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Abstract. Models are pivotal for assessing future forest dynamics under the impacts of changing climate
and management practices, incorporating representations of tree growth, mortality, and regeneration.
Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vege-
tation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different
degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the land-
scape scale, and four typically applied at the continental to global scale. Some incorporate empirically
derived mortality models, and others are based on experimental data, whereas still others are based on the-
oretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior
was evaluated against empirical time series data, and then, the models were subjected to different scenar-
ios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality sub-
model that was used. However, mortality submodels that performed in a very similar manner against past
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data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs
featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the
order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a
given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We
conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest
response to climate change, and (2) more data and a better process understanding of tree mortality are
needed to improve the robustness of simulated future forest dynamics. Our study highlights that compar-
ing several alternative mortality formulations in DVMs provides valuable insights into the effects of pro-
cess uncertainties on simulated future forest dynamics.
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INTRODUCTION

Forests have a pivotal role in providing ecosys-
tem functions and services at multiple scales,
from the global (carbon and water cycling,
energy balance, biodiversity conservation) across
the regional (e.g., timber production, recreation)
to the local scale (e.g., protection from natural
hazards such as flooding or rockfall). The ability
of forest ecosystems to provide these multiple
services may be jeopardized by global climate
change (Settele et al. 2014). Thus, it is important
to assess the future trajectories of forest ecosys-
tems for adapting ecosystem management to cli-
mate change; quantitative, dynamic models have
a key role in this regard.

Awide range of models of the dynamics of for-
est structure and composition at decadal to cen-
tennial time scales were developed over the past
decades (cf. reviews by Shugart 1984, Liu and
Ashton 1995, Bugmann 2001, Keane et al. 2015).
Many of these dynamic vegetation models
(DVMs) have been used to project the impacts of
climate change on future forest trajectories (Solo-
mon 1986, Elkin et al. 2013). From these studies,
it is becoming increasingly evident that the
impacts of climate, CO2, and other driving forces
on growth alone would lead to fairly smooth
future changes in stand structure, species compo-
sition, and other forest properties (Lloret et al.
2012, Rasche et al. 2013).

There is increasing concern, however, that mor-
tality could lead to fast and strong changes in

forest properties in the context of changing cli-
matic conditions (Allen et al. 2010, Reyer et al.
2015). For example, carbon storage in the global
forest is not just a function of growth, but is
strongly determined by turnover rates, which
critically depend on tree mortality (Bugmann and
Bigler 2011, Friend et al. 2014). Also, other
ecosystem functions and dynamics such as water
fluxes and biodiversity are crucially affected by
tree mortality (Anderegg et al. 2016). Changes in
mortality rates are induced on the one hand by
changing disturbance regimes (e.g., wind, fire,
insects; Temperli et al. 2013a, Seidl et al. 2014,
2017) and, on the other hand, by stress-related
processes (e.g., drought-induced mortality; Bigler
et al. 2006, Adams et al. 2009, Allen et al. 2015).
In the past, little attention was paid to mortal-

ity in DVMs, and stress-related mortality was
most often captured using simple formulations
(but cf. Bircher et al. 2015). These mortality for-
mulations can be split into three broad cate-
gories, as briefly reviewed below.
First, some DVMs are based on theoretical mor-

tality formulations that are not derived from data
but from theoretical reasoning, the original mor-
tality formulations of forest gap models fall under
this category (Botkin et al. 1972), the self-thinning
rule (Yoda et al. 1963) as well as more process-
based approaches that assume, for example, that
trees die when their carbon balance turns negative
(McDowell et al. 2011, Hickler et al. 2012).
Second, other DVMs are based on empirically

derived formulations that often rely on forest
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inventory data and use predictor variables such
as tree diameter, relative growth rate, or the basal
area of all trees that are larger than the target tree
to feed statistical models of mortality probability
(Pretzsch et al. 2002, Hl�asny et al. 2014).

Third, in a few DVMs, highly mechanistic and
detailed formulations are used to capture eco-
physiological processes such as hydraulic failure
and/or carbon starvation, which then are related
to mortality risk (McDowell et al. 2013, 2016).

In general terms, the sources of mortality con-
sidered in DVMs typically include competition
for light as a fundamental driver of forest dynam-
ics under mesic conditions, and some models also
emphasize the role of drought-induced mortality
under arid conditions. The limitations on growth
induced by low light availability, drought, and
other drivers (such as low nutrient availability)
are typically used to drive a stress-related mortal-
ity component, thus leading to an enhanced mor-
tality probability compared to the background
mortality.

It may be intuitive to assume that the sensitiv-
ity of DVMs to changes in the mortality formula-
tion follows this categorization, that is, that
replacing a mechanistic mortality function by an
empirical one (e.g., as done in ForClim) is a lar-
ger difference than replacing a theoretical one
with another theoretical one (e.g., as done in 4C).
However, in the absence of simulation evidence,
no quantitative statements are possible.

The forest structure and dynamics simulated
with theoretical mortality formulations have
been shown to be highly sensitivity to the exact
assumptions that are being made (cf. Bugmann
2001: Fig. 14). The fact that it is impossible to
determine a priori which theoretical formulation
may be right has fueled the search for empiri-
cally based mortality formulations, based on
either tree-ring or forest inventory data. How-
ever, some studies (Bircher et al. 2015) suggest
that also different empirically based formulations
can lead to widely different forest trajectories in
long-term simulations.

The observation that model assumptions are sub-
ject to uncertainty is neither new, nor unique to the
description of mortality. The topic of uncertainty
and its quantification have attracted increasing
attention in recent years (Cramer et al. 2001), both
due to the realization that quantitative uncertainty
estimates are key for sound management

recommendations, and due to the increasing com-
puting power, which makes the systematic explo-
ration of uncertainty possible for larger models.
However, while many studies have recently started
to quantify parametric uncertainty (Hartig et al.
2012), and some results exist on the contributions
of different model sectors to overall parametric
uncertainty (Augustynczik et al. 2017), the quantifi-
cation of structural uncertainty is less advanced.
Most studies on this topic are model comparisons
and multi-model projections (Warszawski et al.
2014), which are helpful to explore differences
between models regarding the effective variability
in outputs due to structural differences. However,
the fact that most models differ in most processes
makes it excessively hard to track the model sectors
that contribute most to output uncertainty.
To date, the investigation of the sensitivity

of dynamic forest models to the formulation of
mortality is restricted to a fairly small number of
case studies (Bircher et al. 2015). Thus, a compre-
hensive understanding is lacking how the wide
variety of mortality formulations in DVMs influ-
ence projections of future forest dynamics. Partic-
ularly, it is unclear how large the uncertainty
induced by different mortality functions is rela-
tive to the magnitude of simulated forest changes
that are induced by climate change. In the pre-
sent paper, we seek to evaluate model sensitivity
to different mortality formulations on a broad
basis, jointly analyzing 15 models of forest
dynamics that operate at the stand, landscape, or
global scale.
Specifically, the objectives of this study were (1)

to quantify the uncertainty in climate change pro-
jections that are due to differences in mortality
formulations, using a wide range of forest models
and an even wider range of mortality formula-
tions; (2) to elucidate the reasons for differences
in sensitivity (model type, model structure); and
(3) to compare forest model sensitivity to mortal-
ity formulations with model sensitivity to climate
change (i.e., the magnitude of climate change;
IPCC 2013).

