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Abstract
For decades, ecologists have investigated the effects of tree species diversity on tree 
productivity at different scales and with different approaches ranging from observa‐
tional to experimental study designs. Using data from five European national forest 
inventories (16,773 plots), six tree species diversity experiments (584 plots), and six 
networks of comparative plots (169 plots), we tested whether tree species growth re‐
sponses to species mixing are consistent and therefore transferrable between those 
different research approaches. Our results confirm the general positive effect of tree 
species mixing on species growth (16% on average) but we found no consistency in 
species‐specific responses to mixing between any of the three approaches, even after 
restricting comparisons to only those plots that shared similar mixtures compositions 
and forest types. These findings highlight the necessity to consider results from dif‐
ferent research approaches when selecting species mixtures that should maximize 
positive forest biodiversity and functioning relationships.

K E Y W O R D S

biodiversity, ecosystem function and services, FunDivEUROPE, national forest inventories, 
productivity, species richness, synthesis, tree growth, TreeDivNet

1  | INTRODUC TION

The provisioning of ecosystem services beneficial to human well‐
being strongly relies on plant diversity (Cardinale et al., 2012). 
Decreases in primary producer diversity can impact ecosystem func‐
tioning and decrease ecosystem productivity and stability (Cardinale 
et al., 2012; Hooper et al., 2012), a phenomenon especially well 
studied in grassland ecosystems (e.g., Isbell et al., 2015; Reich et al., 
2012; Tilman et al., 1997) where log species richness and log pro‐
ductivity are often linearly related (Craven et al., 2016; Hector et al., 
1999; Tilman et al., 1997). In forest ecosystems, systematic research 
on the effects of species mixing on wood production dates back to 
the foundations of modern forestry (Hartig, 1791). Current global 
synthesis studies concluded that, across the different forest biomes, 
a positive relationship between tree diversity and stand productivity 
prevails (Liang et al., 2016; Scherer‐Lorenzen, 2014; Zhang, Chen, & 
Reich, 2012).

The relationship between tree diversity and productivity 
has already been studied using different research approaches 
(Table 1), starting with the analysis of forest inventories (Hartig, 
1791; Schwappach, 1912; Wiedemann, 1943), followed by silvicul‐
tural trials and tree diversity experiments (Bruelheide et al., 2014; 
Koricheva, 2002; Pretzsch, 2005; Scherer‐Lorenzen et al., 2005; 
Tobner, Paquette, Reich, Gravel, & Messier, 2014; Verheyen et al., 
2016) and more recently by  the selection of comparative plots in 
mature forests (Baeten et al., 2013; Bruelheide et al., 2011; Fischer 
et al., 2010). Forest inventories usually cover large numbers of 

uniformly distributed plots across multiple forest types and large 
environmental gradients. Tree diversity experiments, in contrast, 
consist of spatially restricted, replicated plantations of different 
tree species compositions and levels of tree species diversity and 
have  minimal variation in environmental conditions. Comparative 
study plots (Bruelheide et al., 2011) or “exploratories” (Fischer et 
al., 2010) consist of survey plots within mature forests selected to 
contain replicated levels of tree species diversity and compositions 
while at the same time controlling for differences in community 
structure and environmental conditions. They can thus be regarded 
as an intermediate approach that combines aspects of forest inven‐
tories and tree diversity experiments.

Regardless of the approach applied, most previous research on 
forest diversity‐productivity relationships focussed on the effects 
of tree species diversity on the productivity of the community 
(e.g., Homeier, Breckle, Günter, Rollenbeck, & Leuschner, 2010; 
Jucker et al., 2016; Liang et al., 2016; Paquette & Messier, 2011; 
Ruiz‐Benito et al., 2014; Vilà et al., 2013). In theory, any positive 
effect of species diversity could stem from either positive interac‐
tions between the co‐occurring species (complementarity effects, 
Loreau & Hector, 2001) or from the admixing of one or few ex‐
ceptionally productive or dominating species (selection effects, 
Loreau & Hector, 2001). Depending on the forest ecosystem, spe‐
cies‐specific growth responses to increasing tree diversity can be 
consistently positive (Chamagne et al., 2017; Liang et al., 2016) 
or variable, depending on the species and context (Baeten et al., 
2019; Jucker, Bouriaud, Avacaritei, Dănilă, et al., 2014; Ratcliffe, 
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Holzwarth, Nadrowski, Levick, & Wirth, 2015; del Río et al., 2017; 
Tobner et al., 2016). It is unclear to what extent these differences 
in species responses to tree diversity are caused by differences 
in species‐specific characteristics (Fichtner et al., 2017; Williams, 
Paquette, Cavender‐Bares, Messier, & Reich, 2017) or differences 
in study design. Comparing species‐specific responses to mixing 
between the different research approaches could help to deter‐
mine which species generally benefit, suffer, or show divergent 
responses to increases in tree species diversity. Restricting these 
comparisons to only the set of tree species and forest types that 
are shared between research approaches should furthermore re‐
duce the confounding effects of species compositions and large 
scale environmental context‐dependency and leave mainly the ef‐
fects of local environmental context‐dependency and differences 
in stand structure.

