The role of complex vegetation structures in determining hawking bat activity in temperate forests

J. Langridge, B. Pisanu, S. Laguet, Frédéric Archaux, L. Tillon

To cite this version:

J. Langridge, B. Pisanu, S. Laguet, Frédéric Archaux, L. Tillon. The role of complex vegetation structures in determining hawking bat activity in temperate forests. Forest Ecology and Management, 2019, 448, pp.559-571. 10.1016/j.foreco.2019.04.053 . hal-02610214

HAL Id: hal-02610214
 https://hal.inrae.fr/hal-02610214

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
$6{ }^{2}$ UMS Patrimoine Naturel, AFB, MNHN, CNRS, 36 rue Geoffroy Saint-Hilaire, CP41 75005 Paris; 7 benoit.pisanu@afbiodiversite.fr
$8{ }^{3}$ Centre d'Écologie et des Sciences de la Conservation (CESCO UMR 7204), Sorbonne Universités, MNHN, 9 CNRS, UPMC, Paris, France;

The role of complex vegetation structures in determining hawking bat activity in temperate forests

Joseph Langridge ${ }^{1,4}, *$ Benoît Pisanu ${ }^{2,3}$, Sébastien Laguet ${ }^{4}$, Frédéric Archaux ${ }^{5}$, Laurent Tillon ${ }^{4}$
${ }^{1}$ Muséum National d'Histoire Naturelle, la ComUE Sorbonne Universités, 43 rue Buffon, CP51, 75005 Paris, France; langridge88@gmail.com
${ }^{4}$ Direction des Forêts et des Risques Naturels, Office National des Forêts, Réseau mammifère, 2 avenue de SaintMandé, 75570 Paris Cedex 12, France; laurent.tillon@onf.fr
${ }^{5}$ Institut national de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, UR EFNO, Domaine des Barres, F-45290 Nogent sur Vernissons, France. frederic.archaux @irstea.fr
*corresponding author: Langridge88@gmail.com
Full postal address: 24 rue volta, 92800 Puteaux, FRANCE

Abstract

Forests constitute one of the most important feeding and foraging habitats for bats. Because bat populations are declining, most likely due to habitat loss or fragmentation, it is imperative to understand the issues concerned with timber exploitation on bat conservation. We investigated the foraging activity of edge- and open-space foragers in relation to stand and vegetation structure, characteristics that are commonly affected by forestry. Acoustic surveys, culminating to 713 point count sites were undertaken covering 46 different forest massifs across mainland France over 6 years. We used generalized linear mixed models to analyse the activity of ten species; 6 edge-habitat and 4 open-habitat foragers. Pipistrellus pipistrellus was the most detected edge-habitat forager, while Nyctalus leisleri was the most recorded of the open-habitat foragers. Eptesicus serotinus and P. pipistrellus responded positively to heterogeneous vertical vegetation volume. In addition, P. kuhlii and P. nathusii responded negatively to tree basal area. Barbastella barbastellus, Hypsugo savii, and P. nathusii were associated with either ground deadwood and/or logging tracks and minor-traffic roads, confirming the importance of edge space. Finally, B. barbastellus, E. serotinus, and P. nathusii were positively linked to the presence of tree microhabitats. This study demonstrates that bat use in forests is complex and multifaceted. Maintaining ground deadwood and heterogeneity of vegetation, at the forest plot scale, should ensure the ecological functioning of exploited forest systems and the conservation of edge- and open-habitat foraging bats.

Keywords: Chiroptera; Activity; Vegetation volume; Tree basal area; Deadwood; Silviculture; Conservation implications.

1. Introduction

Europe's landscape has been heavily influenced by man for the last several thousand years (Peterken, 1996; Svenning, 2002). As a result, European forests resembling a true virgin state have been largely replaced by production forest systems (Saunders et al., 1991; Jung et al., 2012) surrounded by a matrix of other land uses as overexploitation and inappropriate agricultural practices have progressively fragmented the landscape over time (Saunders et al., 1991). Indeed, this conversion of natural habitats has negative effects on biodiversity(Saunders et al., 1991; Law et al., 1999; Cruz et al., 2016) and is threatening the long-term conservation and sustainabilityof a number of vertebrate(Jones et al., 2009; Cruz et al., 2016), invertebrate (Connor et al., 2002), and plant species (Hanski, 2011; Xiao et al., 2016). Forests are relatively important habitats for the abundance of bats (Kerbiriou et al., 2018), as they provide excellent potential for roosting and foraging (Tillon, 2015a, 2015b; Russo et al., 2016). As a consequence, bats are progressively being included in conservation management plans across Europe and elsewhere (Russo et al., 2016; Tillon et al., 2018). This means that forest managers are being confronted with the challenges of accommodating for biodiversity, in particular for bats, by adapting silvicultural approaches in exploited forests.

Silvicultural practices make products suitable for human consumption, but indirectly manipulate supplies of water, nutrients and solar radiation with the removal of undesired trees (Guldin et al., 2007). Over time, changes to the composition, structure and stratification i.e. the arrangement of vegetation in layers of a forest, occur as the stand is manipulated towards the desired future condition (Guldin et al., 2007). Changes to the composition and structure can, at least in the following decades and sometimes definitively, alter the habitat quality of a given site (Russo et al., 2010), because they directly affect the availability of roosting sites and feeding opportunities for bats (Graves et al., 2000; Hayes and Loeb, 2007; Russo et al., 2010). Also, in forests exploited for timber production, the number of available trees with cavities that can be used by bats is generally low, as young vigorous trees are favoured for wood production (Russo et al., 2010; Ruczyński et al., 2010; Tillon et al., 2018). Less than 1% of Quercus robur trees of 100 years old or less were shown to form a cavity, compared to 50% of trees aged between 200 and 300 years old (Ranius et al., 2009). The majority of European forests are subject to timber harvesting, which presents a considerable constraint to the biodiversity associated with tree microhabitats as many species directly depend on tree cavities during their life cycles, notably for food, shelter, and reproduction (Entwistle, 2001; Kunz and Lumsden, 2003; Larrieu et al., 2013). Furthermore, forestry changes the spatial arrangement of vegetation (Guldin et al., 2007; Jung et al., 2012; Willcox et al., 2017). This can have a profound impact on animal movement, important for small mammals e.g. red squirrel (Laguet, 2012), but especially for flying animals that
must navigate through foliage from the ground to the canopy (Arlettaz et al., 2001; Jung et al., 2012; Müller et al., 2013). In contrast to silviculture-based clearcutting, intermediate treatments such as successive thinning to gradually reduce competition of plants in a stand may temporarily decrease density and favour flying animals such as bats (Graves et al., 2000; Patriquin and Barclay, 2003; Guldin et al., 2007). However, such actions may negatively influence the availability of foliage-dependent insects by reducing vegetation, which would be problematic as they constitute a major food source for bats (Kaňuch et al., 2005a, 2005b; Müller et al., 2012). As bats provide fundamental ecosystem services such as predation (Jones et al., 2009; Jung et al., 2012; Barataud, 2015; Russo et al., 2016) by contributing to the control of leaf-eating insects in temperate forests (Jones et al., 2009; Kunz et al., 2011; Müller et al., 2012) their conservation is of important interest to sustainable forest management. Unsurprisingly, bat species richness and abundance is noticeably higher in forests that resemble a natural state (Russo et al., 2010; Law et al., 2016), perhaps in direct response to a greater presence of certain forest environments, linked to the abandonment of logging practices, such as deadwood and tree cavities (Hayes and Loeb, 2007; Law et al., 2016; Russo et al., 2016; Tillon et al., 2018).

While the responses of birds to different forest environments have been well documented in Europe and elsewhere (e.g. Bradbury et al., 2005; Morante-Filho et al., 2015; Terraube et al., 2016), bat responses to forest parameters remain comparatively under studied. In addition, studies on bats and forests are, more often than not, based on a limited number of selected forest massifs (e.g. Russo and Jones, 2003; Willcox et al., 2017), and few studies have attempted a nationwide approach. However, it is very likely that the complex three-dimensional arrangement of vegetation in managed stands affects bats differently to birds and leads to a separation of bat assemblages as species-specific morphology and echolocation call structure pose maneuverability and foraging challenges (Schnitzler \& Kalko 2001, Adams, et al., 2009, Müller et., 2012, Jung et al., 2012).

Small hawkers (bats that forage close to or at the edge of vegetation hawk insects in the air) (e.g. Pipistrellus spp.) have a higher wing aspect ratio and faster flights than their gleaning counterparts (bats that forage within dense vegetation and glean insects from the substrate such as leaves, branches and the ground) (Schnitzler and Kalko, 2001; Denzinger and Schnitzler, 2013). They thus require open spaces, such as forest gaps, paths, corridors, and edges even if they still hunt foliage-dependent insects (Norberg and Rayner, 1987; Denzinger and Schnitzler, 2013; Bouvet et al., 2016; Caras and Korine, 2009). Contrary to small bats, large hawkers (e.g. Nyctalus spp., Eptesicus spp., Tadarida spp.) are more adapted to a long-range pursuit of aerial insects above the vegetation (Jung et al., 2012; Denzinger and Schnitzler, 2013), notably due to the fact that this group emits low frequency echolocation calls which are better adapted to open habitats as echoes from background vegetation reach the bat
later and do not disturb their detection of prey (Brigham et al., 1997). Consequently, the differences in forest structure and stratification should affect hawking bat activity.

Here, with the use of Barataud's identification tools (Barataud, 2015) and the accumulation of six years of data, culminating to 713 point count sites across 46 different forest massifs in metropolitan France, we present data linking forest environments in managed stands to bats. We expected edge- and open-habitat foraging bat activity to increase in forest zones of high vegetation heterogeneity, as this is known to positively influence insect richness (Haddad et al., 2009) and should provide free-space within forests (Müller, et al., 2013). Equally, we expected these two bat guilds to use edge-space features such as logging tracks and minor-traffic roads as they may allow clutter intolerant species to navigate in and around a given forest stand (Kirkpatick et al., 2017).

Hence, the specific aims of our study were; 1) to assess how the activity of identified hawking bat species (i.e. not analysing bat calls only determined to bat genus) responds to stand structure and vegetation stratification, while also taking into account the influence of deadwood and the presence of tree cavities; 2) To use the findings to highlight appropriate conservation measures in a sustainable forestry context.

2. Materials and Methods

2.1 Study area

We carried out acoustic surveys covering 46 different forests in mainland France. Each biogeographical region was represented. In all, data from 18 forests in the Continental region, 13 forests in the Atlantic region, 7 from Alpine and 8 from the Mediterranean were included in a national scale analysis. Across the 46 forests, a total of 713 point counts were undertaken. At the forest plot scale, a number of point counts were conducted in order to account for various forest environments, such as different age/growth stages, edge-space, different compositions (i.e. dominant tree species), and areas of varying presence of tree cavities, all across a range of even- and unevenaged stands (with and without understory) from lowland to alpine regions.