MATERIALS AND METHODS

Dynamic vegetation models from the stand to the
global scale
Fifteen models participated in the comparison

(Tables 1 and 2).
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At the stand scale, this included three models
whose formulations were derived using statisti-
cal analyses based on inventory data (so-called
“empirical” models: FVS, SIBYLA, xComp); one
model (ForClim) that closely adheres to the origi-
nal approach underlying forest gap models (For-
Clim; cf.Botkin et al. 1972); three models that, to
an increasing extent, contain elements that reflect
plant ecophysiology (FORMIND, PICUS, and
4C); and one model that is highly physiological
throughout its formulations (GOTILWA+).

At the landscape scale, only three models par-
ticipated, partly reflecting the fact that there are
far fewer such models in the literature than
stand-scale forest models (cf. Bugmann 2001, He
2008). The three models again represent a gradi-
ent of increasing complexity and level of process-
based detail, starting with LANDIS-II Biomass
Succession (hereafter simply “LANDIS-II”; cf.
Appendix S1: Section 10), which features many
simple, empirically based elements, across Land-
Clim, which reflects a higher level of detail, for
example, regarding the representation of crown
architecture, to iLand, a multi-scale model that
scales individual tree processes to the landscape
level. Here, the landscape models were run for
individual sites, thus essentially ignoring any
landscape-scale processes (such as the occurrence
and spread of disturbances, or seed dispersal).
This was done to enable comparison with the
sensitivity of the stand-scale models; local-scale

regeneration processes were of course main-
tained in the simulations.
At the continental to global scale, virtually all

DVMs that are currently in use are highly pro-
cess-based (cf. Piao et al. 2013), and this is
reflected in our selection. These models can also
be used at the stand scale, but their formulations
are typically tailored toward large-scale applica-
tion. Thus, subsequently they will be referred to
as “global” models. Here, two variants of the LPJ
model (LPJ-GUESS and LPJmL) were used, as
well as the CARAIB model and the ED(X) variant
of the global model ED. All global DVMs except
for LPJmL were run for individual sites, so as to
enable comparisons with the behavior of the
other models. Applying continental to global
DVMs at the site scale is common practice for
model evaluation, and straightforward as global
DVMs increasingly include site-scale processes
that are not fundamentally different from those
used in stand-scale models (Hickler et al. 2012).
However, a direct comparison of the CARAIB
and ED(X) results with those of the other models
was not possible because of fundamentally dif-
ferent output variables (e.g., biomass and carbon
content).
A more detailed description of all the models

and the individual simulations is provided as
Appendix S1. Below, an overview of the techni-
calities of the simulations across all models is
provided (cf. Tables 1, 2 and 3).

Table 1. Overview of the 15 dynamic vegetation models employed in this study.

Stand-scale Landscape-scale Global-scale

Model References Model References Model References

4C Reyer et al. (2014),
Lasch-Born et al.
(2015)

iLand Seidl et al. (2012) CARAIB Warnant et al. (1994), Dury
et al. (2011)

ForClim Bugmann (1996),
Bircher et al. (2015)

LandClim Schumacher et al.
(2006), Temperli
et al. (2013b)

ED(X) Moorcroft et al. (2001)

FORMIND Bohn et al. (2014),
Fischer et al. (2016)

LANDIS-II Scheller and
Mladenoff (2004)

LPJ-GUESS Smith et al. (2014),
parameterized for species
by Hickler et al. (2012)

FVS Wykoff et al. (1982) LPJmL Bondeau et al. (2007),
Schaphoff et al. (2013)

GOTILWA+ Nadal-Sala et al. (2017)
PICUS Lexer and H€onninger

(2001), Irauschek et al.
(2017)

SIBYLA Fabrika (2005)
xComp Mette (2014)

Notes: Each model, the simulation studies, and results are described in detail in Appendix S1.
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Simulation protocol
Model comparison exercises have a long his-

tory (Bugmann et al. 1996, Cramer et al. 2001,
Morales et al. 2005, Piao et al. 2013) and are
potentially rewarding for disentangling the
response of various models, for example, to

common driving forces, using a common set of
sites, climatic conditions, and other boundary
conditions. However, they require substantial
streamlining of data and protocols, such that
many modeling teams do not participate because
of the sheer investment required.

Table 2. Overview of the 15 dynamic vegetation models (DVMs) participating in the comparison exercise
regarding model type and mortality formulations.

Name DVM type† Standard mortality (1a,b) Alternative mortality (11, 12,. . .)

4C P 1a) Intrinsic—Weibull (increase with age) 11a) Intrinsic—Weibull (increase with age)
1b) Stress—foliage growth 11b) Stress—NPP

ForClim S 1a) Background—const (based on max. age) 11) NFI-derived, randNr
1b) Stress—min. abs/min. rel. dInc 12) as 11) + bckgrnd

13) Tree-ring derived, randNr
14) as 13) + bckgrnd

FORMIND P 1a) Base mortality of 2% per yr 11a) Base mortality of 2% per yr
1b) NPP < 0 = > immediate death 11b) NPP < 0 = > higher probability

FVS E 1) SDI-based (Reineke) 11) JABOWA min abs inc
GOTILWA+ P 1a) Carbon starvation 11) Yoda’s law (empirical)

1b) Reduction of sapwood functionality
PICUS P 1a) Background—max. age 11) PROGNAUS empirical = ƒ(dbh, crown ratio,

BAL)
1b) Stress—min. abs/min. rel. dInc

SIBYLA E 1a) Empirical = ƒ(dbh, ig, h, SI) 11) PROGNAUS empirical = ƒ(dbh, crown ratio,
BAL)