In the FunDivEUROPE research network (functional significance 
of forest diversity in Europe, Baeten et al., 2013), all three previously 
described approaches (experiments, exploratories and inventories) 
were applied throughout Europe to study the effects of tree diversity 
on forest ecosystem functioning. The three approaches partly over‐
lap in their species pools, although there are differences in species 

compositions as well as successional, structural, climatic and edaphic 
plot conditions. Syntheses across all three approaches can thus be ap‐
plied to test whether most tree species respond consistently to species 
mixing. Identifying tree species that display consistent responses be‐
tween different approaches and different forest types would further‐
more allow the isolation of general patterns from context‐dependent 
effects.

With this study, we provide a first comparison of the growth re‐
sponse of a large set of tree species to species mixing across three 
distinct research approaches (tree diversity experiments, networks 
of comparative plots and forest inventories). We tested the following 
hypotheses: (H1) across all species and research approaches, tree 
species growth is higher in mixed than in monospecific tree com‐
munities, (H2) across all species and research approaches, the ef‐
fect of tree species mixing on species growth linearly increases with 
the logarithm of the number of admixed tree species (two, three or 
higher species mixtures), and (H3) species' aggregated responses to 
mixing are correlated between different research approaches. We 
furthermore hypothesized that species' responses to mixing will be‐
come more consistent between the three research approaches, if we 
compare only matching species compositions. (H4). The findings of 

TA B L E  1  Summary of the advantages, disadvantages, and exemplary findings on the relationship between tree species diversity and 
tree growth or stand‐level biomass production in three different research approaches. Figures depict the characteristics of the research 
approaches: representativeness (i.e., the anticipated transferability of the findings to existing forests), comprehensiveness (i.e., the number 
of ecosystem functions and properties that can be feasibly quantified), and orthogonality (i.e., the ability to quantify the effect of tree 
diversity against a background of variation); Figures are based on Nadrowski et al. (2010) and Jucker et al. (2016) and published on proje​
ct.fundi​veuro​pe.eu

Research approach Advantages Disadvantages Reported effects of tree diversity on productivity

Tree diversity 
experiments

Solid statistical design
Can include species mixtures that do 
not occur naturally
Minimal variation in environmental 
characteristics
Diversity orthogonal to other drivers 
of function
Causal inference possible

Fixed number of 
tree species and 
combinations
Cover only limited 
environmental 
gradients

Global network of tree diversity experiments 
(Verheyen et al., 2016), www.treed​ivnet.ugent.be

Positive (Pretzsch, 2005; Fichtner et al., 2017; 
Erskine, Lamb, & Bristow, 2006; Potvin & Gotelli, 
2008; Haase et al., 2015)

Nonsignificant (Tobner et al., 2016; Nguyen, 
Herbohn, Firn, & Lamb, 2012; Guo & Ren, 2014)

Negative (Firn, Erskine, & Lamb, 2007)

Comparative forest 
plots
(exploratories) 

Controlled species composition
Intermediate variation in stand 
characteristics
Diversity as orthogonal as possible to 
other drivers of function
Intermediate gradient in environmen‐
tal conditions
Can be established in mature forests

Limited number of 
tree species
Causal inference is 
difficult

Positive (Barrufol et al., 2013; Jucker, Bouriaud, 
Avacaritei, & Coomes, 2014)

Negative (Jacob, Leuschner, & Thomas, 2010)