2.2 Bat acoustic surveys

Ultrasound detection is an indirect, effective and non-invasive technique which provides "access" to bats across all forest habitat types. It is one of the most commonly used methods (Jennings et al., 1997; Brigham et al., 2004; Barataud, 2015; Tillon et al., 2016). Accordingly, in order to assess bat activity in relation to forest stand predictors, bat acoustic surveys were carried out in forest plots at least 200 meters apart, across France in from 2011 to 2016.

All lowland forest stands were surveyed by a pair of trained chiropterologists applying a protocol which included two 30 minute surveys (hereafter referred to as MCD30), one in summer and one in autumn. Similarly,
all alpine and Mediterranean forest stands were surveyed by a pair of chiropterologists carrying out two 45 minute point counts, in summer and in autumn (hereafter referred to as MCD45). Note, it was not possible to survey in spring in mountainous terrain due to the sometimes extreme metrological conditions (i.e too much snow) which impedes access to the forest, and significantly reduces bat activity. It is assumed that bat hibernation endures longer in alpine regions with reduced activity in spring (Kaňuch and Krištín, 2006; Widerin and Reiter, 2017). Thus, spring surveys in lowland forests were not analysed.

All survey start times were between 30 minutes and 3 hours after time of sunset. Bat activity was quantified using bat detectors: Petterson D980, Petterson D240x with numeric recorder Marantz PMD620MKII, or HP tablet with Soundchaser \& Dodotronic microphone positioned at $0.5-1 \mathrm{~m}$ above ground, at a vertical angle of 45 degrees. At each point count site, two observers continually listened for all possible Chiroptera calls using the detector's heterodyne mode, which required each chiropterologist to scan the entire $10-120 \mathrm{kHz}$ frequency band. When a bat echolocation call was detected, the sequence was manually recorded for post-identification using the software Batsound 3.3 (Pettersson Elektronic ${ }^{\text {TM }}$), and following the methods of Barataud (2012). The method allows the user to identify the species (or bat genus) by comparing the recorded echolocation call with Barataud's referent frequency ranges. Additionally, at each point count location, we recorded temperature $\left({ }^{\circ} \mathrm{C}\right)$ as this is known to influence bat activity (Kerbiriou et al., 2018a) and time elapsed after sunset was calculated in order to account for the variability of species detection in relation to time of emergence (Russo et al. 2007). This was achieved with the aid of the website https://promenade.imcce.fr/en/pages5/51.html. GPS location and date were needed to retrieve official sunset times. Having recorded all point count start times we were able to compute minutes after sunset.

2.3 Analysing bat calls

All ultrasounds were recorded in time expansion (x10) for identification. The bat calls were manually identified to species level, verified by referents, or to genus level if it proved impossible to distinguish bat calls. In this study, we only analysed bat signals identified and confirmed to species level, eliminating ambiguity but reducing amount of data analysed. In accordance with a number of studies (e.g. Zukal and Řehák, 2006; Bartonička and Řehák, 2007; Müller et al., 2013) bat activity was formatted as minute counts minimising possible observer effects that may occur when classifying bat passes using smaller time scales and when several bats are present at the same time and at the same point. This interval length has also been shown to be a superior choice to longer intervals when measuring bat activity in forest habitats (Müller et al., 2013). Since we only analysed bat calls confirmed to species level and not to the genus level such as previous studies (e.g. Jung et al., 2012; Kirkpatrick et al., 2017;

Willcox et al., 2017), we were unable to model the activity of Nyctalus lasiopterus and Eptesicus nilssonii alone due to the difficulty of assigning ultrasound calls to the species, likewise for Vestertilio murinus.

2.4Forest Habitat Description

All forest habitat characteristics were measured and recorded by teams of experienced forest technicians during the months of July and August. To collect data in the forest, a circular basal area plot measurement (25 m radius) was centered on the bat detector location.

2.4.1 Assessment of stratification

To describe the arrangement of vegetation across the vertical profile of the forest, the vegetation clutter from the ground to the canopy was initially visually recorded as a percentage of the "closure of vegetation" i.e. all vegetation and obstacles impeding the flight of a bat (trees, leaves, twigs, branches...) to the nearest 10%. The observer at ground level estimated this percentage for 8 forest strata ($<0.5 \mathrm{~m} ; 0.5-1 ; 1-2 ; 2-4 ; 4-8 ; 8-16 ; 16-32$; >32). After which we converted this percentage to a volume $\left(\mathrm{m}^{3}\right)$. This was viewed as the most appropriate method so as to account for potential observer effects, and to model activity in relation to a quantitative variable. We defined volume as:

$$
\begin{equation*}
\text { volume by layer }=\pi \times r^{2} \times h \times \frac{\text { clutter }(\%)}{100} \tag{1}
\end{equation*}
$$

where r is the radius of forest survey site (i.e. 25 m), h is the height of the stratum described and clutter is the "closure of vegetation". In order to fully answer the question of stratification: vegetation volume at three principal strata was calculated. 1) $0-4 \mathrm{~m}$ representing the shrub layer, 2) 4-16m, representing the understory, and 3) $16->32 \mathrm{~m}$, the canopy tree layer. A Shannon index (Peet, 1974; Hill, 1973; Heip et al., 1998) was applied in order to quantify the heterogeneity of vegetation volume across the three different forest layers. We defined heterogeneity as:

$$
\begin{equation*}
\mathrm{H}^{\prime}=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i} \tag{2}
\end{equation*}
$$

where H^{\prime} is the Shannon-wiener index and p_{i} is the proportion of vegetation at each height interval.

2.4.2. Assessment of stand structure

Total basal area (TBA) was the chosen explanatory variable for measuring stand structure in relation to bat activity. TBA is the cross-sectional area at diameter breast height (DBH) (1.3 m above the ground) measured in m^{2}. Total BA of each plot was achieved with the use of a Relascope set to a basal area factor of 1 (Edwards, 1983;

Bitterlich, 1984). In parallel, four different size classes for living trees were identified: small trees ($=>17.5 \mathrm{~cm}-$ $27.5 \mathrm{cmat} \mathrm{DBH})$, medium trees $(27.5 \mathrm{~cm}-47.5)$, large trees $(47.5 \mathrm{~cm}-67.5)$ and very large trees $(>67.5 \mathrm{~cm})$.

2.4.3 Assessment of associated deadwood and tree-microhabitats

We included two variables describing presence of deadwood. 1) ground-lying deadwood was recorded, in steres (st), a unit of volume from the original metric system equal to one cubic meter of stacked wood (Rehnus et al., 2013). We identified two parameters from our dataset: i) less than 3 steres, ii) more than 3 steres. 2) A Standing deadwood variable was described as a score, calculated by applying a weighted coefficient to the size of snags (only taking into account snags larger than 17.5 cm in diameter and a height of 1.3 m) present at the forest plot. The same diameter classes used for living trees were applied to standing deadwood. The highest coefficient was applied to Very Large Snags (i.e. $>67.5 \mathrm{~cm}$) as greater volumes of standing deadwood are associated with insect abundance (Dajoz, 2007), and tree related microhabitat diversity and abundance (Ruczyński et al., 2010; Larrieu et al., 2013; Tillon and Aulagnier, 2014). Thus, small snags were assigned a coefficient of one, medium-sized snags a coefficient of two, large snags a coefficient of three, and very large snags a coefficient of four.

In addition, we assessed the influence of tree microhabitats independently; a binary predictor (presence/absence) and a discrete variable (number of different microhabitat types present per site) were modeled, as the positive relationship between bats and tree cavities is already known (e.g. Regnery et al., 2013a, Paillet et al., 2018). All microhabitats were searched and recorded at the plot scale by The French National Forest Office staff. A maximum of five different tree microhabitats, potentially usable as bat roosts, were observed: woodpecker hollows, crevices, peeling bark, decay cavities, and other natural holes.

2.4.4 Assessment of edge effects

Finally, we observed the presence (or absence) of three edge-space features common in production forest systems, 1) logging tracks, 2) low-traffic roads, and 3) forest limit/edges. Forestry tracks are common in production forest systems as access by truck to logging sites is necessary. Also, low-traffic minor B-roads may commonly traverse forest massifs between rural villages. We decided not to analyse these habitat elements separately. Thus, we modelled 'positive edge effects' against bat activity as a single binary variable (i.e. if only one or all three features were present at the same time) at the local scale (recording their presence when within 200 m from point count location), because such linear forms may be advantageous for bats, either as flight paths or feeding sites (Verboom and Spoelstra, 1999; Kirkpatrick et al., 2017).

2.5 Statistical analyses

All statistical analyses were carried out in RStudio 1.1.463 with R 3.5.2 (see Supplemental Materials 1-10). We used packages glmmTMB for performing generalized linear mixed models (GLMM: Bolker et al., 2009) and $n c f$ for detecting spatial auto-correlation. In addition, emmeans and Plot packages were used in order to compute least-square means for comparison of categorical factors and for producing graphs.

In order to respect the assumptions of GLMM, analysis included the following stages:
Firstly, all predictors selected for inclusion in the models were tested for collinearity, avoiding those correlated with a person's coefficient greater than 0.27 in the same maximal model. Additionally, we performed varianceinflation factors (VIF) for the continuous and categorical explanatory variables to further check for multicollinearity (Seavy et al., 2005; Zuur et al., 2009; Crawley, 2009). If inflation factors were >2, the variable in question was not included in the maximal model (Zuur et al., 2009). Biogeographical regions, forest composition, and sampling method were systematically collinear over the years, indicating unequal sampling of forest types within biogeographical regions over time. These variables were therefore included as random intercepts in the GLMMs in order to cope with the variance heterogeneity arising from such sampling bias. Secondly, because analyzing data which include geographical locations, it is statistically likely that point counts close in space and/or time will have similar bat activity therefore implying spatial and temporal autocorrelation (Zuur et al., 2009; Kerbiriou et al., 2018). We thus performed correlograms for verification (Zuur et al., 2009). We did not detect spatial autocorrelation for points within 5 km (steps by 250 m ; see Supplemental Materials 1-10) when Forest site was added as a random intercept (in order to correct for spatial autocorrelation). Adding a year random intercept also improved variance modeling. Thus, our models were structured as follows:
[Activity] ~ Method + Season + Temperature + Time from sunset + Vegetation volume heterogeneity + Tree basal area + Microhabitats + Ground deadwood + Standing deadwood + Positive edge effect $+(1 \mid$ Forest massif $)+$ $(1 \mid$ Year $)+(1 \mid$ Bigeographical region $)+(1 \mid$ Forest composition $)$.