1b) Max. stand density (Gmax)
xComp E 1) Empirical = ƒ(dbh, SDI, SI) based on Reineke’s

rule (using optimization)
11a) Empirical as 1), plus
11b) ‘Height-antagonistic function’ time-
variable SI: if top height >max. height (SI) =>
death

iLand P 1a) Background—max. age 11a) Background—max. age
1b) Stress—neg. C balance (no delay for
enhanced probability)

11b) Stress—minimum abs. dInc (5 yr delay)

LandClim I 1a) Background—max. age 11a) Background—max. age alone (NFI-fitted)
1b) Growth-dependent—dInc 11b) Growth-dependent—instantaneous (NFI-fitted)

LANDIS-II E 1) Age-related mortality (sigmoidal increase w/
age)

11) Height-related mortality

CARAIB P 1a) Constant mortality rate 11a) Growth efficiency (�a la LPJ)
1b) Stress-induced (low T, low soil moisture) 11b) Stress-induced (low T, low soil moisture)

LPJ-GUESS P 1a) Various drivers 11a) Various drivers
1b) Stress—growth efficiency 11b) Stress—growth efficiency

LPJmL P 1a) Background—max. age 11a) Background—max. age
1b) stress—growth efficiency 11b) Empirical, Pretzsch et al., fitted to standard

mortality
ED(X) P 1) Growth efficiency (as in LPJ) 11) Carbon starvation

12) Hydraulic failure
13) Phloem failure

Notes: Alternative formulations are numbered starting with 11, to distinguish them from standard formulations. Numbers
with the denomination “a” and “b” refer to mortality formulations that are combined within a given DVM. Cells with italic font
indicate empirically based mortality formulations that in some models are part of the standard setup, in others they are part of
the alternative setup only. For more details on the individual models, cf. Appendix S1. NPP, net primary productivity; dInc,
diameter increment; SDI, Stand Density Index; SI, Site Index; BAL, Basal Area of Larger trees; dbh, diameter at breast height; ig,
basal area increment; h, tree height; Gmax, maximum stand basal area; NFI, National Forest Inventory.

† E is empirical (based on relationships derived, e.g., from forest inventory data); S is standard (similar to JABOWA, Botkin
et al. 1972); P is physiological (based on physiological considerations such as photosynthesis, respiration, mechanistic allocation
of carbon to plant organs, etc.).
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For the present study, a different approach was
used to foster wide participation by a diversity of
modeling teams, resulting in a large number of
modeling teams participating and contributing
models that were developed for different spatial
scales. Each team had a specific DVM at its dis-
posal and was running simulations with their stan-
dard model for at least one site for which the data
required to run the model were readily available.
This is subsequently termed the standard set of

simulations, which included runs under both the
historical climate as well as a set of climate change
scenarios (for details, see below). Then, the stan-
dard formulation of mortality was replaced by an
alternative formulation from the literature that is
appropriate for the resolution of the model (e.g.,
stand-level vs. individual-level rates, predictor
variables available for alternative formulations).
The choice of this alternative mortality formulation
was at the discretion of the modeling teams.

Table 3. Overview of the 15 dynamic vegetation models participating in the comparison exercise regarding sites
of application, baseline climate data, and climate change scenarios.

Name Biome and site(s)
Baseline vs. clim.
change period

Climate scenarios (summer DT;
summer fractP)

4C Temperate, Brandenburg/Germany
(Peitz)

1981–2010
2071–2100

REMO RCP2.6 (+0.6; 0.94)
REMO RCP8.5 (+2.0; 1.06)
RCA RCP2.6 (+0.9; 0.97)
RCA RCP8.5 (3.7; 0.97)

ForClim Temperate, Switzerland (Sigriswil
[historical only] and Scatl�e)

1981–2010
2071–2100

RCP3PD (+2.2; 0.85)
A1B (+4.8; 0.7)

FORMIND Temperate, Brandenburg/Germany
(Peitz)

1981–2010
2070–2099

RCP2.6 (+1.9; 1.07)
RCP8.5 (+5.3; 0.95)

FVS Mediterranean, California (Modoc
National Forest)

1960–1990
2090

RCP4.5 (+3.9; 0.89)
RCP8.5 (+7.4; 0.78)

GOTILWA+ Temperate, Brandenburg/Germany
(Peitz)

1971–2010 RCP2.6 (+1.62; 0.81)
RCP8.5 (+5.0; 0.69)

PICUS Temperate, Austria (three sites in
northern front range of Alps)

1961–1990
2080–2100

A1B (low = 500 m a.s.l.: +3.9; 0.81)
A1B (med = 900 m: +3.6; 0.93)
A1B (high = 1400 m: +3.8; 0.93)

SIBYLA Temperate, Slovakia (Predmier) 1961–1990
2100

IMAGE-RCP3PD(2.6) (+2.6; 0.93)
MESSAGE-RCP8.5 (+7.4; 0.90)

xComp Temperate, Bavaria/Germany (NFI
sample plot with Norway spruce)

1971–2000
2080–2100

mg4.5 (+1.2; 1)
no4.5 (+3; 0.93)
gf4.5 (+4.3; 0.89)
mg8.5 (+2; 1.07)
no8.5 (+3.3; 0.91)
gf8.5 (+5.9; 0.86)

iLand Temperate, Austria (Eibiswald,
Karlstift, Ottenstein)

1981–2010
2080–2099

Eibiswald (other sites very similar):
CNRM-RM4/ARPEGE (+4.9; 0.82)
CNRM-RM4/MPI-REMO (+3.9; 0.74)
ICTP-RegCM3/ECHAM5 (+3.5; 1.16)

LandClim Temperate, Rhône-Alps region/
France (112 NFI plots)

1981–2010
2100

GCMMPI-ESM-LR RCP 2.6 (+5.2; 0.83)
GCMMPI-ESM-LR RCP 8.5 (+9.5; 0.52)

LANDIS-II Temperate, Czech Republic (Sumava) N/A 20% growth increase (climate- and CO2-induced)
CARAIB Temperate and boreal, Europe (6

FLUXNET sites)
1981–2000
2081–2100

GCM GFDL-ESM2M (averaged over six sites):
RCP 2.6 (+1.1; 1.01)
RCP 4.5 (+1.6; 0.97)
RCP 6.0 (+2.5; 0.91)
RCP 8.5 (+3.7; 0.88)

LPJ-GUESS Temperate and boreal, Europe (5
FLUXNET sites)