Forest inventories Large number of plots
Vast geographic extend
Large gradients in
‐ Species compositions
‐ Stand characteristics
‐ Environmental conditions
Highly representative

Large heterogene‐
ity can confound 
diversity signals
Design originally not 
developed to study 
biodiversity‐eco‐
system function 
relationships
Causal inference not 
possible

Positive (Liang et al., 2016; Paquette & Messier, 2011; 
Vilà et al., 2013; Ruiz‐Benito et al., 2014, 2017; 
Ratcliffe et al., 2017; Madrigal‐González et al., 2016; 
Guo & Ren, 2014; Vilà et al., 2007)

Nonsignificant (Szwagrzyk & Gazda, 2007; Moser & 
Hansen, 2009; Long & Shaw, 2010; Vayreda, Gracia, 
Canadell, & Retana, 2012)

Hump‐shaped (Gamfeldt et al., 2013)

Negative (Mina, Huber, Forrester, Thürig, & Rohner, 
2017)

http://project.fundiveurope.eu
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this study should deepen our understanding of the species, environ‐
mental conditions, and research designs for which consistent posi‐
tive diversity‐ecosystem functioning relationships can be expected.

2  | METHODS

Within the framework of the European FunDivEUROPE project 
(www.fundi​veuro​pe.eu), the significance of forest biodiversity for 
ecosystem functioning across Europe was investigated with three 
complementary research approaches (tree diversity experiments, 
networks of comparative plots in established forests, and forest 
inventories). All approaches share a similar subset of tree species 
and forest types and were established in regions with similar cli‐
matic conditions (see Appendices S1–S4 and Baeten et al., 2013). 
The approaches differed in how well they represented  existing 
mature forests, the comprehensiveness of the studied tree species 
and environmental gradients and the extent to which  potentially 
confounding effects could mask the effects of tree species diver‐
sity (“orthogonality”, see Table 1, Figure 1 and Nadrowski, Wirth, & 
Scherer‐Lorenzen, 2010).

2.1 | Research approaches

The experimental research approach contained growth measure‐
ments from six European tree diversity experiments, which indi‐
vidually covered species richness gradients from one up to six tree 

species, with different mixtures replicated at each level of species 
richness. Detailed information on the design and tree species com‐
position of each diversity experiment is reported in Appendix S1 and 
on www.treed​ivnet.ugent.be. Tree sizes were measured in 2014 and 
reported as either tree's diameter at breast height and the derived 
basal area (in 114 plots of the Satakunta, 96 plots of the Kreinitz and 
32 plots of the BIOTREE experiment), tree height (in 256 plots of 
the ORPHEE experiment), or diameter at ground height (in 42 plots 
of the FORBIO—Zedelgem and 44 plots of the FORBIO—Gedinne 
experiment).

The exploratory research approach contained a network of 
209 comparative study plots that were established in six different 
European forest types. In each forest type, between three and five 
regionally common, and from a forestry perspective, important tree 
species were selected as target species. Plots representing species 
richness gradients from one up to five target tree species were estab‐
lished in 2011. Similar to the experimental approach, different com‐
positions per tree species richness level were chosen to ensure that 
diversity effects were not confounded with the effects of diluting 
individual species in plots of higher species richness and the plots 
were selected to minimize any covariation between environmental 
conditions (e.g., geology, soil texture and depth and topography) 
and tree species richness and composition. The study design as well 
as the forest characteristics and tree species compositions are de‐
scribed in Appendices S1–S4 and in Baeten et al. (2013). Within each 
plot, all trees with a dbh of more than 7.5 cm were mapped and iden‐
tified. From a subset of trees, wood core samples were taken and, 

F I G U R E  1  Location of the research approaches compiled in this study. Shaded countries: national forest inventories (16,773 plots), stars: 
tree diversity experiments (584 plots), and black dots: forest exploratories (169 plots)

0 500 1,000 km 
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Mean annual temperature °C
–10
–5
0
5
10
15
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based on radial stem increments between 1999 and 2010, the mean 
annual increase in basal area per tree was calculated (m2 ha−1 year−1, 
Appendix S7, see Jucker, Bouriaud, Avacaritei, & Coomes, 2014). The 
number of plots per forest type was as follows: beech forest (24), 
boreal forest (28), hemiboreal forest (25), Mediterranean coniferous 
forest (33), mountainous beech forest (26), and thermophilous de‐
ciduous forest (33). We calculated for each plot, the proportion that 
was covered by each tree species and classified each plot as either a 
monospecific, two, three or higher species mixture, where the most 
dominant species must cover more than 90% and none of the “non‐
dominant” species more than 10% of a plot's summed basal area.