Furthermore, in order to account for false zeros (Zuur et al., 2009), we systematically eliminated point count data from forests where the species in question is known to be absent. For example, Hypsugo savii and Tadarida teniotis are not present in much of northern France and the Atlantic coast (cf. "INPN - National Inventory of The Natural Heritage Program'), subsequently surveys carried out in these regions were not included in the analysis of these species (Table 2). Very few records of P. pygmaeus were found in all the forests investigated within Alpine and Atlantic regions (Table 2), which were therefore also discarded from its analysis.

All continuous predictor variables entered into the maximal model were centred around a mean of zero (Burnham and Anderson, 2002; Zuur et al., 2009). Furthermore, bat 'activity’ was expressed as minute counts (or
positive minutes) rather representing a relative activity index. Subsequently, we treated relative activity as number of minutes in which a bat species signal was recorded over the total number of minutes spent at the survey site (i.e., 30 or 45 depending on sampling method). Thus, due to the nature of the response variable and potential overdispersion we chose the best error distribution among Poisson, a negative binomial distribution with a logit link (in similar fashion to Kerbiriou et al., 2018). All model dispersion parameters ranged from 0.90 to 1.28 demonstrating good model fits (Table 3).

3. Results

During 49980 minutes from surveys, we detected a total of 13 hawking bat species during summer and autumnacoustic surveys.Around 70% of total bat activity of studied hawkers was allocated to P. pipistrellus. Thespecies was detected in all regions and forest types with a mean activity ranging from 3.65 ± 1.83 to 8.63 ± 2.92 (Table 2). Of the large hawkers, N.leisleri was the most detected (and in all regions and forest types), mean activity was highest in dominant conifer stands in Mediterranean regions. N. noctula had the lowest mean activity levels, zero minute counts were assigned to the species in Alpine and Mediterranean regions.

3.1 Responses to Survey Method and Season

Only one open-habitat forager species responded to survey method (Nyctalus noctula), its activity being greater in lowland forest surveys (i.e. MCD30 method) when compared to the alpine survey protocol ($p=0.005$; Table 3). All large hawkers except Nyctalus leisleri, which showed no effect, appeared more active in summer than in autumn. Concerning edge-space foraging bats, all species' activity seemed evenly distributed across survey methods. Although, H. savii ($p=0.036$; Table 3) and P. kuhlii ($p=0.003$; Table 3) both appeared more active in summer than in autumn, respectively, while P. nathusii was more active in autumn ($p=<0.001$; Table 3). However, B. barbastellus, P. pipistrellus, and P. pygmaeus did not show any temporal differences.

3.2 Responses to Temperature and Time after sunset

Eptesicus serotinus was the only open-habitat forager to respond positively and strongly to temperature ($p=$ 0.002; Table 3). N. leisleri, N. noctula and T. teniotis showed no response (Table 3). E. serotinus and N. noctula both responded negatively and significantly ($p<0.001$; Table 3), respectively, to time elapsed after sunset. Equally, only one small hawker responded to temperature, P. nathusii activity being positively influenced ($p=<0.001$; Table 3). In addition, three species of small hawkers responded negatively to time elapsed after sunset (B. barbastellus, $p=<0.001$; H. savii, $p=<0.001 ;$ P. kuhlii, $p=<0.001$; Table 3).
3.3 Responses to Vegetation volume heterogeneity and Basal area

Eptesicus serotinus was the only large hawker to respond positively to the Shannon diversity index on vegetation volume across the vertical forest profile ($p=0.005$; Table 3; Fig. 1). All other large hawkers were unaffected. Concerning tree basal area, no open-habitat forager responded to this forest variable. Regarding small hawkers, Pipistrellus pipistrellus was positively associated with vegetation volume diversity across the vertical forest profile ($p=<0.001$; Table 3; Fig. 2). However, no other edge-habitat forager responded to vegetation volume diversity. Both P. nathusii ($p=0.010$; Table 3; Fig. 2) and P. kuhlii ($p=0.027$; Table 3; Fig. 2) demonstrated negative responses to tree basal area, respectively. No other small hawker responded to this forest variable.
3.4 Responses to Tree microhabitats

Here we tested different hypotheses as not all species target the same tree cavity type (see Table 1 for $a ̀$ priori hypotheses). Regarding large hawkers, Eptesicus serotinus responded positively and significantly to the presence of woodpecker hollows and/or crevices ($p=0.035$; Table 3; Fig. 1). However, the activity of N. leisleri, N. noctula and T. teniotis did not appear affected by tree cavity presence. Only two bats from the edge-habitat foraging guild responded to the presence of tree microhabitats; the activity of B. barbastellus ($p=0.001$; Table 3 ; Fig. 2) and P. nathusii ($p=0.036$; Table 3; Fig. 2) was positively associated with the presence of crevices and/or peeling bark.

3.5 Responses to Deadwood environments

No open-habitat forager responded to the presence of ground deadwood. However one species, that of Nyctalus noctula, appeared negatively associated with standing deadwood at the forest plot scale ($p=0.041$; Table 3 ; Fig. 1). Equally, Eptesicus serotinus demonstrated a negative trend in relation to standing deadwood but no significance was confirmed ($p=0.067$; Table 3). With regards to small hawkers, P. nathusii responded positively to forest zones where ground deadwood exceeded a quantity of three steres ($p=<0.001$; Table 3 ; Fig. 2) , while no other small hawker appeared associated with ground deadwood volume. Lastly, only P. pipistrellus appeared affected by standing deadwood, its activity was weakly negatively associated ($p=0.044$; Table 3).

3.6 Responses to Positive edge effects

Interestingly, no large hawker appeared positively linked to such linear features. In fact T. teniotis even demonstrated a negative response ($p=0.021$; Table 3; Fig 1.). Contrary to large hawkers, three edge-habitat foraging bats seem more active where logging tracks, minor-traffic roads and/or forest edges are present; B. barbastellus ($p=0.043$; Table 3; Fig. 2), P. nathusii ($\mathrm{p}=<0.001$; Table 3; Fig. 2) and H. savii $(p=0.033$; Table 3; Fig. 2) all showed a positive response, respectively. Moreover, P. pipistrellus demonstrated a weak positive trend to such linear forms ($p=0.065$; Table 3).

4. Discussion

The findings demonstrate that hawking bats do not all respond to forest habitats in the same manner and that detection rates vary. Indeed, the results for large hawkers may need to be interpreted with caution as these openhabitat foragers predominantly use the zone above the canopy (Müller et al., 2013). Therefore, monitoring these species from within forest stands (and without of a microphone positioned at canopy level) will likely fail to accurately measure their flight behaviour (Collins and Jones, 2009; Müller et al., 2013), even if they project their echolocations signals far and are capable of detecting prey over long distances (Denzinger and Schnitzler, 2013). This could explain the observed underestimation of activity. Equally, Müller et al. (2013) and Rydell et al. (2010) demonstrate that P. pipistrellus activity increases with stand height, therefore a microphone at ground level may not be sufficient despite the species being common across all stand types. Furthermore, our method of both assessing bat calls uniquely confirmed to species level (i.e. to the lowest taxonomic rank) and partitioning records at the minute timestamp may have reduced explanatory power. A more robust method may be to format bat calls as "total activity" assigning each echolocation signal to a 5 second interval (e.g. Tillon et al., 2016). In addition, caution should prevail when extrapolating weak trends due to our method bias of using multiple bat detectors.

4.1 Effects of vegetation volume heterogeneity

Of the open-space hawkers, E. serotinus responded strongly and positively to the Shannon diversity index of vertical stratification. It is unsurprising that Tadarida teniotis did not respond to this variable as the species is known to fly particularly higher above trees and at greater speeds than the other bats in this guild (Marques et al., 2004). Although E. serotinus has been predominantly described as an open-space forager, the growing literature would make it seem that the species may be able to adapt and exploit forest interiors if there is sufficient heterogeneity in vegetation volume allowing for manoeuvrability. Plank et al. (2012) revealed that E. serotinus was more active at ground level than at canopy level in broadleaved stands, which would confirm its ability to forage at lower forest levels suggesting a certain capacity to use the full forest profile if empty space is available. Additionally, Collins and Jones (2009) found that ca. 7\% of bats at ground level were Nyctalus/Eptesicus. However, this increased heterogeneity of the vegetation structure may also promote greater insect abundance (Haddad et al. 2009; Jung et al., 2012) and subsequently increase bat activity due to higher prey availability (Jung et al., 2012). Furthermore, in our study, one edge-habitat forager; P. pipistrellus also revealed a positive association with the Shannon diversity index (H'). Since the index represents heterogeneity of vegetation volume between the three measured strata, it implies several scenarios. For instance, if there is little clutter in one layer (e.g. 4-16m) and a varied amount of clutter in the canopy or shrub stratum, a high value of H' is the result due to the difference in vegetation volume between the three principal forest layers. Thus, should a lack of vegetation exist at one of the
height intervals or if a vegetation layer is entirely missing, then this may allow edge-space or open-space bats, which possess greater wing loading (Schnitzler and Kalko, 2001; Denzinger and Schnitzler, 2013), to forage in the interior of the forest. In the case of even-aged managed plots, when trees reach a mature age, vegetation volume is largely concentrated in the canopy stratum resulting in a comparatively clear understory and subsequently heterogeneity between vegetation layers. Further research is required in order to conclude if large hawkers target even-age stands. Conversely, the index illustrates that if vegetation volume is similar in each vegetation layer then homogeneity exists across the vertical forest profile and a lower value of H^{\prime} is calculated. This is often the case in uneven-aged stands (like in traditionally managed French mountain stands) as the canopy, understory and shrub layer can exist simultaneously as different tree ages are desired. Our findings are in contrast to Froidevaux et al.(2016) who found that heterogeneity in 'vegetation scatter' reduced the detection of 'medium-range echolocaters' such as Pipistrellus spp. In our study, the only species to show a negative relationship, albeit weak, was that of N. noctula.