1981–2010
2070–2099

5 ISI-MIP fast-track GCMs:
RCP 2.6 (averaged) (+2; 1.07)
RCP 8.5 (averaged) (+5.5; 1.03)

LPJmL Tropical, Amazonia (117 plots, cf.
Brienen et al. 2015)

1981–2010
2081–2100

GCMMPI-ESM-LR:
RCP 4.5 (2.3; 0.88)
RCP 8.5 (5.3; 0.80)

ED(X) Arid temperate, USA (Sevilleta
rainshelter experiment)

2007–2011
2071–2100

RCP8.5 (+4; �34 mm)

Notes: fractP indicates the fractional change of precipitation (e.g., 0.94 implies a 6% decrease of precipitation by the end of
the climate change period). For more details on the individual models and their setup in the simulations, cf. Appendix S1.
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Each modeling team defined at least one site
or a set of sites for which the model comparison
was run, including all necessary driver informa-
tion (climate, soils, etc.). Then, the standard
model was run for the(se) site(s) under current
climate, and for six models, the standard and
alternative functions were tested against mea-
sured historical time series data to assess the
importance of the choice of the mortality model
when running relatively short-term (i.e., several
decades) simulations under current climate.

This was followed by the definition of a set of
climate change scenarios for the respective site(s)
that cover a wide range of climatic conditions,
preferably including a moderate (2° target, i.e.,
RCP2.6) as well as a severe scenario (i.e.,
RCP8.5). For the analysis, climate change scenar-
ios were classified as moderate if their annual
average temperature change for the end of the
21st century was below +3°C; otherwise they
were classified as severe (Table 3).

Subsequently, the standard models were run
from the current state (as given by the latest
inventory, or based on a spin-up run) for 200 yr
into the future under these climate change sce-
narios, assuming a constant climate after the year
2100 (due to the lack of climate information
beyond that point, but to still be able to take into
account that climate-induced forest dynamics
may take much longer than a century to unfold).

These standard simulations were then comple-
mented by simulations using an alternative mor-
tality formulation that was identified from the
literature and implemented in the model. For
some models, several alternatives (or combina-
tions thereof) were considered and are described
in Appendix S1, but for the comparison, only a
subset of these alternative formulations (or a
combination of alternatives) was used for the
sake of simplicity (Table 2).

With the alternative model, the same simulations
as described above were run under current climate
as well as under the scenarios of climate change.

Our approach may be criticized because it lacks
rigor compared to the standard model compar-
ison exercises (Cramer et al. 2001, Morales et al.
2005, Piao et al. 2013). However, our approach
has two distinct advantages: First, the models are
run in their comfort zone, and hence, we rule out
artifact responses that one may see in other model
comparisons because models are run under

conditions that they were never really parameter-
ized for. Second, the way we did the study repre-
sents the reality of model applications, that is, a
large number of different models are applied to
different sites across the globe to estimate climate
change impacts. We for the first time evaluate
how sensitive such real-world model applications
are to different mortality formulations. Hence,
our goal was not primarily a formal model com-
parison exercise, but rather an exercise highlight-
ing how sensitive the DVMs currently applied in
impact assessments are to mortality formulations.

Model comparison
Simulation results were reported as total basal

area, stem number, diameter distributions as
well as species composition for those five models
that simulated multi-species forests (i.e., FVS,
iLand, LandClim, LPJ-GUESS, and PICUS), the
composition in terms of Plant Functional Types
(LPJmL), or species-specific biomass proportions
(CARAIB) over time. Stand-level basal area and
stem numbers were the major variables upon
which we focused in the subsequent comparison.
A sensitivity index sens was developed to com-

pare simulation results under different mortality
formulations or different climate change scenar-
ios within each model at each site, as follows:

sens ¼ yaltðtendÞ
ystdðtendÞ
�
�
�
�

�
�
�
�
� 100
tend � tstart

(1)

where y is the target variable that is considered
(basal area or stem number, both at the stand
scale), std and alt are subscripts denoting the
standard or alternative formulation (or the cur-
rent and a future climate, respectively), and tstart
and tend denote the time of the beginning and end
of the evaluation period (in yr). In the case where
yalt was smaller than ystd, the two variables were
swapped. Thus, in essence Eq. 1 reflects the dif-
ference between two simulation runs expressed
as the absolute fractional change per century.
All calculations and graphics were made using

the statistical software R v3.3.2 (R Core Team 2017).

Behavioral patterns expected to arise from the
model pool
The 15 models that were used in this exercise

(Table 1) featured widely different pairs of stan-
dard and alternative mortality algorithms
(Table 2), thus leading to strongly different
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expectations regarding model sensitivity to these
variations, as explained below.

First, some models were set up to employ mor-
tality formulations that were closely related to
one another. For example, in the FORMIND
model the standard formulation uses a 2% per yr
background mortality combined with a stress-
related component that kills trees instantly when-
ever their annual net primary productivity (NPP)
is below zero. In the alternative formulation, the
background mortality formulation was main-
tained, and the stress-related component was for-
mulated such that when NPP < 0, tree survival
probability was reduced, rather than being set to
zero (for details, cf. Appendix S1: Section 5). In
such cases, one would expect low model sensitiv-
ity to the mortality formulation irrespective of the
setup of the simulation, as the formulations are
only slight variations of each other. Similar rea-
soning applies to five models: 4C, CARAIB, FOR-
MIND, iLand, and LPJ-GUESS (Table 2).

Second, in some cases the alternative formula-
tions were calibrated (statistically or by hand) to
yield comparable results under current climatic
conditions as the standard formulation. In these
cases, one would expect very low sensitivity
under current climatic conditions and also low
sensitivity under future climatic conditions as
long as the range of the calibration data is not
exceeded. This applies to LandClim, LANDIS-II,
and LPJmL (Table 2).

Third, the majority of the DVMs were set up to
feature conceptually and structurally different alter-
native mortality formulations. For example, in the
standard GOTILWA+ model, the mechanisms of
carbon starvation and hydraulic failure are incor-
porated as drivers of mortality. For the alternative

formulation, Yoda’s (1963) self-thinning law was
used, which in contrast to the standard formulation
does not operate at the individual tree level and is
not based on any physiological mechanisms. Thus,
one may expect widely different simulation trajec-
tories from the two approaches potentially already
under the current climate, but certainly under a
changing climate. Similar reasoning applies to eight
models: ED(X), ForClim, FVS, GOTILWA+, PICUS,
SIBYLA, and xComp (Table 2).