The inventory research approach contained harmonized for‐
est plots from five national forest inventories (Finland, Sweden, 
Germany, Belgium—Wallonia, and Spain) that had been surveyed at 
least twice. Details can be found in Appendix S5 and in Ratcliffe et 
al. (2016). In short, for all trees with a dbh of 10  cm or more, we 
extracted the tree status (ingrowth, survivor, dead due to natural 
mortality or harvesting) and basal area (expressed as m2/ha) from 
the two most recent survey dates. We discarded all plots with in‐
dications of harvesting activities between survey dates. Tree spe‐
cies names were harmonized following the Atlas Florae Europaeae 
(Kurtto, Sennikov, & Lampinen, 2013). Within each plot, we calcu‐
lated the proportion of total basal area that was belonged to each 
tree species. Analogous to the exploratory approach, we classified 
each plot as either a monospecific, two, three or higher species mix‐
ture. After discarding all plots that did not meet these criteria, we 
retained 47,754 plots in the inventory dataset (see Appendix S4 for a 
more detailed description of the classification criteria).

2.2 | Environmental data

For each plot of the three research approaches, we extracted mean 
annual temperature, temperature seasonality (standard deviation 
of mean monthly temperatures), annual precipitation, and precipi‐
tation seasonality (standard deviation of mean monthly precipita‐
tion) from the WorldClim dataset (interpolated from measurements 
taken between 1960 and to 1990 and at a spatial resolution of one 
square kilometer, Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) 
and the slope from the GTOPO30—digital elevation model with a 
spatial resolution of one square kilometer (data available from the 
U.S. Geological Survey).

2.3 | Data preparation

For each plot of the experimental, exploratory and inventory ap‐
proach, we calculated for every target/dominant species the yearly 
summed increase in basal area, dbh, tree height, or diameter at 
ground height (based on the respective growth measurement). 
These summed growth estimates were divided by the number of 
trees in the experiments and by the summed basal area (m2 ha‐1) 
of the respective tree species in the exploratory and inventory ap‐
proach to obtain growth estimates (hereafter “species growth”) that 
are not biased by potentially uneven species proportions.

Within each forest type and tree diversity experiment, we quan‐
tified the effect of species mixing on species growth as the mean 
log response ratio, defined as species growth in mixed divided by 
species growth in monospecific plots of comparable stand condi‐
tions (i.e., within the same dataset and forest type). In the explor‐
atory approach, no monospecific plots of Acer pseudoplatanus L. 
were found in the beech forest and no monospecific plots of Betula 
spec. and Quercus robur L. were found in the hemiboreal forest. For 
these three species, we could not calculate the effect sizes in the 
respective forest types which, thus, reduced our exploratory dataset 
to 169 plots.

In the inventory approach, mixed and monospecific plots within 
the same forest type could differ considerably in stand conditions 
(e.g., in climate, tree community structure, and edaphic conditions). 
To partly control for these potentially confounding differences, we 
first assigned pairs of monospecific and mixed plots that were most 
similar regarding stand and environmental conditions and subse‐
quently calculated the effect size for each pair of plots. The dissim‐
ilarity in stand and environmental conditions was quantified as the 
Euclidean distance in normalized plot‐level values (i.e., subtracted 
by the mean and divided by the standard deviation) of mean annual 
temperature, temperature seasonality, annual precipitation, precip‐
itation seasonality, slope and the sum and coefficient of variation of 
trees' basal area (m2/ha). The latter two were included in order to 
account for potential effects of stand age and evenness (e.g., Zhang, 
Chen, & Reich, 2012). The pairs of most similar mixed and monospe‐
cific plots (i.e., with the smallest Euclidean distances) were selected 
via a nearest neighbor matching algorithm (Ho, Imai, King, & Stuart, 
2007; Ho, Imai, King, & Stuart, 2011) that minimized, within each 
forest type, the summed Euclidean distances. This was done for each 
species separately, to compare species growth in mixed versus mono‐
specific plots. A three‐species mixture could thus be paired with up 
to three monospecific plots of its component species (note that a 
monospecific plot could only be assigned to one mixture plot). To 
eliminate comparisons between very different stand conditions, we 
discarded all plot pairs with distance values that were above the 90% 
percentile of all distances (Figure S9). The locations of the remain‐
ing 16,773 plots are shown in Figure S6. All plots were assigned to 
one of the following forest types, listed in the EEA Technical Report 
9 (Barbati, Corona, & Marchetti, 2007): acidophilous oak and oak‐
birch forest (104 plots), alpine coniferous forest (615), beech forest 
(475), boreal forest (2,440), broadleaved evergreen forest (2,129), 
floodplain forest (20), hemiboreal forest and nemoral coniferous and 
mixed broadleaved‐coniferous forest (1,391), plantations and exotic 
forest (1,088), Mediterranean coniferous forest (6,098), mesophytic 
deciduous forest (582), mountain beech forest (426), nonriverine 
alder, birch or aspen forest (254), mire and swamp forest (204) or 
thermophilous deciduous forest (947). Because the survey dates and 
the methods applied to measure tree growth differed between the 
different national forest inventories, we noted the country of each 
mixed and monospecific plot to later statistically account for it.