4.2 Effects of stand structure

Two species responded negatively and significantly to tree basal area ($\mathrm{m}^{2} / \mathrm{ha}$). In line with our predictions (Table 1), P. nathusii, and P. kuhlii which commonly use the edges of forests, appear to avoid dense zones. Their morphology i.e. high wing ratios (Norberg and Rayner, 1987; Schnitzler and Kalko, 2001; Jung et al., 2012) and quicker flight (Denzinger and Schnitzler, 2013) are clearly two attributes that hinder navigation in dense space (Rainho et al., 2010). Generally, this bat group do not have the echolocation call structures adapted to zones that require signal recognition where high background vegetation interference prevails (Arlettaz et al., 2001; Schnitzler and Kalko, 2001; Hiryu et al., 2008; Denzinger and Schnitzler, 2013). Even though a high tree basal area in exploited forests systems is typically associated with mature stands, therefore a greater proportion of large to very large diameter trees leading to a greater quantity of vegetation located at canopy level, it may also correspond to young dense (regrowth) forests when several small diameter stems are desired. Subsequently a high BA of living trees should also be linked to greater vegetation clutter. Vegetation would therefore limit access to a site for edge foraging species (Pipistrellus spp.) (Hayes and Loeb, 2007; Tillon et al., 2016). Contrary to our initial hypotheses, there was a lack of ecological responses by bats to basal area. We suggest that total BA as a variable may not be adapted to explaining the ecology of bats, and that a true measure of density i.e. number of stems at the plot scale would be more conclusive (e.g. Kirkpatrick et al., 2017).
4.3 The presence of tree cavities

Indeed, an increased presence of tree microhabitats is associated with higher bat activity most likely due to a greater availability of potential bat roosts (Russo et al., 2004; Tillon and Aulagnier, 2014; Tillon et al., 2015). In our study we confirmed that P. pygmaeus showed higher activity where a greater diversity of microhabitats were present, albeit a weak trend ($p=0.050$; Table 3). While B. barbastellus and P. nathusii both appear positively associated to the presence of crevices and/or peeling bark. In addition, a positive link between the presence of woodpecker hollows or crevices and E. serotinus activity was confirmed. Although loose bark provides a less stable microclimate than woodpecker holes, especially during unfavourable weather (Greenaway, 2001; Russo et al, 2004), B. barabstellus and P. nathusii may take advantage of such microhabitats so as to avoid competition from birds and other mammals (even bats) for more stable cavities (Russo et al., 2004). Indeed bat species that seek out less stable roosts often have a more pronounced roost-switching behaviour (Barclay and Kurta, 2007; Hillen et al., 2010). Concerning B. barbastellus, non-lactating females can change roosts as regularly as every 2.0 ± 1.8 days (Hillen et al., 2010). Thus, it may not be imperative to compete for more stable roosts if such a quick turnover is feasible. Equally, for many small tree-dwelling European bat species, colonies do not exceed a few dozen individuals per roost thus allowing for the selection of temporary roots such as exfoliating bark (Tillon et al., 2018). On the contrary, larger bat species such as E. seronitus prefer more durable cavities such as woodpecker hollows or crevices, which are commonly selected at the tree crown height (Tillon, 2015). E. serotinus are known to accommodate greater numbers of individuals per roost (Catto et al., 1995). Thus, woodpecker holes might be the most appropriate cavity type (Catto et al., 1995; Russo et al., 2004).

4.4 The presence of deadwood

Only P. nathusii was positively associated to forest zones where the presence of ground deadwood was in excess of three steres, independent of other variables. Such quantities may represent fallen branches or tree crowns thus resulting in temporary gaps or clearings in the canopy and understory, amplifying edge effects (Kirby et al., 1998; Tillon et al., 2016; Bouvet et al., 2016). Therefore, these zones may be particularly favourable to edgespace foraging bats because space previously occupied by healthy tree now remains empty. Tillon et al. (2016) revealed that bat occurrences significantly increased after a threshold of $110 \mathrm{~m}^{3} / \mathrm{ha}$ of ground deadwood. Ground deadwood should also provide a food source of saproxylic insects or deadwood dependent Lepidoptera for opportunistic hawkers (Tillon, 2015; Bouvet et al., 2016). Furthermore, large quantities of ground deadwood could encourage an indirect ecological phenomenon, that of allowing sunlight to arrive to the forest floor and increase local temperatures during the first hours after sunset, providing an interesting microhabitat for many flying insects which are consequently preyed upon by bats (Rydell, et al., 1996; Dajoz, 2007; Müller et al., 2012;

Tillon et al., 2016). The activity of P. nathusii and E. serotnius both seem to increase in relation to temperature, with the latter also appearing crepuscular, which may support our hypothesis. Curiously, we did not find a positive relationship to standing deadwood which was against our initial hypothesis (see Table 1), as such features are often associated with cavity roosting bats and bat prey (Dajoz, 2007; Russo et al., 2004; Ruczyński et al., 2010; Tillon et al., 2015). Contrary to the findings of Tillon et al. (2016), N. noctula appears negatively affected by greater standing deadwood. This must in certain circumstances suggest a concentration of dead branches, which constitute obstacles for fast flying species, and present potential collision risks, as a result such zones might be avoided. Equally, a greater presence of snags may indirectly represent a proxy for an open canopy. Given Nyctalus sp. prefer closed canopy structures (Müller et al., 2013), this may explain the reason for its negative response. Similarly, P. pipistrellus was less active in the vicinity of standing deadwood. This negative association may be linked to a lack of prey source, as snags no longer provide the foliage needed for the development of insects (such as Diptera or phytophagous Lepidoptera) which also constitute part of its diet (Swift, et al., 1985; Tillon, 2015).

4.5 Use of forest edges

We were unable to demonstrate any associations at a local scale between open-habitat foragers and positive edge effects. In this study, given that a positive edge effect denoted the presence of three possible features; logging tracks, low-traffic roads and/or edge of forest massif (either one feature alone or all at the same time) appears to suggest that this bat group, which target more regularly the space above the trees, is not particularly affected by the presence of such features. Large Hawkers are able to perceive echoes from features that resemble forest edges from over 30m away (Denzinger and Schnitzler, 2013). It is thus possible that the scale perceived, or indeed the method used (lack of microphone at height) does not allow for this type a relationship to be confirmed. It is likely that the distances (and heights, and great speeds especially for T. teniotis) (Marques et al., 2004; Roemer et al., 2017) covered by these species from their diurnal roosts, of several kilometers, prevents any statistical link being established.

On the other hand, small hawkers that tend to exploit edge-space appear positively affected. The relative activity levels of three species B. barbastellus, P. nathusii, and H. savii highly and significantly increased when these features were present within a 200 m radius, moreover P. pipistrellus also demonstrated a positive trend towards such linear features. Edges of this nature may provide the opportunity for clutter-intolerant species to navigate more easily from one feeding site to another (Kirby et al., 1998; Law and Chidel, 2002; Hein et al., 2009; Morris et al., 2009; Heer et al., 2015). Likewise, with a greater foliage surface available from the ground to the
canopy, the edge could offer a better three-dimensional foraging terrain. Trajectography and image technologies should help to confirm this hypothesis. At the same time, forest edges may provide protection from wind for weak flying insects such as Diptera, among other taxa, causing an aggregation of prey blown in from adjacent less cluttered zones (Verboom and Spoelstra, 1999; Kirkpatrick et al., 2017). Additionally, for small bat species commuting to different foraging sites, logging tracks and low-traffic roads, in particular, could provide protection from predators (Verboom and Spoelstra, 1999; Kirkpatrick et al., 2017). Thus, higher activity levels close to logging tracks support the hypothesis that linear landscape features can facilitate the flight of bats, especially for edge-habitat foragers (Verboom and Spoelstra, 1999; Adams et al., 2009). However, while tracks appear to be important fight paths for bats, caution must prevail because an increase of activity in the vicinity of tracks does not necessarily represent an amelioration of the forest habitat quality (Adams et al., 2009), as bats are renowned opportunistic hunters (Mûller et al., 2012).

5. Conclusion

Our study demonstrates that even bats from similar ecological guilds vary in the way they use forests. Vertical structure, vegetation volume, presence of deadwood and microhabitats all play a role in determining their activity in woodlands. However, our results are, to an extent, 'incomplete' further suggesting the necessity to use microphones at/or above the canopy level (Adams et al., 2009; Müller et al., 2013). The scientific literature on bats has been accumulating over the last decade, however long-term studies e.g. Barlow et al., 2015, Azam et al., 2016, Kerbiriou et al. 2018a, Kerbiriou et al., 2018b, still remain in the minority, which may be important in order to determine temporal effects (Maron et al., 2005; Kerbiriou et al. 2018a), and bat responses in years following silvicultural treatments (Patriquin and Barclay, 2003). The varying flight behaviour of hawkers observed in our study could also be due to treatment practices. Even though recent studies have demonstrated the relationships between management, tree microhabitats and vegetation (e.g. Regenry et al. 2013a, Paillet et al. 2017), in future studies we highly recommend testing management practices directly. Because lowland forests treated as even-aged or coppice with standards should demonstrate varying vegetation clutter given that typically a single dominant stratum exists whereas the reverse would be expected for uneven-aged stands in French mountain sites. A categorical variable of such may further shed light on these cryptic animals.

5.1 Management recommendations for the studied hawkers

Given that there are differences in the ecological functioning of forests, i.e. different compositions, stratification and structure, combined with various silvicultural approaches that indirectly manipulate growth
conditions (Guldin et al., 2007), proposing relevant management strategies rapidly becomes arduous for the conservation biologist (Law et al., 2016; Russo et al., 2016; Tillon, 2015). Here, we attempt to propose a selection of appropriate management strategies for these edge- and open-habitat foragers:

First, our results illustrate the need to maintain tree cavities. B. barbastellus, Eptesicus serotinus, and P. nathusii were strongly and positively influenced by their presence. Also, P. pygmaeus showed a weak positive trend. Indeed, it will be necessary to conserve a diversity of cavity types because large hawkers e.g. Eptesicus sp. and Nyctalus sp. target woodpecker hollows (Ruczyński and Bogdanowicz, 2008), whereas B. barbastellus is known to target peeling bark (Russo et al., 2004; Tillon, 2015), which we were able to confirm. Also, it is common to observe appropriate roosting cavities for bats on large diameter trees (Larrieu et al., 2013; Tillon and Aulagnier, 2014). We recommend systematically protecting a minima three microhabitat-bearing trees per hectare in production forests as a realistic target without jeopardizing economic interests (Tillon et al., 2018).