RESULTS

Sensitivity to mortality formulations under current
climate
The simulation results from six models were

compared against long-term time series data
from forest inventories (e.g., the site Peitz in
Brandenburg, Germany, featuring stand develop-
ment data over 60 yr), including 4C, ForClim,
FORMIND, GOTILWA+, iLand, and LPJ-GUESS.
These tests typically showed that each of the
model formulations is able to represent the
observed mortality at decadal time scales under
current climatic conditions (cf. Fig. 1). An impor-
tant exception was GOTILWA+, which featured a
strong decrease in tree numbers with the stan-
dard (physiological) mortality algorithm that
matches the empirical data rather well, but virtu-
ally no mortality occurred during the second half
of the test period when employing the alternative
(self-thinning) algorithm (Fig. 1).
CARAIB, ED(X), and SIBYLA featured a rather

short-term evaluation period only (~15 yr), thus
making it unlikely to detect differences as a func-
tion of different mortality algorithms. Yet,
SIBYLA showed very strong sensitivity: In the

Fig. 1. Examples of the comparison of simulated trajectories against empirical data (black dots), with the cases
of the 4C and the GOTILWA+ model, both being run for the ISI-MIP site Peitz in Brandenburg, Germany.
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very short-term perspective (7 yr), the alternative
formulation (Monserud and Sterba 1999) led to
unrealistic mortality rates. However, when tak-
ing the whole evaluation period (i.e., 14 yr) into
account, the simulated mortality rates were
approaching the measured data over this period.

Several models including FVS, LANDIS-II,
LPJmL, and xComp were checked for the realism
of model behavior under current climatic

conditions, albeit not as stringent long-term tests,
thus not providing conclusive insights on model
sensitivity under current climatic conditions.

Sensitivity to mortality formulations vs. sensitivity
to climate change
Stand-scale models.—Simulated trajectories of

basal area (Fig. 2) and stem numbers (Fig. 3)

Fig. 2. Simulation of basal area (m2/ha) by the eight stand-scale models at the respective sites (cf. Table 3) for
200 yr into the future (with the exception of 4C, for which the simulation was ended in the year 2100 in all cases).
Note that in the case of PICUS, three sites were simulated (cf. Table 3). Moderate climate change: change of
annual mean temperature <3°C (cf.Methods).
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suggested that different mortality formulations
often led to low sensitivity of model outputs over
the first ~100 yr of the simulation (e.g., 4C, FOR-
MIND, GOTILWA+, xComp). However, most
models featured strongly different trajectories of
these two variables over longer time scales, with
the differences developing either smoothly (e.g.,
ForClim), or in a rather abrupt fashion (e.g., FVS,
GOTILWA+, SIBYLA).

It is noteworthy that for some models the tra-
jectories of basal area (Fig. 2) were rather similar

in response to different mortality formulations,
whereas simulated tree numbers (Fig. 3) differed
substantially in the long term (e.g., FORMIND),
but the opposite pattern was also found in one
case (i.e., xComp).
The evaluation of the sensitivity index (Eq. 1)

for the stand-scale models (Fig. 4) yielded the
following distinct patterns:
First, some combinations of forest models and

mortality formulations tended to be more sensi-
tive than others. PICUS, SIBYLA, and xComp

Fig. 3. Same as Fig. 2, except that stem numbers (ha�1) are shown. Note the scaling of the y-axis for xComp,
which differs from that used for the other models.
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uniformly featured sensitivity indices for basal
area (Fig. 4a) that were higher than 0.1 (i.e., more
than a 10% difference in basal area over a century
depending on the choice of the mortality formu-
lation), with maxima up to a 17-fold difference
(i.e., sensitivity index of �17), whereas the model
4C had values uniformly below 0.1. The other
four models ranged in between. For stem num-
bers (Fig. 4b), which are known to be much more
variable than basal area (cf. Pretzsch 2009), the

pattern was less clear except that for FVS, often
low sensitivity was found.
Second, the sensitivity indices of the mortality

formulations for basal area under the current cli-
mate (black dots in Fig. 4a) tended to be similar
as for moderate climate change (typically, RCP2.6;
orange dots), whereas the sensitivity indices for
severe climate change (RCP8.5; red dots) were
typically much higher than under both current cli-
mate and moderate climate change (Table 4).

Fig. 4. Sensitivity index for basal area (left column, panels a and c) and stem numbers (right column,
panels b and d) for the eight stand-scale models, extending over 200 simulation years (i.e., for most models the
period until the year 2200, or 200 yr after the beginning of the climate change scenario). Note the logarithmic
scale of the y-axis. The horizontal gray line indicates a sensitivity index of 0.1. Top row (a,b): sensitivity to mortal-
ity formulations under different scenarios of climate change. Bottom row (c, d): sensitivity to climate change
using different mortality formulations. Note that the xComp and 4C models could not be evaluated for their
sensitivity to climate change, as no simulation under current climate into the future was performed. Also. 4C
was run until 2100 only, that is, its sensitivity index refers to 100 yr, rather than 200 yr as for the other models
(cf. Appendix S1).
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Thus, the sensitivity to the formulation of mortal-
ity becomes stronger as the climate is shifting
away from current conditions, largely indepen-
dent of the forest model that is considered.

Third, sensitivity of simulated basal area and
stem numbers to the magnitude of climate
change (Fig. 4c, d) tended to be lower than sensi-
tivity to the mortality formulation (Fig. 4a, b), as
the points were clustered between 0.01 and 0.1
regarding climate sensitivity, but between 0.1
and 1.0 regarding mortality sensitivity. However,
there was no clear pattern for the standard vs.
the alternative mortality formulation regarding
climate sensitivity (Fig. 4c, d). Also, there were
strong model-specific exceptions (e.g., FVS,
whose climate sensitivity is much larger than its
sensitivity to alternative mortality formulations).

Landscape-scale models.—Among the three land-
scape-scale models, LandClim provided widely
different trajectories of basal area depending on
the mortality formulation (Fig. 5, top), but much
lower variation of stem numbers (Fig. 5, bottom).
iLand (shown in Fig. 5 for three sites) showed lit-
tle sensitivity with respect to either basal area or
stem numbers. LANDIS-II featured virtually
identical simulation results under both mortality
formulations during the first two centuries of the
simulation (i.e., in the early succession phase),
and later primarily a phase shift was evident
from the simulation results, depending more on
the climate scenario than on the mortality formu-
lation (Fig. 5).