In order to narrow down the comparisons of mixing effects to 
only those tree species and community compositions that were 
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shared between the three approaches, we created three data sub‐
sets that included only those species and mixtures that were present 
in two datasets, that is, (a) the experimental and exploratory, (b) the 
experimental and inventory, and (c) the exploratory and inventory 
approach (Table S4).

2.4 | Statistical analysis

Separately for each tree diversity experiment and each forest type 
within the exploratory or the inventory dataset, we calculated for 
every tree species the separate mean log response ratio (hereafter 
“effect size”) of the species' growth in either all 2, 3 or higher species 
mixtures divided by the growth in the respective monospecific plots 
of that forest type/diversity experiment. The whole data prepara‐
tion procedure up to the point of the calculation of effect sizes is 
briefly summarized in Appendix S8.

We tested hypothesis H1 (i.e., a general positive effect of tree 
species mixing on species growth) by testing for significance of the 
grand mean effect size (i.e., the intercept) with a linear random‐ef‐
fects model. The model included effect sizes as the dependent vari‐
able and the identity of the experiment/forest type and, in the case 
of the inventory approach, the countries of the compared plots, as 
random effects. In the national forest inventory dataset, certain spe‐
cies could have multiple effect sizes within the same forest type and 
species richness level (because we did not pool effect sizes between 
different countries). Those multiple effect sizes were assigned an 
accordingly lower weight in the following linear model (calculated 
as one divided by the number of multiple effect sizes). The resulting 
grand mean effect size was deemed significant, if the approximated 
95% confidence interval (intercept ± 1.96 × SE) did not include zero. 
We tested the differences between approaches by including the re‐
search approach as a categorical predictor variable in the mixed‐ef‐
fects model.

Hypothesis H2 (i.e., a positive effect of log species richness on 
the species' mean log response ratios) was tested with linear mixed‐
effects models that included the effect sizes as the dependent vari‐
able, log species richness as the predictor variable and the identity of 
the forest type or experiment and, in case of the inventory approach, 
the countries of the compared plots as a nested random effect. In 
contrast to the model applied to test H1, we assigned equal weights 
to all effect sizes. In the inventory approach, we weighted effects 
sizes by the inverse of the number of effect sizes for the same spe‐
cies in the same forest type (this number could vary when plots from 
different forest inventories were assigned to the same forest type).

H2 was then tested by comparing the variance explained with 
the full model versus the variance explained with solely the random 
effects (analysis of variance).

In order to test hypothesis H3 (i.e., the consistency in species‐
specific responses to mixing across the research approaches), we 
fitted separate mixed‐effects models per approach (for the exper‐
imental, exploratory, and inventory approach, respectively). These 
models included the identity of the tree species as a predictor vari‐
able and the random‐effects structure was adapted from the model 

that was applied to test H1. The intercept of each model was set 
to zero. From each model, we then extracted the coefficient esti‐
mates for the respective tree species included. The consistency in 
species responses was then assessed by testing the significance of 
the rank‐based correlation coefficients (Kendall's tau) between the 
coefficient estimates of species that were shared between different 
approaches (separately for the experiments‐exploratories, experi‐
ments‐inventories, and exploratories‐inventories comparison).