Second, the presence of bats in production forest systems is likely due to prey availability (Morris et al., 2009; Müller et al., 2012; Kirkpatrick et al., 2017). Müller et al. (2013) considers the maintenance of favourable habitats for the production of insects allowing to continually provide an indispensable prey source for bats. Suitable feeding habitats often correlate to forests that resemble a natural state (Cruz et al., 2016; Hayes and Loeb, 2007; Law et al., 2016; Saunders et al., 1991). Therefore, one way of providing favourable habitats for bats in forests would be to take a naturalness approach by setting aside a number of small sites or "harvest exclusion areas" of no more than a few hectares in size (Law et al., 2016; Tillon et al., 2018). By doing so, this would ensure the presence of tree cavities, deadwood, and vegetation heterogeneity to naturally occur across an entire forest mosaic (Law et al., 2016; Tillon et al., 2018). This would equally support a wider diversity of invertebrates (Dodd et al., 2012). Provided the necessary attention is paid to "harvest exclusion areas", accompanying such zones with corridors will prove vital for flying animals such as bats to navigate across the forested landscape (Patriquin and Barclay, 2003). We found that the presence of ground deadwood superior to three steres in quantity positively affected the activity P. nathusii. Maintaining such quantities should be easier in exclusion areas (Patriquin and Barclay, 2003; Law et al., 2016). Indeed, in plots strictly managed for timber, a volume greater than 3 steres could be more challenging for the forest manager (Tillon et al., 2018). In cases where exploitable stems are removed, it is however recommended to maintain the non-dismembered crown. Such measures should still favour the production of potential prey and forest environments favourable to hawkers (Tillon et al., 2016).

Third, in agreement with Adams et al. (2009) we suggest promoting the presence of forest aisles especially when young dense forest is the desired stand structure, in years following harvesting. Allowing for a patchwork-like
mosaic of re-growth stands should, at least, enable edge-habitat foraging bats access to a vertical vegetation surface even though the interior would remain inaccessible (Adams et al., 2009; Jung et al., 2011). Thus, enhancing heterogeneity at the landscape scale will be advantageous for bats (Kirkpatrick et al., 2017). Since forests cover great distances, maintaining natural-resembling zones (Russo et al., 2016), logging tracks (Law and Chidel, 2002), dense growth (Müller et al., 2013), and thin growth conditions, will allow hawking species that regularly select forest edges (Law and Chidel, 2002; Morris et al., 2009), the chance to continue using managed forests.

6. Acknowledgments

We would like to reserve a special thanks to the all members of the Mammal Network Team at the French National Forest Office, who dedicate time and effort to carrying out the numerous bat survey missions and for having greatly contributed to the conservation of bats within the context of forest management in France. Also, we are very grateful for the expertise of Michel Barataud and the use of his identifications and reference tools. We would also like to kindly thank Dr. Christian Kerbiriou (CESCO, MNHN, Paris) for his invaluable help during the revision process.

Ethics. No injuring experiment involved the animals in our study. Thus, no ethics agreement was required.

Data accessibility. Data shall be made available on request.

Authors' contributions. LT and SL designed the study and carried out acoustic surveys. JL, BP and FA performed data management and data analyses. JL and BP wrote the paper.

Competing interests. Authors declare having no competing interests.

Funding.We are grateful to the French Forest Office for supporting the surveys carried out by the Mammal Network Team across French public forests. Otherwise, this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

7. References

Adams M., Law B., French K. 2009. Vegetation structure influences the vertical stratification of open- and edgespace aerial-foraging bats in harvested forests. Forest Ecology \& Management. 258. 2090-2100.

Archaux, F., Tillon, L., Fauvel, B., Martin, H., 2013. Foraging habitat use by bats in a large temperate oak forest: importance of mature and regeneration stands. Le Rhinolophe 19, 47-58.

Arlettaz, R., Jones, G., Racey, P.A., 2001. Effect of acoustic clutter on prey detection by bats. Nature 414, 742745. https://doi.org/10.1038/414742a

Azam C., Le Viol I., Julien J.-F., Bas Y., Kerbiriou C. 2016. Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program. Landscape Ecology. 31(10), 2471-2483.

Barataud, M., 2015. Acoustic ecology of European bats. Species Identification, Studies of Their Habitats and Foraging Behaviour. Muséum national d'histoire naturelle, Paris (Inventaires et biodiversité Series), Biotope, Mèze.

Barclay, R. and Kurta, A.2007. Ecology and behaviour of bats roosting in tree cavities and under bark. Pp. 1759, in Bats in forests (M. J. Lacki , J. P. Hayes , and A. Kurta , eds.). Johns Hopkins University Press, Baltimore, xvi +329 pp

Barlow K.E., P.A. Briggs, K.A. Haysom, A.M. Hutson, N.L. Lechiara, P.A. Racey, A.L. Walsh, S.D. Langton, 2015, Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain, Biological Conservation, 182, 14-26

Bartonička, T., Řehák, Z., 2007. Flight activity and habitat use of Pipistrellus pygmaeus in a floodplain forest. Mamm. Mamm 68, 365-375. https://doi.org/10.1515/mamm.2004.036

Bitterlich, W., 1984. The relascope idea : relative measurements in forestry /. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, England :

Bouvet, A., Paillet, Y., Archaux, F., Tillon, L., Denis, P., Gilg, O., Gosselin, F., 2016. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148-160. https://doi.org/10.1017/S0376892915000363

Bradbury, R.B., Hill, R.A., Mason, D.C., Hinsley, S.A., Wilson, J.D., Balzter, H., Anderson, G.Q.A., Whittingham, M.J., Davenport, I.J., Bellamy, P.E., 2005. Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis 147, 443-452. https://doi.org/10.1111/j.1474-919x.2005.00438.x

Brigham, R., Grindal, S., Firman, M., Morissette, J., 1997. The influence of structural clutter on activity patterns of insectivorous bats. Can. J. Zool. 75, 131-136.

Brigham, R.M., Kalko, E.K.V., Jones, G., Parsons, S., 2004. Echolocation Research: tools, techniques and analysis. Conserv. Int. Austin Tex. 174.

Burnham, K., Anderson, D., 2002. Model Selection and Multimodel Inference - A Practical | Kenneth P. Burnham | Springer.

Caras, T., Korine, C., 2009. Effect of vegetation density on the use of trails by bats in a secondary tropical rain forest. J. Trop. Ecol. 25, 97-101. https://doi.org/10.1017/S0266467408005671

Catto, C., Racey, P., Stephenson, P. 1995. Activity patterns of the serotine bat (Eptesicus serotinus) at a roost in southern England. J. Zool., Lond. 235, 635-644.

Collins, J., Jones, G., 2009. Differences in Bat Activity in Relation to Bat Detector Height: Implications for Bat Surveys at Proposed Windfarm Sites. Acta Chiropterologica 11, 343-350. https://doi.org/10.3161/150811009X485576

Connor, E.F., Hafernik, J., Levy, J., Moore, V.L., Rickman, J.K., 2002. Insect Conservation in an Urban Biodiversity Hotspot: The San Francisco Bay Area. J. Insect Conserv. 6, 247-259. https://doi.org/10.1023/A:1024426727504

Crawley, M., 2009. The R book. John Wiley and Sons, Ltd, Chicago, USA.
Cruz, J., Sarmento, P., Rydevik, G., Rebelo, H., White, P.C.L., 2016. Bats like vintage: managing exotic eucalypt plantations for bat conservation in a Mediterranean landscape. Anim. Conserv. 19, 53-64. https://doi.org/10.1111/acv. 12216

Dajoz, R., 2007. Les insects et la forêt: rôle et diversité des insectes dans le milieu forestier, 2nd ed. Lavosier and Doc, Paris..

Denzinger, A., Schnitzler, H.-U., 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 1-15. https://doi.org/10.3389/fphys.2013.00164

Dodd, L.E., Lacki, M.J., Britzke, E.R., Buehler, D.A., Keyser, P.D., Larkin, J.L., Rodewald, A.D., Wigley, T.B., Wood, P.B., Rieske, L.K., 2012. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey. For. Ecol. Manag. 267, 262-270. https://doi.org/10.1016/j.foreco.2011.12.016

Edwards, P., 1983. Timber Measurement: A Field Guide, Booklet 49. ed. Forestry Commission, Edinburgh, UK.

Entwistle, A., 2001. Habitat Management for Bats: A Guide for Land Managers, Land Owners and Their Advisors. Joint Nature Conservation Committee.

Froidevaux, J.S.P., Zellweger, F., Bollmann, K., Jones, G., Obrist, M.K., 2016. From field surveys to LiDAR: Shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242-250. https://doi.org/10.1016/j.rse.2015.12.038

Graves, A., Fajvan, M.A., Miller, G., 2000. The effects of thinning intensity on snag and cavity tree abundance Appalachian hardwood stand. Can. J. For. Res. 30, 1214-1220. https://doi.org/10.1139/x00-051

Greenaway, F. 2001. The barbastelle in Britain. British Wildlife, 12, 327-334
Guldin, J.M., Emmingham, W.H., Carter, S.A., Saugey, D.A., 2007. Silvicultural practices and management of habitat for bats. Lacki Michael J Hayes John P Kurta Allen Eds Bats For. Conserv. Manag. Baltim. MD Johns Hopkins Univ. Press 177-205 177-205.

H Kunz, T., Braun de Torrez, E., Bauer, D., Lobova, T., Fleming, T., 2011. Ecosystem services provided by bats. https://doi.org/10.1111/j.1749-6632.2011.06004.x

Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Knops, J.M. \& Tilman, D. (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecology Letters, 12, 1029-1039.

Hanski, I., 2011. Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation. Ambio 40, 248-255. https://doi.org/10.1007/s13280-011-0147-3

Hayes, J.P., Loeb, S., 2007. The influences of forest management on bats in North America. Bats For. Conserv. Manag. 207-236.

Heer, K., Helbig-Bonitz, M., G. Fernandes, R., Mello, M., K. V. Kalko, E., 2015. Effects of land use on bat diversity in a complex plantation-forest landscape in Northeastern Brazil. J. Mammal. 96, 720-731.

Hein, C.D., Castleberry, S.B., Miller, K.V., 2009. Site-occupancy of bats in relation to forested corridors. For. Ecol. Manag. 257, 1200-1207. https://doi.org/10.1016/j.foreco.2008.09.054

Heip, C., Herman, P., Soetaert, K., 1998. Indices of Diversity and Evenness. |Resampling (Statistics) | Estimator. Oceanis 24, 61-87.

Hill, M., 1973. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 54, 427-432. https://doi.org/10.2307/1934352

Hillen J., Kiefer A., Veith M. 2010. Interannual fidelity to roosting habitat and flight paths by female western barbastelle bats. Acta Chiropterologica.12:187-195.

Hiryu, S., Hagino, T., Fujioka, E., Riquimaroux, H., Watanabe, Y., 2008. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field. J. Acoust. Soc. Am. 124, EL51-EL56. https://doi.org/10.1121/1.2947629

INPN - National Inventory of Natural Heritage [WWW Document], n.d. URL https://inpn.mnhn.fr/accueil/index (accessed 10.19.18).