The three landscape-scale models featured sen-
sitivity indices regarding the choice of mortality
formulation (Fig. 6a, b) that tended to be dis-
tinctly lower than those in the stand-scale analysis

(Fig. 4a, b), not often exceeding a value of 0.1.
However, their sensitivity to climate change
(Fig. 6c, d) tended to be higher than the sensitivity
to the formulation of mortality, most pronounced
for basal area, which again is a distinct difference
compared to the stand-scale results (Fig. 4c, d).
Global-scale models.—Three global DVMs were

run for individual sites in our study, that is, CAR-
AIB, ED(X), and LPJ-GUESS. The latter essentially
is a stand model based on the gap paradigm (Shu-
gart 1984), but it is typically applied across larger
areas on a grid. Therefore, its results are directly
comparable to those of the models at the other
scales, and they were thus analyzed accordingly
(Figs. 5 and 6), showing relatively low variation
of basal area and stem numbers depending on the
choice of mortality formulation, and a larger sen-
sitivity to the choice of the climate scenario than
the mortality formulation, particularly regarding
simulated stem numbers.
LPJmL was run for the entire Amazon region,

but its results were aggregated to average values
across the region (Figs. 5 and 6), showing very
low sensitivity of basal area and stem numbers
to the formulation of mortality. A closer
inspection of the simulated spatial patterns (cf.
Appendix S1: Section 12) suggests that this is
mostly due to spatial averaging, that is, for sub-
regions of the Amazon noticeable differences are
evident, although they are not very large either.
CARAIB featured strongly different long-term

development of biomass carbon depending on
the mortality formulation (results not shown
here; cf. Appendix S1: Section 2), indicating a
high sensitivity of this global model to the choice
of mortality formulation.
Lastly, ED(X) was run for an experimental site

in the southwestern United States, evaluating
short-term tree mortality simulations using the
concepts of carbon starvation, hydraulic failure,
phloem failure, or growth efficiency (McDowell
et al. 2013). Also this model featured strong sen-
sitivity to the assumptions about the drivers of
mortality, that is, widely different mortality
probabilities. In general, the carbon starvation
mechanism predicted lowest mortality due to the
CO2 fertilization effect; the hydraulic failure
mechanism induced highest mortality under the
RCP8.5 greenhouse emission scenario; and the
phloem failure mechanism yielded a medium
level of mortality (cf. Appendix S1: Section 3).

Table 4. Averages (l) and median (med) values of the
sensitivity indices for basal area (BA) and stem num-
bers (no.) for all stand-scale simulations under cur-
rent climate, moderate, and severe climate change,
respectively (cf. Fig. 4a, b), showing a clear tendency
for higher sensitivity to the mortality formulation
with increasing degree of climate change.

Climate l (BA) med (BA) l (no.) med (no.)

Current 0.23 0.14 0.41 0.11
Moderate change 0.14 0.09 0.27 0.11
Severe change 0.87 0.18 1.72 0.07

Note: A statistical analysis of the distributions is not possi-
ble because the data within each group are not independent.
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Fig. 5. Basal area (top) and stem numbers (bottom) simulated by the three landscape-scale models and the
global models LPJ-GUESS and LPJmL (which were run at the stand scale for this analysis) at the respective sites
(cf. Table 3) for at least 200 yr into the future. Note the different time scale of the simulation shown for
LANDIS-II, as the results from that model over the first 200 yr were nearly identical irrespective of the mortality
formulation; note also the different y-axis scale in the basal area panel of LandClim (top row).
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DISCUSSION

The present study suggests that there is con-
siderable sensitivity of stand-scale DVMs to the
formulation of mortality (Fig. 7), which tends to
be larger than the sensitivity to different scenar-
ios of climate change. For the three landscape-
scale DVMs examined here, sensitivity to both
mortality modeling and climate change is lower,
although the latter is relatively larger. Yet, this
may not provide solid ground for generalizations
because structurally rather similar mortality
functions were used in the landscape-scale
models as standard and alternative approaches
(unlike in many stand-scale models; cf. Table 2).

Furthermore, the low number of participating
models (n = 3) needs to be considered as well.
Thus, further tests are required by including
additional landscape-scale models. For the glo-
bal-scale models, it is difficult to generalize
beyond the few case studies that were examined
here, and further studies are sorely needed.

Behavioral patterns arising from the model pool
Model sensitivity to the formulation of mortal-

ity only partly followed the expectations that
were based on DVM structure and driving vari-
ables. However, the deviations, as well as the
patterns within the three groups of expected
model behavior, yielded relevant insights.

Fig. 6. Sensitivity index for basal area (left) and stem numbers (right) for the three landscape-scale models and
the global models LPJ-GUESS and LPJmL. The horizontal gray line indicates a sensitivity index of 0.1. For details,
cf. caption of Fig. 4.
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Among the five DVMs that were expected to
feature low sensitivity to the formulations of
mortality due to strong structural similarity of
the approaches that were applied, three actually
showed low sensitivity: 4C, iLand, and
LPJ-GUESS. These models either employed a
background mortality rate that is constant and
combined it with somewhat different approaches
for portraying stress-induced mortality (e.g.,
NPP vs. investment into foliage growth in the
case of 4C), or they used the same stress-induced
mortality and combined it with different
formulations of the background mortality (e.g.,
age-related vs. diameter-related mortality in the
case of LPJ-GUESS). In this latter example, it is

noteworthy that there are distinct advantages of
using a diameter-related mortality (cf. Manusch
et al. 2012), for example, for reproducing the
trade-off between juvenile growth rate and lifes-
pan (Bigler and Veblen 2009). Overall, in these
three DVMs only (1) a part of the mortality for-
mulations was altered, and (2) to a moderate
extent, thus not surprisingly leading to low vari-
ations in the simulation results. Thus, these mod-
els resulted in robust simulation trajectories even
when moderate changes in the mortality formu-
lation were assumed.
The other two DVMs that were expected to fea-

ture low sensitivity based on the structural prox-
imity of the standard and alternative mortality
formulations, that is, FORMIND and CARAIB,
featured surprisingly high sensitivity in spite of
only slight mathematical differences in just one
part of the formulation (Table 2). This was most
pronounced for FORMIND, where the only differ-
ence was that in one approach trees are killed
immediately (i.e., survival probability is zero)
when their NPP falls below zero, whereas in the
other approach their survival probability is
reduced by a certain degree, proportional to the
negative NPP level. Although technically this is
just a difference in the value of a parameter, from
an ecological point of view it constitutes an impor-
tant difference: Certain death is qualitatively dif-
ferent from having a non-zero survival probability.
Two DVMs were expected to feature low sensi-

tivity to the mortality formulation because they
were calibrated with the objective to yield similar
results under current climate, that is, LandClim
and LPJmL. This expectation was met fully for
LPJmL. For LandClim, however, the highest sen-
sitivity of all landscape-scale models was found,
even under current climate. This suggests that
the calibration may have resulted in a model that
matches well a rather small data set (i.e., a subset
of the French National Forest Inventory), which
represents just a short snapshot of forest dynam-
ics in space and time, such that the model was
used beyond its calibration range in our exercise.
Overfitting of DVMs to short-term data series
was found to be a major problem in other studies
as well (Mette et al. 2009, Bircher 2015, H€uls-
mann et al. 2018).
The other eight models were expected to fea-

ture higher sensitivity to the different mortality
algorithms because they were based on widely