Hypothesis H4 (i.e., the proposed increase in the consistency of 
species responses to mixing when the comparisons of approaches 
were restricted to only those community compositions and forest 
types that are shared between the approaches) was tested analo‐
gous to H3, but this time based on datasets restricted to tree species 
occurring in the same compositions and forest types in the compared 
research approaches (listed in Table S4). The obtained Kendall's tau 
values were then compared to the tau values that were obtained 
from the unrestricted datasets.

All analyses were conducted in R (R Core Team, 2018) using the 
following packages: ggplot2 for graphical representations (Wickham, 
2009), cluster for distance matrix calculations (Maechler, Rousseeuw, 
Struyf, Hubert, & Hornik, 2015, p. 20), MatchIt for finding pairs of 
similar mixed and monospecific plots (Ho et al., 2011), lme4 for cal‐
culating linear random‐ and mixed‐effects models (Bates, Mächler, 
Bolker, & Walker, 2015), and raster for extracting the WorldClim data 
(Hijmans, 2013).

3  | RESULTS

(H1) When calculated across all three research approaches (experi‐
ments, exploratories, and inventories), the grand mean effect size of 
species mixing (i.e., the average log response ratio of species growth 
in mixed compared to monospecific plots) was significantly positive 
(approximated 95% confidence interval: 0.05–0.25). On average, 
species showed 16% higher growth in mixed compared to monospe‐
cific plots. When calculated separately for each research approach, 
both the inventory and exploratory dataset yielded significantly 
positive mean effect sizes (on average, species growth was 27% and 
20% higher in mixed compared to monospecific plots of the explora‐
tory and inventory approach, respectively, Figure 2), whereas the 
mean effect size of the experimental approach was nonsignificant 
(on average, species growth was 1% higher in mixed compared to 
monospecific plots, Figure 2). In the experimental approach, none of 
the mean effect sizes (average species log response ratios) of the in‐
dividual diversity experiments was significantly different from zero. 
In the exploratory approach, significantly positive mean effect sizes 
were found in Mediterranean coniferous, thermophilous deciduous, 
and boreal forests. In the inventory approach, significantly positive 
mean effect sizes were found in beech, thermophilous deciduous, al‐
pine, Mediterranean coniferous, boreal, and mountain beech forests.

(H2) Including log tree species richness as a predictor variable did 
not explain a significant amount of variation in species' effect sizes 
(Fdf:1,299.75 = 0.99, p = .32).



     |  7KAMBACH et al.

(H3) Between the different research approaches, tree species re‐
sponses to mixing (i.e., the model coefficient estimates) were highly 
inconsistent (Figure 3). All Kendall's tau values ranked between 0.55 
and 0.94 and were nonsignificant (p‐values ranged from .55 to .94). 
Fraxinus excelsior L. was the only species to exhibit consistent, and 
positive, effects sizes in all three research approaches (Figure 3).

(H4) Restricting the comparisons to only those species compo‐
sitions and forest types that were shared between the compared 
research approaches did not lead to stronger correlations between 
species' coefficient estimates of different approaches (Figure S10). 
Kendall's tau values ranged from −0.2 to −0.06 and the respective 
p‐values ranged from .72 to .84.

4  | DISCUSSION

In this study, we compiled tree growth data from three European 
research initiatives that used different research approaches (tree 
diversity experiments, networks of comparative “exploratory” plots 
in established forests, and national forest inventories) to summarize 
the effects of tree species mixing on the growth of 64 tree species.

Based on this extensive dataset, we conducted, to our knowl‐
edge, the first study on the transferability of the response of tree 
species growth to mixing from experiments to forest exploratories 
and national forest inventories. Our results confirmed our hypoth‐
esis of a general positive effect of tree species mixing on species 

growth across the three research approaches, although this effect 
was nonsignificant in the experiments. This finding is in accordance 
with the meta‐analysis of Piotto (2008) who also found that tree 
species generally exhibit higher growth in mixed compared to mono‐
specific communities. In the exploratory and inventory dataset, tree 
species showed, on average, an increase of 27% and 20% in growth 
in mixed as compared to monospecific stands. Studies that investi‐
gated the effect of species mixing on the productivity of the whole 
tree community (as opposed to the growth of the individual species) 
reported positive effects of comparable magnitude. Tree communi‐
ties exhibited a 21% higher productivity in mixed, as compared to 
their respective monocultures in the Spanish forest inventory (Ruiz‐
Benito et al., 2014) and 24% higher productivity across the national 
forest inventories of France, the Netherlands, Spain, Sweden, and 
Switzerland (Vilà et al., 2013).