Jennings, N., Jones, G., Harris, S., 1997. Identification of British bat species by multivariate analysis of echolocation parameters. Bioacoustics- Int. J. Anim. Sound Its Rec. - BIOACOUSTICS 7, 189-207. https://doi.org/10.1080/09524622.1997.9753331

Jones, G., Jacobs, D.S., Kunz, T.H., Willig, M.R., Racey, P.A., 2009. Carpe noctem: the importance of bats as bioindicators. Endanger. Species Res. 8, 93-115. https://doi.org/10.3354/esr00182

Jung, K., Kaiser, S., Böhm, S., Nieschulze, J., Kalko, E.K.V., 2012. Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J. Appl. Ecol. 49, 523-531. https://doi.org/10.1111/j.1365-2664.2012.02116.x

Kaňuch, P., JANEČKOVÁ, K., KRIŠTÍN, A., 2005a. Winter diet of the noctule bat Nyctalus noctula. Folia Zool 54, 53-60.

Kaňuch, P., Krištín, A., 2006. Altitudinal distribution of bats in the Pol'ana Mts area (Central Slovakia). Biologia (Bratisl.) 61, 605-610. https://doi.org/10.2478/s11756-006-0097-6

Kaňuch, P., Krištín, A., Krištofík, J., 2005b. Phenology, diet, and ectoparasites of Leisler's bat (Nyctalus leisleri) in the Western Carpathians (Slovakia). Acta Chiropterologica 7, 249-257. https://doi.org/10.3161/17335329(2005)7[249:PDAEOL]2.0.CO;2

Kerbiriou, C., Azam, C., Touroult, J., Marmet, J., Julien, J.-F., Pellissier, V., 2018a. Common bats are more abundant within Natura 2000 areas. Biol. Conserv. 217, 6674.https://doi.org/10.1016/j.biocon.2017.10.029

Kerbiriou C., Parisot-Laprun M., Julien J.-F., 2018b. Potential of restoration of gravel-sand pits for Bats, Ecological Engineering, 110: 137-145

Kirby, K. j., Reid, C. m., Thomas, R. c., Goldsmith, F. b., 1998. Preliminary estimates of fallen dead wood and standing dead trees in managed and unmanaged forests in Britain. J. Appl. Ecol. 35, 148-155. https://doi.org/10.1046/j.1365-2664.1998.00276.x

Kirkpatrick, L., Maher, S.J., Lopez, Z., Lintott, P.R., Bailey, S.A., Dent, D., Park, K.J., 2017. Bat use of commercial coniferous plantations at multiple spatial scales: Management and conservation implications. Biol. Conserv. 206, 1-10. https://doi.org/10.1016/j.biocon.2016.11.018

Kunz, T., Lumsden, L., 2003. Ecology of Cavity and Foliage Roosting Bats, in: Bat Ecology. Thomas H. Kunz and M. Brock Fenton, Chicago and London, pp. 3-89.

Laguet, S., 2012. L'écureuil roux (sciurus vulgaris, linnaeus, 1758) en foret de montagne dans les alpes françaises (savoie) : morphologie, abondance et utilisation de l'espace. École pratique des hautes études, Paris.

Larrieu, L., Cabanettes, A., Brin, A., Bouget, C., Deconchat, M., 2013. Tree microhabitats at the stand scale in montane beech-fir forests: Practical information for taxa conservation in forestry. Eur. J. For. Res. 133. https://doi.org/10.1007/s10342-013-0767-1

Law, B., Anderson, J., Chidel, M., 1999. Bat communities in a fragmented forest landscape on the south-west slopes of New South Wales, Australia. Biol. Conserv. 88, 333-345. https://doi.org/10.1016/S0006-3207(98)00118-9

Law, B., Chidel, M., 2002. Tracks and Riparian Zones Facilitate the Use of Australian Regrowth Forest by Insectivorous Bats. J. Appl. Ecol. 39, 605-617.

Law, B., Park, K.J., Lacki, M.J., 2016. Insectivorous Bats and Silviculture: Balancing Timber Production and Bat Conservation, in: Bats in the Anthropocene: Conservation of Bats in a Changing World. pp. 105150. https://doi.org/10.1007/978-3-319-25220-9_5

Lourenço, S.I., Palmeirim, J.M., 2004. Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): relevance for the design of bat boxes. Biol. Conserv. 119, 237-243. https://doi.org/10.1016/j.biocon.2003.11.006

Maron, M., Lill, A., Watson, D.M., Nally, R.M., 2005. Temporal variation in bird assemblages: How representative is a one-year snapshot? Austral Ecol. 30, 383-394. https://doi.org/10.1111/j.14429993.2005.01480.x

Marques, T., Rainho, A., Carapuço, M., Oliveira, P., Palmeirim, J., 2004. Foraging Behaviour and Habitat use by the European Free- Tailed Bat Tadarida teniotis. Acta Chiropterologica 6, 99-110.

Morante-Filho, J.C., Faria, D., Mariano-Neto, E., Rhodes, J., 2015. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest. PLoS ONE 10. https://doi.org/10.1371/journal.pone. 0128923

Morris, A.D., Miller, D.A., Kalcounis-Rueppell, M.C., 2009. Use of Forest Edges by Bats in a Managed Pine Forest Landscape. J. Wildl. Manag. 74, 26-34. https://doi.org/10.2193/2008-471

Müller, J., Brandl, R., Buchner, J., Pretzsch, H., Seifert, S., Strätz, C., Veith, M., Fenton, B., 2013. From ground to above canopy-Bat activity in mature forests is driven by vegetation density and height. For. Ecol. Manag. 306, 179-184. https://doi.org/10.1016/j.foreco.2013.06.043

Müller, J., Mehr, M., Bässler, C., Fenton, M.B., Hothorn, T., Pretzsch, H., Klemmt, H.-J., Brandl, R., 2012. Aggregative response in bats: prey abundance versus habitat. Oecologia 169, 673-684. https://doi.org/10.1007/s00442-011-2247-y

Norberg, U.M., Rayner, J.M.V., 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc Lond B 316, 335427. https://doi.org/10.1098/rstb.1987.0030

Patriquin, K.J., Barclay, R.M.R., 2003. Foraging by bats in cleared, thinned and unharvested boreal forest. J. Appl. Ecol. 40, 646-657. https://doi.org/10.1046/j.1365-2664.2003.00831.x

Peet, R.K., 1974. The Measurement of Species Diversity. Annu. Rev. Ecol. Syst. 5, 285-307. https://doi.org/10.1146/annurev.es.05.110174.001441

Pejic, B., Budinski, I., Karapandža, B., Paunovic, M., 2017. The first record of European free-tailed bat Tadarida teniotis (Rafinesque, 1814) in Serbia. Bull. Nat. Hist. Mus. 10. https://doi.org/10.5937/bnhmb1710105P Peterken, G.F., 1996. Natural Woodland: Ecology and Conservation in Northern Temperate Regions. Cambridge University Press.

Paillet, Y, Archaux, F, Puy, S, et al. 2018.The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J ApplEcol. 55: 2147- 2159

Paillet Y., Archaux F., Boulanger V., Debaive N., Fuhr M, Gilg O., Gosselin F., Guilbert E., 2017. Snags and large trees drive higher tree microhabitat densities in strict forest reserves, Forest Ecology and Management, 389, 176-186.

Plank, M., Fiedler, K., Reiter, G., 2012. Use of forest strata by bats in temperate forests. J. Zool. 286, 154-162. https://doi.org/10.1111/j.1469-7998.2011.00859.x

Rainho, A., Augusto, A., Palmeirim, J., 2010. Influence of vegetation clutter on the capacity of ground foraging bats to capture prey. J. Appl. Ecol. 47, 850-858.

Ranius, T., Niklasson, M., Berg, N., 2009. Development of tree hollows in pedunculate oak (Quercus robur). For. Ecol. Manag. 257, 303-310.

Regnery B., Couvet D., Kubarek L., Julien J.F., Kerbiriou C. 2013a. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. EcologicalIndicators34: 221-230

Regnery, B., Paillet, Y., Couvet, D., Kerbiriou, C., 2013b. Which factors influence the occurrence and density of tree microhabitats in Mediterranean oak forests? Forest Ecol. Manage. 295, 118-125.

Rehnus, M., Nazarek, A., Mamadzhanov, D., Venglovsky, B.I., Sorg, J.-P., 2013. High demand for firewood leads to overuse of walnut-fruit forests in Kyrgyzstan. J. For. Res. 24, 797-800. https://doi.org/10.1007/s11676-013-0367-4

Roemer, C., Disca, T., Coulon, A., Bas, Y., 2017. Bat flight height monitored from wind masts predicts mortality risk at wind farms. Biol. Conserv. 215, 116-122.

Ruczyński, I., Bogdanowicz, W., 2005. Roost Cavity Selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Białowieża Primeval Forest, Eastern Poland. J. Mammal. 86, 921-930. https://doi.org/10.1644/1545-1542(2005)86[921:RCSBNN]2.0.CO;2

Ruczyński, I., Bogdanowicz, W., 2008. Summer Roost Selection by Tree-Dwelling Bats Nyctalus noctula and N. leisleri: A Multiscale Analysis. J. Mammal. 89, 942-951. https://doi.org/10.1644/07-MAMM-A-134.1

Ruczyński, I., Nicholls, B., MacLeod, C.D., Racey, P.A., 2010. Selection of roosting habitats by Nyctalus noctula and Nyctalus leisleri in Białowieża Forest—Adaptive response to forest management? For. Ecol. Manag. 259, 1633-1641. https://doi.org/10.1016/j.foreco.2010.01.041

Russo, D., Billington, G., Bontadina, F., Dekker, J., Dietz, M., Gazaryan, S., Jones, G., Meschede, A., Rebelo, H., Reiter, G., Ruczyński, I., Tillon, L., Twisk, P., 2016. Identifying Key Research Objectives to Make European Forests Greener for Bats. Front. Ecol. Evol. 4. https://doi.org/10.3389/fevo.2016.00087

Russo, D., Cistrone, L., Garonna, A.P., Jones, G., 2010. Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodivers. Conserv. 19, 2501-2515. https://doi.org/10.1007/s10531-010-9856-3

Russo, D., Cistrone, L., Jones, G., Mazzoleni, S., 2004. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: consequences for conservation. Biol. Conserv. 117, 73-81. https://doi.org/10.1016/S0006-3207(03)00266-0

Russo, D., Jones, G., 2003. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography 26, 197-209. https://doi.org/10.1034/j.16000587.2003.03422.x

Russo, D., Cistrone, L., Jones, G., 2007. Emergence time in forest bats: the influence of canopy closure. Acta Oecologica 31, 119-126. https://doi.org/10.1016/j.actao.2006.11.001

Rydell, J., Bach, L., Dubourg-Savage, M.-J., Green, M., Rodrigues, L., Hedenström, A., 2010. Bat Mortality at Wind Turbines in Northwestern Europe. Acta Chiropterologica 12, 261-274. https://doi.org/10.3161/150811010X537846

Rydell, J., Entwistle, A., Racey, P.A., 1996. Timing of Foraging Flights of Three Species of Bats in Relation to Insect Activity and Predation Risk. Oikos 76, 243-252. https://doi.org/10.2307/3546196

Saunders, D.A., Hobbs, R.J., Margules, C.R., 1991. Biological Consequences of Ecosystem Fragmentation: A Review. Conserv. Biol. 5, 18-32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x

Schnitzler, H.-U., Kalko, E.K.V., 2001. Echolocation by Insect-Eating Bats: We define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. BioScience 51, 557-569. https://doi.org/10.1641/00063568(2001)051[0557:EBIEB]2.0.CO;2

Seavy, N.E., Quader, S., Alexander, J.D., Ralph, C.J., 2005. Generalized linear models and point count data: statistical considerations for the design and analysis of monitoring studies. Ralph C John Rich Terrell Ed. 2005 Bird Conserv. Implement. Integr. Am. Proc. Third Int. Partn. Flight Conf. 2002 March 20-24 Asilomar Calif. Vol. 2 Gen Tech Rep PSW-GTR-191 Albany CA US Dept Agric. For. Serv. Pac. Southwest Res. Stn. P 744-753 191.