Fig. 7. Box plots of the distribution of the sensitivity
indices for basal area regarding model formulation
(Mo) and climate (Cl) at the stand (St) and landscape
(L) scales for 200-yr simulations into the future. Four
outliers in stand-scale sensitivity with respect to mor-
tality (St_Mo) and climate (St_Cl) are not shown
(cf. Fig. 4a, c), as they represent situations where
excessively low biomass values were obtained (two
scenarios in FVS, and one each in xComp and SIBYLA;
cf. Fig. 2).
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different driving variables (such as a physiologi-
cal approach vs. stand density, as in GOTILWA+)
or had a distinctly different structure (theoretical
vs. inventory-based formulation, as in ForClim).
This expectation was met with the exception of
FVS in the case of stem numbers, which typically
featured very low sensitivity. In FVS, climate
change has a strong effect on the species’ growth,
mortality, and regeneration rates at the study
sites. Already 40 yr into the simulation, climate-
induced mortality calculated (empirically) by the
model drove some species nearly to local extinc-
tion. A consequence of such (unrealistic) behav-
ior was that the mortality estimates for the end of
the simulations were quite similar to each other,
under both RCP 4.5 and 8.5, regardless of the
algorithm used, because they were calculated
from a very low living biomass.

In at least some scenarios, many of the other
seven models reached sensitivity values that
reflected a difference in the target variables (Eq.
1) of at least 50% per century (for basal area, this
was the case in 14% and for stem numbers in
13% of the simulation runs, respectively). This
indicates vast differences in simulation results
depending on the mortality formulation. Specifi-
cally, the collapse of basal area (and often also
stem numbers) that occurred with just one of the
mortality formulations in FVS, SIBYLA, xComp,
and, to some extent, in GOTLIWA+ reflects the
presence of non-linear effects and thresholds in
the mortality formulations. These thresholds
may be exceeded in some, but not in all cases,
thus yielding highly different simulation results
with manifold differences in the target variables,
that is, completely different trajectories of the
DVM. Such divergence may arise when the origi-
nal process descriptions are tailored to one
another (e.g., applying physiological principles
throughout), such that the modification of one
single process description (e.g., replacement by a
population-based approach such as Yoda’s self-
thinning law in GOTILWA+) may render the
DVM inconsistent, leading to unwanted feedfor-
ward/feedback effects and, ultimately, incongru-
ent projections of future dynamics.

Lastly, it is conspicuous that the highest sensi-
tivity values regarding basal area and often also
stem numbers were reached by models that fea-
ture an empirically based overall structure and at
least one empirically based mortality formulation,

that is, FVS, xComp, and SIBYLA. Although we
cannot make firm statements about the appropri-
ateness of mortality formulations under future
no-analog conditions (IPCC 2013), it is likely that
some empirically based mortality formulations
are exceeding their range of applicability in a
future climate, whereas theoretically based
approaches that try to reflect biological dependen-
cies and ecological relationships may be less likely
to yield erroneous results when applied under
future climatic conditions.

Sensitivity to mortality formulations under current
climate
It is little surprising that DVMs that featured

low sensitivity to the choice of mortality formula-
tion under scenarios of climate change, such as
4C, were also little sensitive to mortality under
the current climate (Fig. 1). However, the cases
of FORMIND, ForClim, and LandClim demon-
strate that the absence of evidence of sensitivity
under current climate does not constitute evi-
dence for the absence of such sensitivity under
climate change. Thus, neither the validation of
simulated DVM trajectories against long-term
inventory data (FORMIND, ForClim) nor the cal-
ibration of model behavior against (shorter)
inventory data (LandClim) are a guarantee for
reliable model behavior under future conditions.
This situation reflects a fundamental dilemma

in the context of dynamic forest models. Relative
to the time scale of forest development, even a
60-yr time series of inventory data is short and
does not allow us to fully test the behavior of a
DVM. Since longer time series data (such as from
palynology; e.g., Henne et al. 2011) typically
have much lower temporal, spatial, and taxo-
nomic resolution compared to more recent data
such as forest inventories, paleoecological model
tests are often not conclusive regarding species
proportions and particularly their rates of
change, either (cf. Lischke et al. 1999, Heiri et al.
2006). A promising way ahead may lie in the
combined use of multiple data sources at differ-
ent temporal and spatial scales to rigorously
evaluate DVM simulation results; DVMs should
be transferable in both space and time, constitut-
ing a necessary (but not sufficient) condition for
their applicability under scenarios of climate
change. Particularly regarding tree mortality, few
such studies exist (Steinkamp and Hickler 2015).
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Sensitivity to mortality formulations vs. sensitivity
to climate change

The simulation results of DVMs using different
mortality formulations tended to be similar for
up to a century into the future, irrespective of the
scale for which the models were formulated. This
is good news for model applications that are
geared toward providing decision support for
climate-adaptive forest management, for exam-
ple, as this is the time scale that is relevant for
planning interventions toward the next tree gen-
eration (Seidl et al. 2011, Bircher 2015).

The longer-term disagreement among simula-
tion results using different mortality formula-
tions is disconcerting, however, for example in
the context of assessments of the role of forests in
the global carbon cycle (cf. Friend et al. 2014).
This clearly indicates that a better understanding
of tree mortality is needed as well as an appro-
priate encapsulation of that understanding in
tree mortality formulations for DVMs. Simply
calling for empirically based models, which typi-
cally are based on decadal-scale time series of
inventory data, may not be the best solution
(Keane et al. 2001) as such models may be over-
fitted to the peculiar environmental conditions
under which the data were measured (H€ulsmann
et al. 2017). Thus, a more integrative approach
relying on multiple data sources and possibly
involving inverse Bayesian calibration is needed
(Hartig et al. 2012), which can be viewed as a
further development of “pattern-oriented model-
ing” (Grimm et al. 2005). Such approaches are
facilitated by the increasing availability of tree
mortality data across large climatic gradients
(Neumann et al. 2017) and by the use of remo-
tely sensed information to improve the climate
sensitivity of mortality models.

