5 LVs could have been used in the model. However, there is potentially an outlier in 
the CV block used because RMSECV increased between these two points. This could explain why 
in CV, model results had less accurate performances than in prediction with 5 LVs. Moreover, the 
CV models b-coefficients variance did not increase until LV number equal to 10 showing that the 
chosen number of LVs is valid [35]. 

   
                 (a)                                                                  (b) 

Figure 5:  (a) Cross-validation and calibration errors for VFA prediction by Rms(λ) (b) Evolution of 
the variance of the values of the regression vector, b, as a function of the number of latent variables 

in the PLS model 

From models with polarized spectra (Table 3), it was shown that VFA and LCFA parameters were 
better modeled by Rms(λ) and NH4

+ by Rss(λ). Rms(λ) provided higher R2 for VFA and LCFA, both in 
training and test, with similar RMSECV and lower RMSEP than with Rss(λ). This is a bit surprising, 
knowing that for strongly scattering samples, multiple scattering will generally give an incoherent 
contribution to the scattering pattern and standardized data analysis tools cannot be applied [36]. In 
contrast, single scattering can provide a straightforward result which will simply link the chemical 
composition to the spectrum as shown for NH4

+ prediction by Rss(λ). However, multiple scattering 
was found to significantly contribute to VFA and LCFA interpretations. This can be explained by 
the particularities of these parameters. For example, LCFA inhibition is accompanied by their 
absorption in the biomass, and flotation phenomena [37-38]. Therefore, LCFA are more present in 
the solid phase of the digestate due to the formation of fats aggregates. As multiple scattering is 
related to photons having a longer optical path and is affected by the presence of particles and 
dispersion in the digestate, Rms(λ) will more likely collect more information about this parameter. In 
the case of VFA, there is no aggregation due to their accumulation in the digestate however, there 
are also fatty acids. The total backscattered reflectance Rbs(λ) provided similar results to the best 
models from Rss(λ) and Rms(λ). For LCFA, prediction results were better with Rbs(λ) (R2 of 0,62 and 
RMSEP of 188 mg/l).  

Model results were globally similar between the two probes tested, except for LCFA. As explained 
above LCFA inhibition results in flotation phenomena which can be fully captured by the polarized 
probe. This probe also has a remote architecture in contrast with the immersed probe which might 
not be able to perceive these compounds due to immersion.  

4.4. SO-PLS model results 

Multi-block models were performed on different combinations of the available signals. The results 
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of these SO-PLS models are summarized in Tables 4, 5, 6 and 7. Both global and incremental 
approaches were tested. In cross-validation, it is worth noting that the combination of components 
giving the lowest RMSECV is not always the best solution. Therefore, to avoid over-fitted models, 
parsimony testing was used, and the best models were chosen between the different RMSECVs. 
The models were then validated on the test set with these chosen combinations of LVs.  
The chosen order of the blocks can influence the final result in SO-PLS models. In this study, this 
influence was not very noticeable. For example, the prediction of LCFA with either Rbs(λ) (X3) and 
R(λ) (X4) or R(λ) (X4) and Rbs(λ) (X3) provided similar results. With X3 & X4, the number of LVs 
was 7-3 with RMSECV of 309 mg/l, RMSEP of 111 mg/l and R2 test of 0.53. While, with X4 & X3, 
in this order, the number of LVs was 4-6 with RMSECV of 284 mg/l, RMSEP of 102 mg/l and R2 
test of 0.57. These results are very similar, especially with RMSEP errors. Therefore, the order of 
the blocks was not further studied and the used order in this study rather privilege the remote probe, 
which gives the possibility of several infrared signals.  

4.4.1. SO-PLS models with the polarized probe 

First, multi-blocks models were performed on signals from the polarized probe for all parameters. 
SO-PLS models were made on Rss(λ) and Rms(λ) (X1 & X2) in order to compare the results with their 
respective mono-block model results and also with Rbs(λ). A second analysis was performed on the 
three signals (X1 & X2 & X3) of the polarized probe as listed in Table 4. 