Spada, M., Szentkuti, S., Zambelli, N., Mattei-Roesli, M., Moretti, M., Bontadina, F., Arlettaz, R., Tosi, G., Martinoli, A. 2008. Roost selection by non-breeding Leisler's bats (Nyctalus leisleri) in montane woodlands: implications for habitat management. Acta Chiropterologica.10(1), 8188.https://doi.org/10.3161/150811008x331117

Svenning, J.-C., 2002. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 104, 133-148. https://doi.org/10.1016/S0006-3207(01)00162-8
M. Swift, S., A. Race, P., Avery, M., 1985. Feeding Ecology of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) During Pregnancy and Lactation. II. Diet. J. Anim. Ecol. 54. https://doi.org/10.2307/4632

Terraube, J., Archaux, F., Deconchat, M., van Halder, I., Jactel, H., Barbaro, L., 2016. Forest edges have high conservation value for bird communities in mosaic landscapes. Ecol. Evol. 6, 5178-5189. https://doi.org/10.1002/ece3.2273

Tillon, L., 2015. Utilisation des gîtes et des terrains de chasse par les Chiroptères forestiers, propositions de gestion conservatoire. Université Toulouse 3 Paul Sabatier, Paris.

Tillon, L., Aulagnier, S., 2014. Tree Cavities used as Bat Roosts in a European Temperate Lowland Sub-Atlantic Forest. Acta Chiropterologica 16, 359-368. https://doi.org/10.3161/150811014X687314

Tillon, L., Bouget, C., Paillet, Y., Aulagnier, S., 2016. How does deadwood structure temperate forest bat assemblages? Eur. J. For. Res. 135, 433-449. https://doi.org/10.1007/s10342-016-0944-0

Tillon, L., Bresso, K., Aulagnier, S., 2015. Tree selection by roosting bats in a European temperate lowland subAtlantic forest. Mammalia 0. https://doi.org/10.1515/mammalia-2014-0095

Tillon, L., Langridge, J., Aulagnier, S., 2018. Bat Conservation Management in Exploited European Temperate Forests. Bats. https://doi.org/10.5772/intechopen. 73280

Verboom, B., Spoelstra, K., 1999. Effects of food abundance and wind on the use of tree lines by an insectivorous bat, Pipistrellus pipistrellus. Can. J. Zool. 77, 1393-1401. https://doi.org/10.1139/z99-116

Widerin, K., Reiter, G., 2017. Bat Activity at High Altitudes in the Central Alps, Europe. Acta Chiropterologica 19, 379-387. https://doi.org/10.3161/15081109ACC2017.19.2.014

Willcox, E., Guiliano, W., Watine, L., Mills, D., Andreu, M., 2017. Forest Structure and Composition Affect Bats in a Tropical Evergreen Broadleaf Forest. Forests 8.

Xiao, Y., Li, X., Cao, Y., Dong, M., 2016. The diverse effects of habitat fragmentation on plant-pollinator interactions. Plant Ecol. 217, 857-868. https://doi.org/10.1007/s11258-016-0608-7

Zukal, J., Gajdošík, M., 2012. Diet of Eptesicus serotinus in an agricultural landscape. Vespertilio 16, 357-363.
Zukal, J., Řehák, Z., 2006. Flight activity and habitat preference of bats in a karstic area, as revealed by bat detectors 9 .

Zuur, A., Ieno, E., Walker, N., Saveliev, A., Smith, G., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, USA.
indicates positive association expected, (-) negative association, while (0) indicates no relationship expected.

Forest parameter	Predicted effect for Large Hawkers	Based on example references
Vegetation volume heterogeneity	Eptesicus serotinus (+)	(Collins and Jones, 2009) (Plank et al., 2012) (Zukal and Gajdošík, 2012)
	Nyctalus leisleri (+)	(Russo and Jones, 2003) (Collins and Jones, 2009)
	Nyctalus noctula (+)	
	Tadarida teniotis (0)	(Russo and Jones, 2003)
Tree basal area	E. serotinus (-)	(Tillon, 2015) (Tillon et al., 2016)
	N. leisleri (-)	(Tillon, 2015) (Tillon et al., 2016)
	N. noctula (-)	(Tillon, 2015)
	T. teniotis (0)	(Russo and Jones, 2003)
Tree microhabitats	E. serotinus:woodpecker holes + crevices (+)	
	N. leisleri: woodpecker holes + decay cavities (+)	(Spada et al., 2008)
	N. noctula: woodpecker holes only (+)	(Ruczynski and Bogdanowicz, 2005)
	T. teniotis: no. of different microhabitat types (0)	(Pejic et al., 2017) (Marques et al., 2004)
Ground deadwood	E. serotinus (+)	(Tillon, 2015)
	N. leisleri (+)	(Tillon, 2015) (Tillon et al., 2016)
	N. noctula (0)	(Tillon et al., 2016)
	T. teniotis (+)	-
Standing deadwood	E. serotinus (+)	(Tillon, 2015) (Tillon et al., 2016)
	N. leisleri (+)	(Tillon et al., 2016)
	N. noctula (0)	(Tillon et al., 2016)
	T. teniotis (0)	-
Positive Edge effect	E.serotinus (+)	(Froidevaux et al., 2016) (Archaux et al., 2013)
	N. leisleri (+)	(Froidevaux et al., 2016) (Archaux et al., 2013)
	N. noctula (+)	(Froidevaux et al., 2016) (Archaux et al., 2013)
	T. teniotis (0)	-
	Predicted effect for Small Hawkers	
Vegetation volume heterogeneity	Barbastella barbastellus (0)	-
	Hypsugo savii (+)	-
	Pipistrellus kuhlii (+)	-
	Pipistrellus nathusii(+)	-
	Pipistrellus pipistrellus (+)	(Jung et al., 2012)
	Pipistrellus pygmaeus (+)	-
Tree basal area (-)	B. barbastellus (+)	(Tillon, 2015) (Tillon et al., 2016)
	H. savii (-)	
	P. kuhlii (0)	(Tillon et al.,2016)
	P. nathusii (-)	-
	P. pipistrellus (-)	-
	P. pygmaeus (-)	(Kirkpatrick et al., 2017)
Tree microhabitats	B. barbastellus: crevices + peeling bark (+)	(Russo et al., 2004)
	H. savii: no. of different microhabitat types (0)	(Regnery et al., 2013a)
	P. kuhlii: no. of different microhabitat types (0)	(Regnery et al., 2013a)
	P. nathusii: crevices + peeling bark (+)	(Regnery et al., 2013a)
	P. pipistrellus: crevices + peeling bark (+)	(Regnery et al., 2013a)
	P. pygmaeus: no. of different microhabitat types (0)	(Lourenço and Palmeirim, 2004)
Ground deadwood (+)	B. barbastellus (+)	(Bouvet et al., 2016)(Tillon et al., 2016)
	H. savii (+)	(Bouvet et al., 2016)(Tillon et al., 2016)
	P. nathusii (+)	
	P. kuhlii (+)	(Bouvet et al., 2016) (Tillon et al., 2016)
	P. pipistrellus (+)	(Bouvet et al., 2016) (Tillon et al., 2016)
	P. pygmaeus (+)	(Bouvet et al., 2016) (Tillon et al., 2016)
Standing deadwood (0)	B. barbastellus (+)	(Russo et al., 2004)
	H. savii (0)	-
	P. kuhlii (+)	-
	P. nathusii (0)	-
	P. pipistrellus (0)	-
	P. pygmaeus (+)	(Bouvet et al., 2016)
Positive Edge effect (+)	B. barbastellus (+)	-
	H. savii (+)	-
	P. kuhlii (+)	(Müller et al., 2013)
	P. nathusii(+)	(Müller et al., 2013) (Froidevaux et al., 2016)
	P. pipistrellus(+)	(Müller et al., 2013) (Froidevaux et al., 2016)
	P. pygmaeus (+)	(Müller et al., 2013) (Bartonička and Řehák, 2007)

Table 2: Mean (\pm SE) number of positive minutes recorded for bat species during summer and autumn inventories by forest type and biogeogrpahical region. $\mathrm{DBL}=$ dominant broadleaf, $\mathrm{DC}=$ dominant conifer, $\mathrm{MF}=$ mixed forest. n represents the number of points counts.n varies in accordance to the species' natural distribution. E.g. E. Serotinusand P.pipistrellus are theoretically present across the entire french mainland territory. However, the presence of some species is missing from certain regions. E.g. T.teniotis is not present in the north and west coast of mainland France, thus data from forest inventories carried out in the corresponding regions were not included in its analysis.