In some DVMs, sensitivity of simulated basal
area and stem numbers to variations in the mor-
tality formulation was similar, whereas in others
these two variables reacted quite differently. This
suggests that rather different feedbacks from tree
mortality to regeneration are embodied in the var-
ious models, that is, in somemodels enhanced tree
death gave rise to a surge of tree regeneration,
whereas in others it did not. In this context, it has
to be taken into account that some DVMs of our
study are based on the assumption of unlimited
seed availability (e.g., ForClim), whereas in others
regeneration rates depend on the presence of seed

trees (e.g., iLand), and in some DVMs, regenera-
tion was turned off for the present simulations
(e.g., 4C). This confirms that tree regeneration in
addition to mortality is a highly sensitive process
in at least some DVMs, which is in agreement
with empirical findings (Clark et al. 1999, Marti-
nez-Vilalta and Lloret 2016). Subsequent research
should address the interplay between these two
crucial processes of population dynamics.
Trajectories of ecosystem development are

often non-linear (Scheffer et al. 2001). Therefore,
the identification of tipping points (Scheffer
2010) is highly important in the context of forest
dynamics in a changing climate (Williams et al.
2013, Reyer et al. 2015). Several of the DVMs
investigated here featured tipping points, but
they resulted from empirically based mortality
models that may simply be outside of the range
of their calibration data, thus possibly yielding
erratic predictions. The more process-based mor-
tality models used in our study may not have
featured tipping points because the design of the
analysis was not to evaluate the impact of, for
example, mega droughts (Dai 2011) or distur-
bances (Seidl and Rammer 2017), although inter-
annual variability of weather conditions was
included in the climatic drivers of all models
(cf. Appendix S1). A more in-depth evaluation of
the causes and features of mortality-induced tip-
ping points in DVMs by exploring a broader pos-
sibility of climate change scenarios through
dedicated, quantitative sensitivity analyses
would thus be highly valuable.
In many models, sensitivity to the formulation

of mortality increased with the degree of climate
change that was imposed on the DVMs. On the
one hand, this indicates that most mortality for-
mulations tend to share some common ground
under current climatic conditions as well as under
a moderate magnitude of climate change, which
is encouraging, but on the other hand, it also indi-
cates that model uncertainty is particularly large
under high-end scenarios of climate change (IPCC
2013), which, in the absence of dramatic emission
reductions, are increasingly likely to materialize
(Peters et al. 2013). This strongly complicates
assessments of future feedback effects within the
climate system that may be induced by the behav-
ior of forest vegetation (cf. Sitch et al. 2008).
It also needs to be kept in mind that the exer-

cise presented here differed not only in the
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structure of the DVMs that were employed, but
also in the sites at which the simulations were
conducted. It is possible that for certain combina-
tions of site x climate conditions, sensitivity to
the mortality formulation is low because mortal-
ity simply is not important, at least for a certain
time frame (such as the 200 yr upon which our
analyses were focused). For a more thorough
assessment of the underlying causes of mortality
in the models, more standardized and complex
model comparisons would be needed. While we
acknowledge that this is important, we consider
our results as still valid because for some models
that used the same site and climate (e.g., Peitz
with 4C, FORMIND, and GOTILWA+; cf.
Table 3), we still found strong differences that
were in line with our overall results.

Lastly, our analysis clearly indicates that DVM
sensitivity to different mortality formulations is
at least of the same order of magnitude as sensi-
tivity to climate change scenarios (i.e., RCP2.6 vs.
RCP8.5). As long as we cannot supply robust
models of tree mortality that can be used faith-
fully in DVMs under climate change conditions,
the way toward robust projections could be to
either use several, conceptually different model
formulations, or formal sensitivity analysis in
order to gauge the range and uncertainty of
future forest trajectories.

CONCLUSIONS

We provide the first study to comprehensively
evaluate the sensitivity of DVMs to the formula-
tion of mortality; we examined the reasons
underlying the different sensitivity in the differ-
ent DVMs in terms of the type and structure of
the mortality formulation; and we compared the
sensitivity of DVMs to mortality formulations
with their sensitivity to climate change.

First, we conclude that a rich set of tree mortal-
ity algorithms is available today (cf. H€ulsmann
et al. 2017), and thus, structural sensitivity tests
of DVMs with different mortality algorithms are
perfectly feasible and should be emphasized in
the future.

Second, we found widely different sensitivities
of DVMs to different mortality formulations, with
a large number of DVMs featuring high sensitiv-
ity. Our results are novel and helpful for guiding
future model development as well as assisting

the interpretation of model outcomes in terms of
their uncertainty. Unfortunately, the identification
of a suitable mortality formulation is not usually
possible based on past data that typically cover
several decades only. In spite of the attractiveness
of empirically based algorithms (typically using
forest inventory data), these tended to lead to
most pronounced differences when subjected to
scenarios of climate change. Due to the fact that
under scenarios of climate change, these algo-
rithms tend to be operating beyond the range of
their calibration data, and their projections may
often not be robust. Thus, the future of mortality
modeling may lie more in synthetic approaches
that embody various data sources rather than for-
mulations that are based on a single set of tempo-
rally and spatially limited data.
Third, even though in the long run under

future climate change vastly different model tra-
jectories may be obtained, most mortality formu-
lations led to good agreement of simulated
trajectories for up to a century into the future.
This is the time scale that is most relevant, for
example, for decision making in ecosystem man-
agement, and hence, DVM results are useful in
this context.
Fourth, for long-term evaluations of, for exam-

ple, the role of forests in the global carbon cycle,
using only one mortality algorithm in DVM stud-
ies vastly underestimates the uncertainty of pre-
dictions. Hence, in future applications of DVMs
to study the long-term impacts of climate change
on forests, let alone their feedback to the climate
system, mortality processes should receive much
more attention, so as to better embrace the uncer-
tainty and range of possible future trajectories.
Lastly and most fundamentally, we conclude

that the sensitivity of DVMs to the formulation of
mortality is of at least the same order of magni-
tude and often larger than DVM sensitivity to cli-
mate change. Thus, mortality is one of the most
uncertain ecosystem processes when it comes to
assessing forest response to climate change. More
data and a better process understanding of tree
mortality are needed to improve the robustness
of simulated future forest dynamics.
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