Previous analyses of the published literature (Zhang, Chen, & 
Reich, 2012), the Spanish national forest inventory (Ruiz‐Benito et 
al., 2014), and a global forest dataset (Liang et al., 2016) all found 
that the productivity of the whole tree community increases with 
the number of mixed tree species. In our analyses of individual spe‐
cies, however, we could not find such an increase in the magnitude of 
the mixing effect with the number of admixed tree species.

Regarding the exploratory approach, our results confirmed 
the findings of Jucker, Bouriaud, Avacaritei, and Coomes (2014), 
who previously analyzed the same exploratory dataset, and also 
found positive effects of species mixing on plot productivity in the 

F I G U R E  2  Mean effect sizes (log response ratios) of tree species growth in mixed compared to monospecific plots averaged per forest 
type/tree diversity experiment in the three different research approaches: (a) forest inventories, (b) tree diversity experiments, and (c) 
forest exploratories. Numbers denote the number of tree species for which effect sizes could be calculated. Different forest types/diversity 
experiment could overlap in the analyzed tree species. Thus, the species of the grand mean effect sizes are lower than the summed species 
numbers

(a) (b)

(c)
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Mediterranean coniferous, thermophilous deciduous and boreal for‐
ests type. Our findings are also in line with studies that investigated 
the same inventory dataset and found positive effect of tree diver‐
sity on the productivity of the whole tree community (Ruiz‐Benito et 
al., 2014; Ratcliffe et al., 2016; Ruiz‐Benito et al., 2017), although we 
investigated the effects on individual species and manipulated the 
inventory dataset to make it compatible to the exploratories.

Our results further suggested that species mixing mostly ben‐
efitted those species that grew in forest types with relatively cold 
(boreal and alpine forests) or hot climates (Mediterranean coniferous 
and thermophilous deciduous forests). These observations are in line 
with an analysis of an eastern Canadian forest inventory dataset that 
likewise found stronger positive effects of tree diversity on stand 
productivity in boreal as compared in temperate forests (Paquette & 
Messier, 2011). Together, these findings broadly support the stress‐
gradient hypothesis, stating that positive interactions prevail in more 
stressful conditions (e.g., cold or dry), resulting in higher relative di‐
versity effects than in more benign conditions (Forrester & Bauhus, 
2016). We found consistent species responses to mixing between 

the exploratory and inventory approach only for those three forest 
types with the most stressful climatic conditions. However, for the 
remaining three forest types that were shared between both ap‐
proaches and found in intermediate conditions, we found no consis‐
tency in the significance or even direction of the mixing effect. This 
limited transferability of mixing effects between approaches, already 
indicated that scaling of diversity effects across approaches might 
problematic.

Consequently, we found that species‐specific responses to mix‐
ing were largely inconsistent between all three approaches, even 
after restricting the datasets to plots of only those species com‐
positions and forest types that were shared between the different 
approaches. These observed inconsistencies likely resulted from un‐
accounted but influential drivers of forest diversity and functioning 
relationships, like tree density, size heterogeneity, and successional 
status (Lasky et al., 2014).

In accordance with a recent global meta‐analysis (Duffy, Godwin, 
& Cardinale, 2017), we found tree diversity effects on productiv‐
ity to be generally stronger in natural as compared to experimental 

F I G U R E  3  Comparison of tree species mean effect sizes (log response ratios) of growth in mixed compared to monospecific plots 
obtained from three different research approaches (experimental, exploratory, and inventory approach). Depicted are the mean effect 
sizes of only those species that were shared between the compared research approaches (a: experiments vs. inventories, b: experiments vs. 
exploratories, c: exploratories vs. inventories, and d: exploratories vs. inventories when species responses were separated by forest type). 
Abbreviations: ABAL: Abies alba Mill., ACPS: Acer pseudoplatanus L., BESP: Betula spec., ALGL: Alnus glutinosa (L.) Gaertn., CABE: Carpinus 
betulus L., CASA: Castanea sativa Mill., FASY: Fagus sylvatica L., FREX: Fraxinus excelsior L., PIAB: Picea abies (L.) H.Karst., PINI: Pinus nigra 
J.F.Arnold, PIPI2: Pinus pinea L., PISY: Pinus sylvestris L., PSME: Pseudotsuga menziesii (Mirb.) Franco, QUFA: Quercus faginea Lam., QUIL: 
Quercus ilex L., QUPY: Quercus pyrenaica Willd., QURO: Quercus robur L., QUSP: Quercus spec – combines Q. petraea and Q. pubescens Willd. 
(Q. humilis) (Table S2)