Table 4: SO-PLS models results based on infrared signals from the polarized probe 

 Global approach Sequential approach Global approach Sequential approach 

Training 

X1 & X2 X1 & X2 X1 & X2 & X3 X1 & X2 & X3 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

VFA 4-11 0.35 3015 5-3 0.08 3800 1-1-14 0.57 2410 5-3-0 0.08 3800 

LCFA 4-0 0.42 353 4-0 0.42 353 4-2-1 0.48 332 4-0-1 0.44 350 

NH4
+ 10-4 0.34 515 11-4 0.31 528 2-0-10 0.51 438 11-4-0 0.31 528 

Test LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 4-11 0.64 1694 5-3 0.74 1481 1-1-14 0.56 2674 5-3-0 0.74 1481 

LCFA 4-0 0.52 275 4-0 0.52 275 4-2-1 0.42 317 4-0-1 0.52 293 

NH4
+ 10-4 0.29 401 11-4 0.4 370 2-0-10 0.55 338 11-4-0 0.4 370 

In table 4, for all parameters, the model results showed that the global approach always provided the 
best models in cross-validation. However, in prediction, the sequential approach provided better 
prediction for all parameters, having higher R2 and smaller errors, with one exception. Both 
approaches came together when models were parsimonious as in the case of LCFA prediction by X1 
& X2 blocks. By analyzing Måge plots of some of these models (Figure 6), it was noted that the 
resulting LVs in the sequential approach was never very far from the combination of LVs selected 
in the global approach. It could be that, the combination with the lowest RMSECV, highlighted by 
the global approach, is not always the best solution. It may be necessary to explore a set of possible 



minimums. 

 
 (a)                                                                  (b) 

Figure 6:  Måge plots (a) for NH4
+ prediction by blocks X1 & X2 (b) and LCFA prediction by 

blocks X1 & X2 & X3. 
(Blue: global approach result. Green: sequential approach result) 

Independently of the approach used, the best SO-PLS models were discussed compared to mono-
block PLS models.  

For VFA, the 2-block (X1 & X2) model performances slightly improved compared to the best model 
mono-block model with Rms(λ) (Table 4). Although R2 was similar (0.73 and 0.74), RMSEP errors 
improved by 7%, from 1570mg/l to 1481mg/l. For LCFA, the model was parsimonious and did not 
involve Rss(λ); which is coherent with the previous mono-block results where there was no 
correlation. NH4

+ prediction did not improve compared to the previous mono-block models.  

While the 2-block (X1 & X2) model performed well (Table 4) compare to X3 for VFA prediction 
(Table 3), it was not the case for LCFA and NH4

+. Indeed, VFA prediction with the two 
decomposed polarized signals improved in comparison with its prediction with the total signal 
Rbs(λ); with R2 from 0.55 to 0.74 and RMSEP from 2737mg/l to 1481mg/l (improvement by 46%). 
However, predictions of NH4

+ and LCFA with Rbs(λ) were still more accurate than predictions with 
these 2-block models. 

SO-PLS models were also performed with the three signals (X1 & X2 & X3) of the polarized probe. 
The general observation of the results of these 3-block models is that they were parsimonious and 
less interesting in prediction than the previous 2-block models. However, their cross-validation 
provided a better result which is interesting because the same CV-blocks were used in all models. 
Depending on the parameters, LVs of the best models were selected either from blocks X1 & X2 or 
from blocks X1 & X3. A multi-block model with all three signals might reproduce this same 
parsimonious pattern. It would be more interesting to focus on synergies between pairs of signals 
from the polarized probe.  

Therefore, several 2-block models were performed with different combinations of the signals from 
the polarized probe: X1 & X3 and X2 & X3. The decomposition of the signal allowed focusing on 
combination of light scattering that can be related to variations of each parameter in the infrared 
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spectra. SO-PLS model results of these 2-block combinations are summarized in Table 5. Again, 
both approaches (global and sequential) were tested. 

Table 5: SO-PLS models results based on infrared signals from the polarized probe 

 Global approach Sequential approach Global approach Sequential approach 

Training 

X1 & X3  X1 & X3  X2 & X3  X2 & X3  

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

VFA 1-12 0.59 2351 5-3 0.08 3810 1-11 0.59 2361 3-4 0.1 3700 

LCFA 4-1 0.44 350 4-1 0.44 350 4-4 0.38 362 7-5 0.41 352 

NH4
+ 3-10 0.48 451 11-8 0.43 471 2-10 0.45 466 6-10 0.42 488 

Test LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 1-12 0.55 2675 5-3 0.74 1481 1-11 0.54 2711 3-4 0.75 1655 

LCFA 4-1 0.52 293 4-1 0.52 293 4-4 0.46 257 7-5 0.42 199 

NH4
+ 3-10 0.58 381 11-8 0.43 454 2-10 0.46 400 6-10 0.52 340 

In these results, the sequential approach again produced better models than the global approach 
except for NH4