Biogeography	Alpine			Atlantic			Continental			Mediterranean		
Composition	DBL	DC	MF									
N. Forest	5	5	5	11	8	8	16	5	9	5	6	4
n	34	79	35	490	80	47	206	190	44	84	164	10
E.serotinus	0.09 ± 0.06	0.03 ± 0.02	0.20 ± 0.11	0.34 ± 0.07	0.29 ± 0.11	0.30 ± 0.16	0.22 ± 0.05	0.17 ± 0.07	0.09 ± 0.04	0.07 ± 0.04	1.73 ± 0.41	0.30 ± 0.15
N. Forest	5	5	5	10	8	7	16	5	9	5	6	4
n	34	79	35	474	80	43	206	190	44	84	164	10
N. leisleri	0.24 ± 0.13	0.20 ± 0.07	0.49 ± 0.35	0.24 ± 0.05	0.16 ± 0.07	0.35 ± 0.17	0.26 ± 0.06	0.19 ± 0.04	0.27 ± 0.15	0.24 ± 0.08	2.23 ± 0.47	1.00 ± 0.49
N. Forest	3	1	2	10	8	7	15	8	4	2	2	1
n	4	59	15	474	80	43	204	164	42	18	22	4
N. noctula	0	0	0	0.03 ± 0.06	0.05 ± 0.08	0.19 ± 0.18	0	0.01 ± 0.03	0	0	0	0
N. Forest	5	5	5	-	-	-	3	4	3	5	6	4
n	34	79	35	-	-	-	16	85	19	84	164	10
T. teniotis	0.24 ± 0.31	0.01 ± 0.04	0.20 ± 0.28	-	-	-	0	0.01 ± 0.04	0	0.32 ± 0.61	1.91 ± 1.42	0.80 ± 0.58
N. Forest	5	5	5	11	8	8	15	8	4	4	5	4
n	34	79	35	490	80	47	204	182	40	52	154	10
B. barbastellus	0.06 ± 0.07	0	0	0.17 ± 0.25	0.12 ± 0.15	0.11 ± 0.12	0.22 ± 0.25	0.13 ± 0.14	0.05 ± 0.06	0.04 ± 0.06	0	0.68 ± 0.49
N. Forest	3	4	3	11	8	8	14	7	4	5	6	4
n	24	71	25	490	80	47	198	154	42	84	164	10
P. nathusii	0	0	0	0.02 ± 0.04	0.01 ± 0.03	0.02 ± 0.04	0.36 ± 0.48	0.03 ± 0.05	0.02 ± 0.04	0.05 ± 0.06	0.01 ± 0.02	0.10 ± 0.09
N. Forest	5	5	5	11	8	8	16	5	9	5	6	4
n	34	79	35	490	80	47	206	190	44	84	164	10
P. pipistrellus	7.06 ± 3.09	3.65 ± 1.83	6.60 ± 3.28	6.22 ± 2.37	4.64 ± 1.71	4.23 ± 1.70	4.58 ± 2.11	7.68 ± 2.92	5.89 ± 2.68	1.19 ± 0.74	8.63 ± 2.92	4.00 ± 2.75
N. Forest	5	5	5	-	-	-	4	5	2	5	4	5
n	34	79	35	-	-	-	26	99	15	84	148	10
H. savii	0.24 ± 0.13	0.20 ± 0.07	0.49 ± 0.35	-	-	-	0.08 ± 0.09	0.39 ± 0.50	0	0.35 ± 0.32	2.01 ± 1.68	1.50 ± 0.57
N. Forest	5	5	5	11	8	8	14	5	9	5	6	4
n	34	79	35	490	80	47	198	119	17	84	164	10
P. kuhlii	1.29 ± 1.35	0.01 ± 0.03	0	0.24 ± 0.26	0.22 ± 0.23	0.53 ± 0.76	0.50 ± 0.78	0.24 ± 0.31	0.06 ± 0.07	1.49 ± 1.64	1.09 ± 0.95	9.40 ± 4.11
N. Forest	-	-	-	-	-	-	14	7	4	5	6	4
n	-	-	-	-	-	-	198	154	42	84	164	10
P. pygmaeus	-	-	-	-	-	-	0.46 ± 0.68	0.06 ± 0.15	0.17 ± 0.31	1.01 ± 1.49	1.24 ± 0.92	0

Table 3. Details of the GLMM analysing the variation in relative activity of the ten bat species with forest habitat features between 2011-2016 across French mainland territory.
Significant p values in bold only.

Guild	Large Hawkers								Small Hawkers											
	E. serotinus		N. leisleri		N. noctula		T. teniotis		B.barbastellus		P. nathusii		P. pipistrellus		H. savii		P. kuhlii		P. pygmaeus	
Parameters	$\beta_{L S M} \pm$ SE	P	$\beta_{L S W} \pm$ SE	P																
DISPERSION ϕ	0.92		0.94		1.28		1.25		0.99		1.22		1.04		1.14		0.94		0.90	
RANDOM EFFECTS																				
$\sigma_{\text {(l\|Fresest) }}$	1.51		1.47		1.73		1.86		2.84		2.16		0.80		1.33		2.31		2.03	
$\sigma_{(\mid Y \text { Year }}$	<0.01		<0.01		<0.01		1.07		0.61		<0.01		0.24		0.20		<0.01		<0.01	
$\sigma_{(1 \mid \text { Biogeographic_regions })}$	<0.01		<0.01		<0.01		1.50		0.24		0.70		0.14		<0.01		<0.01		<0.01	
$\sigma_{(1 \mid \text { Forest_composition) }}$	<0.01		<0.01		0.45		<0.01		0.17		<0.01		0.14		<0.01		<0.01		<0.01	
FIXED EFFECTS																				
Intercept	-2.27 ± 0.48	<0.001	-1.65 ± 0.46	. 001	-3.77 ± 0.67	. 001	-5.07 ± 2.77	0.067	-4.70 ± 1.02		-4.10 ± 0.94		1.46 ± 0.37		-2.24 ± 0.47		-1.95 ± 0.64		-2.03 ± 0.95	
Method mctas vs.MCD30	-0.99 ± 0.56	${ }^{0.075}$	-0.40 ± 0.53	${ }^{0.458}$	-2.73 ± 0.98	${ }^{0.005}$	1.20 ± 2.56	0.640	$-0.59 \pm \pm .07$	${ }^{0.579}$	-1.90 ± 1.10	${ }^{0.085}$	-0.07 ± 0.42	0.870	-		-0.72 ± 0.82	0.381	-0.30 ± 1.05	${ }^{0.771}$
Season Summer vs. Autumn	0.70 ± 0.21	<0.001	0.25 ± 0.17	${ }^{0.143}$	$\mathbf{0 . 8 0} \pm 0.24$	<0.001	$\mathbf{1 . 7 4 \pm 0 . 3 6}$	<0.0	0.21 ± 0.12	0.097	-1.11 ± 0.24		0.04 ± 0.07		0.47 ± 0.23	0.036	$\mathbf{0 . 6 0 \pm 0 . 2 0}$	0.003	-0.20 ± 0.19	${ }^{0.288}$
Temperature	0.41 ± 0.13	0.002	0.03 ± 0.10	${ }^{0.758}$	0.20 ± 0.21	0.346	-0.20 ± 0.21	${ }^{0.324}$	0.16 ± 0.08	${ }^{0.061}$	0.42 ± 0.11		-0.06 ± 0.04		0.06 ± 0.13	0.66	$<0.01 \pm 0.13$		0.13 ± 0.11	${ }^{0.231}$
Time from sunset	-0.37 ± 0.11	<0.001	-0.03 ± 0.09	${ }^{0.756}$	-0.86 ± 0.14	<0.001	0.02 ± 0.18	0.923	-0.46 ± 0.07		-0.18 ± 0.12	0.147	-0.01 ± 0.04		-0.59 ± 0.14		-0.22 ± 0.10		0.06 ± 0.11	${ }^{0.601}$
Vegetation volume heterogeneity	0.34 ± 0.12	${ }^{0.005}$	0.16 ± 0.11	${ }^{0.134}$	-0.27 ± 0.15	0.078	0.13 ± 0.20	${ }^{0.534}$	0.02 ± 0.08	${ }^{0.760}$	-0.12 ± 0.17	0.481	0.18 ± 0.05		-0.13 ± 0.12	${ }^{0.307}$	-0.12 ± 0.11	${ }^{0.267}$	0.08 ± 0.12	0.497
Tree basal area	-0.16 ± 0.12	${ }^{0.212}$	-0.07 ± 0.10	${ }^{0.510}$	0.01 ± 0.19	${ }^{0.963}$	0.14 ± 0.20	0.477	0.12 ± 0.08	${ }^{0.113}$	-0.55 ± 0.21	0.010	-0.03 ± 0.05	0.552	-0.11 ± 0.13	${ }^{0.403}$	-0.29 ± 0.13	0.027	0.16 ± 0.13	${ }^{0.224}$
Microhabitats*	0.43 ± 0.21	${ }^{0.035}$	-0.15 ± 0.20	0.447	0.23 ± 0.27	0.382	0.21 ± 0.15	${ }^{0.167}$	0.49 ± 0.15	0.001	0.56 ± 0.27	0.036	-0.14 ± 0.08	${ }^{0.083}$	-0.07 ± 0.13	0.609	0.05 ± 0.08	0.592	0.19 ± 0.10	${ }^{0.050}$
Ground deadwood Morevs.Less 3st	-0.17 ± 0.22	${ }^{0.452}$	-0.21 ± 0.20	${ }^{0.273}$	0.03 ± 0.31	0.924	-0.06 ± 0.34	0.854	-0.24 ± 0.15	${ }^{0.106}$	$\mathbf{1 . 1 2 \pm 0 . 2 7}$	<0.001	-0.13 ± 0.09	0.146	-0.14 ± 0.24	0.569	-0.27 ± 0.24	${ }^{0.266}$	-0.15 ± 0.19	0.421
Standing deadwood	-0.21 ± 0.11	${ }^{0.067}$	0.11 ± 0.11	${ }^{0.306}$	-0.50 ± 0.24	0.041			-0.08 ± 0.10	0.387	-0.14 ± 0.17		$-\mathbf{0 . 0 9 \pm 0 . 0 4}$		-		-0.03 ± 0.13	0.796	-15019	
Positive Edge presencr vs.atsence	0.16 ± 0.23	0.500	0.23 ± 0.23	${ }^{0.313}$	-0.02 ± 0.28	0.942	-1.09 ± 0.47	0.021	0.40 ± 0.20	${ }^{0.043}$	1.27 ± 0.29		0.17 ± 0.09		0.67 ± 0.31	.033	-0.09 ± 0.23	06	-0.33 ± 0.23	

*Tree microhabitat variable changed according to the hypothesis of each species; for Eptesicus serotinus the variable was presence/non-presence of woodpecker hollows and/or crevices, for Nyctalus leisleriwe tested presence/non-presence of woodpecker hollows and/or decay cavities, for N. noctula we tested presence/non-presence of woodpecker hollows only, for H. savii, P. kuhlii, P. pygmeaus, and T. teniotis Number of different tree microhabitats present was tested as the species are not considered to target a particular microhabitat type. Finally, for Barbastella barbastellus, Pipistrellus nathusii and P. pipistrellus the variable was presence/nonpresence of crevices and/or peeling bark.

Figure. 1. Large hawkers' estimated probability of relative activity in relation to forest variables. Only significant results are shown.

Figure. 2. Small hawkers' estimated probability of relative activity in relation to Forest variables. Only significant results are shown.