(a) (b)

(c) (d)
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study designs. We must point out that the tree diversity experiments 
included in this study were not planted to represent mature forests, 
but to isolate the effects of tree species richness and functional di‐
versity on ecosystem functioning. Since those experimental forests 
were still in juvenile phases they usually lacked successional tra‐
jectories that lead to the replacement of underperforming species. 
Tree diversity experiments might therefore still harbor maladapted 
species that could not compete in mature forests with a similar cli‐
mate. In the inventory dataset, however, trees were usually planted 
and managed to maximize wood production and financial return. We 
tried to minimize, but could not rule out the effects of local plot con‐
ditions on tree productivity. A number of plots might display both, 
a higher productivity and a higher tree species richness, simply be‐
cause of the prevailing favorable climatic and edaphic conditions.

Differences in the climatic conditions can generally lead to dif‐
ferent forest biodiversity‐productivity relationships (Paquette & 
Messier, 2011; Jucker et al., 2016; Ratcliffe et al., 2017). Although 
the three compared research approaches were established in over‐
lapping climatic conditions they still varied in climatic and probably 
also edaphic conditions. Madrigal‐González et al. (2016) furthermore 
demonstrated that the impact of the diversity of neighboring trees 
on tree growth can be mediated by an interaction between tree 
size and climatic conditions. More specifically, across the national 
forest inventories of Finland, Germany, Spain, Sweden and Belgium‐
Wallonia, Madrigal‐González et al. (2016) found that smaller trees 
benefitted from a complementary (i.e., functionally divergent) neigh‐
borhood only in the coldest and intermediate regions whereas larger 
trees benefitted from complementarity only in the warmest regions. 
With the approach applied in this study (i.e., the comparison of mean 
species growth between mixed and monospecific plots), we could 
not account for the potentially confounding differences in tree sizes 
and especially the interaction with prevailing climatic conditions.

Herbivore pressure is another factor that likely varied between 
the three approaches. Except for the Satakunta site, all tree diversity 
experiments were fenced to exclude game species and safeguard the 
successful establishment of all planted trees. In the inventory, and 
even more in the exploratory approach, the juvenile trees are ex‐
posed to pressure by game species, which are known to be affected 
by tree species richness (Milligan & Koricheva, 2013; Ohse, Seele, 
Holzwarth, & Wirth, 2017).

The effects of tree diversity on forest functioning are scale‐de‐
pendent, meaning that significance can change with the size of the 
surveyed forest plots (Wang et al., 2016). Inconsistencies in species‐
specific responses could thus partly result from differences plot size 
and spatial extent between the compared research approaches.

In summary, all of the proposed factors might have contributed 
to the inconsistency of species‐specific responses to mixing be‐
tween tree diversity experiments and established forests. On the 
one hand, these results impede clear recommendations for forest 
owners on how to jointly maximize forest diversity and productiv‐
ity. On the other hand, our results unequivocally demonstrated that 
not even one of the 64 investigated tree species generally suffers 
from species mixing. Beside the hemiboreal forests in the inventory 

approach, most tree species were, on average, either not signifi‐
cantly or even positively affected by species mixing. We thus con‐
cluded that many, if not most, monospecific stands can be diversified 
without negative or with positive effects on wood production.

Future research will be needed to answer (a) what are underly‐
ing causes that lead to different diversity‐functioning relationships 
between observational and experimental research approaches and 
(b) what are the species‐specific abiotic and biotic requirements that 
maximize the productivity in mixed and monospecific communities. 
These findings will be essential to devise forest management prac‐
tices that can maximize synergies between wood production and the 
safeguarding of forest diversity in Europe (Chamagne et al., 2017).
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