+ prediction with X1 & X3. There were no parsimonious models in any approaches. 
Regardless of the approach and the parameter to be predicted, results were very similar for X1 & X3 

and X2 & X3 (Table 5) and also with X1 & X2 (Table 4). For example, VFA prediction with either 
X1 & X3 or X1 & X2 provided the same results with the same number of LVs. Only slight 
differences were observed mainly in the RMSEP errors. This showed that only two signals from the 
polarized probe were needed to capture relevant information on the variations of these parameters. 
At this point, from all models developed with the polarized probe (including mono-block models), 
NH4

+ prediction was better with X1 & X3 (Table 5), VFA prediction was better with X1 & X3 (Table 
5) or X1 & X2 (Table 4) and LCFA with X3 (Table 3).  

4.4.2. SO-PLS models with the polarized probe and the immersed probe 

SO-PLS models were next developed on combinations of signals from the two probes to analyze 
their joint contribution in the prediction of these stability indicators as follows: Rms(λ), Rss(λ) and 
R(λ) (X1 & X2 & X4) and, Rbs(λ) and R(λ), (X3 & X4). The results of these models are summarized in 
Table 6 below. 
 
 
 
 
 
 
 
 
 



 
 
 

Table 6: SO-PLS models results based on infrared signals the two probes 

 Global approach Sequential approach Global approach Sequential approach 

Training 

X1 & X2 & X4 X1 & X2 & X4 X3 & X4 X3 & X4 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

VFA 0-2-16 0.81 1690 5-3-15 0.74 1900 0-16 0.81 1711 11-17 0.76 1814 

LCFA 4-2-3 0.58 297 4-0-3 0.56 304 8-5 0.61 295 7-3 0.56 309 

NH4
+ 2-2-10 0.45 464 11-4-11 0.46 460 10-9 0.63 382 12-10 0.50 446 

Test LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 0-2-16 0.68 2420 5-3-15 0.67 2577 0-16 0.68 2366 11-17 0.70 2188 

LCFA 4-2-3 0.49 244 4-0-3 0.44 201 8-5 0.37 126 7-3 0.53 111 

NH4
+ 2-2-10 0.68 496 11-4-11 0.52 482 10-9 0.65 516 12-10 0.65 558 

 
In this second part, the global approach also provided the best models in cross-validation. However, 
the trend observed in prediction was different than before. Predictions were better in the global 
approach for the 3-block models (X1 & X2 & X4) while the sequential approach performed well 
with the 2-block models (X3 & X4). In the sequential approach, the optimization is performed one 
block after the other. Therefore, it might be difficult to take into consideration the pairing effect of 
the additional blocks. This was not previously spotted because of parsimonious models obtained 
with the previous 3-block models. This effect does not appear on the two-block models, hence the 
results obtained for X3 & X4 with the sequential approach. As before, both solutions were fairly 
close of each other as shown on some Måge plots from these models (Figure 7). In the particular 
case of VFA, Måge plots showed two minimums and the chosen number of LVs respectively 
corresponded to these two minimums (Figure 7b). The data structure and the synergy of the blocks 
used in the models can influence the choice of one approach compared to the other. 
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Figure 7:  Måge plots (a) for LCFA prediction by blocks X1 & X2 & X4 (b) and VFA prediction by 
blocks X3 & X4. (Blue: global approach result. Green: sequential approach result) 

 

The best models were also discussed independently of the approach used. For all parameters, 
predictions with X3 & X4, Rbs(λ) and R(λ), were better than predictions with X1 & X2 & X4 
including the decomposed polarized signal Rss(λ) and Rms(λ).  

The 2-block SO-PLS models of Rbs(λ) and R(λ) have really improved compared to their mono-block 
models. For VFA, R2 improved from 0.55 and 0.68 to 0.70. RMSEP went from 2737 mg/l and 2366 
mg/l in mono-block models to 2188 mg/l in the 2-block model, representing an improvement of 
20% and 7% for Rbs(λ) and R(λ) respectively. NH4

+ was previously better predicted by the immersed 
probe with R2 of 0.63 and RMSEP of 516 mg/l. The 2-block model provided R2 of 0.68 and a lower 
RMSEP of 496mg/l. For LCFA, the prediction was less accurate with the 2-block models (R2 of 
0.53) compared to the best mono-block model (R2 of 0.62). However, the 2-block model provided a 
lower RMSEP (111mg/l) than the best mono-block model (188mg/l). 

To go further in the exploration, 3-block models were developed with the other combinations of the 
polarized probe (X1 & X3 and X2 & X3) and the immersed probe. The results obtained from these 
models, namely X1 & X3 & X4 and X2 & X3 & X4, are summarized in Table 7 below. Except for 
VFA, the global approach provided better predictions of the parameters. The results were also 
similar with prediction with the three blocks X1 & X2 & X4 (Table 6) and some models were 
parsimonious. 

Table 7: SO-PLS models results based on infrared signals of the two probes 

 Global approach Sequential approach Global approach Sequential approach 

Training 

X1 & X3 & X4 X1 & X3 & X4 X2 & X3 & X4 X2 & X3 & X4 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

LV R2 
RMSECV 

(mg/l) 
LV R2 

RMSECV 
(mg/l) 

VFA 0-0-16 0.81 1711 5-3-0 0.08 3810 2-0-16 0.81 1690 3-4-2 0.12 3931 

LCFA 4-2-3 0.63 280 4-1-3 0.60 290 4-4-3 0.58 300 7-5-0 0.41 352 

NH4
+ 3-9-6 0.55 418 11-8-10 0.44 466 3-5-11 0.57 415 6-10-8 0.57 415 

Test LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

LV R2 
RMSEP 
(mg/l) 

VFA 0-0-16 0.68 2366 5-3-0 0.74 1481 2-0-16 0.68 2420 3-4-2 0.78 1343 

LCFA 4-2-3 0.51 245 4-1-3 0.47 229 4-4-3 0.45 192 7-5-0 0.42 199 

NH4
+ 3-9-6 0.62 431 11-8-10 0.47 496 3-5-11 0.63 397 6-10-8 0.54 367 

Predictions of some parameters have improved by these 3-block models, using the two probes:  

- For VFA, the most interesting model is a 3-block model performed with X2 & X3 & X4 (Table 
7), corresponding to polarized signals Rss(λ) and Rbs(λ) and the immersed probe signal R(λ). 



VFA was predicted with a R2 of 0.78 and a RMSEP of 1343mg/l. These results represented an 
improvement of 38.6% compared to the best 2-block model with X3 & X4 (R2 of 0.70 and 
RMSEP 2188mg/l). Compared to results obtained in similarly diluted conditions (low TS 
contents), these multi-block models also presented an improvement. Indeed, with raw sewage 
sludge digestate (with TS < 5%), the models obtained 0.69 ≤ R2 ≤ 0.71 and 160 mg/l ≤ 
RMSEP ≤ 180 mg/l with VFA ranging from 24mg/l to 1500mg/l [13]. The range of validation 
for VFA in the present study is 0-10096mg/l. For a similar VFA range (200-13100 mg/l), R2 of 
0.85 and RMSEP of 900mg/l were obtained with a digester fed with maize silage (high TS 
contents) [39]. Therefore, SO-PLS multi-block analysis has somehow helped to fill the gap 
between the monitoring of digestion with high TS contents and digestion with low TS 
contents.  

- For NH4
+, the 3-block model with X1 & X2 & X4 (Rms(λ), Rss(λ) and R(λ)) in Table 6 also 

produced better results compared to all models tested for this parameter.  
- For LCFA, only Rbs(λ) signal provided the most interesting model (Table 3). No combination 

was able to improve this parameter prediction. There are no studies on digestate matrices for 
LCFA prediction by NIRS. However, the results obtained in this study were coherent with 
studies performed on raw sheep milk which has a consistence similar to the digestate’s (0.60 ≤ 
R2 ≤ 0.76) [40].  

These results collectively show the usefulness of multi-block methods for anaerobic digestion 
process monitoring. 

5. CONCLUSION 

The application of SO-PLS improved the monitoring of AD process through the prediction of state 
indicators such as of VFA, LCFA and ammonium. The obtained results support the finding that 
combining several sources can achieve synergies for an optimized monitoring of the process. With 
regard to each infrared probe, models were also promising especially for LCFA monitoring with the 
polarized probe. Polarization light spectroscopy has helped to improve the understanding of the 
digestate media related to scattering effect.  Moreover, the remote probe compared to the immersed 
has the capacity to avoid saturation and fouling problems which is quite frequent in anaerobic 
digestion. However, the complementarity of these spectroscopic techniques was highlighted through 
this study. As multi-block methods are becoming more common in many fields, several possibilities 
can be considered in AD process monitoring. The monitoring of anaerobic digestion could be 
improved by integrating in these multi-bock data, chemical data from routine analysis performed on 
digesters.  
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