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Abstract. Forecasting the height of new snow (HN) is cru-
cial for avalanche hazard forecasting, road viability, ski re-
sort management and tourism attractiveness. Météo-France
operates the PEARP-S2M probabilistic forecasting system,
including 35 members of the PEARP Numerical Weather
Prediction system, where the SAFRAN downscaling tool
refines the elevation resolution and the Crocus snowpack
model represents the main physical processes in the snow-
pack. It provides better HN forecasts than direct NWP diag-
nostics but exhibits significant biases and underdispersion.
We applied a statistical post-processing to these ensemble
forecasts, based on non-homogeneous regression with a cen-
sored shifted Gamma distribution. Observations come from
manual measurements of 24 h HN in the French Alps and
Pyrenees. The calibration is tested at the station scale and
the massif scale (i.e. aggregating different stations over ar-
eas of 1000 km2). Compared to the raw forecasts, similar
improvements are obtained for both spatial scales. There-
fore, the post-processing can be applied at any point of the
massifs. Two training datasets are tested: (1) a 22-year ho-
mogeneous reforecast for which the NWP model resolution
and physical options are identical to the operational system
but without the same initial perturbations; (2) 3-year real-
time forecasts with a heterogeneous model configuration but
the same perturbation methods. The impact of the training
dataset depends on lead time and on the evaluation criteria.

The long-term reforecast improves the reliability of severe
snowfall but leads to overdispersion due to the discrepancy
in real-time perturbations. Thus, the development of reliable
automatic forecasting products of HN needs long reforecasts
as homogeneous as possible with the operational systems.

1 Introduction

Forecasting the height of new snow (HN, Fierz et al., 2009)
is essential in the mountainous areas as well as in the north-
ern regions due to various safety issues and economic activ-
ities. For instance, avalanche hazard forecasting, road via-
bility, ski resort management and tourism attractiveness rely
on the forecasts of HN. Automatic predictions are increas-
ingly developed for that purpose, based on numerical weather
prediction (NWP) model output. Nevertheless, accurate fore-
casting of this variable is still challenging for several reasons.
First, the precipitation forecasts in NWP models have sig-
nificant errors which increase with longer lead times. These
forecast uncertainties have to be considered. Second, the high
variability of HN as a function of elevation is difficult to de-
scribe in mountainous areas, even at the best spatial resolu-
tion available in NWP models (i.e. 1 km or a few kilometres).
Finally, several processes, such as density of falling snow,
mechanical compaction during the deposition and variations
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of the rain–snow limit elevation during some storm events,
are not or are poorly represented in NWP models. Several
recent scientific advances can help to face these challenges.

– To estimate forecast uncertainty, ensemble forecasting
has become an important method in NWP. Probabilistic
forecasts have been in operational use for a number of
years in several meteorological centres (Molteni et al.,
1996; Toth and Kalnay, 1997; Pellerin et al., 2003).
Ensemble forecasting has increased the confidence of
forecast users in predicting possible future occurrence,
or non-occurrence, of unusually strong events (Candille
and Talagrand, 2005). In many cases, an estimation of
the probability density of future weather-related vari-
ables may present more value for the forecast user than
a single deterministic forecast does (Richardson, 2000;
Ramos et al., 2013). The forecast uncertainties depend
on the atmospheric flow and vary from day to day (Leut-
becher and Palmer, 2008). Therefore, ensemble fore-
casting aims at estimating the probability density of the
future state of the atmosphere.

– In NWP, snowpack modelling is necessary since the
presence of snow on the ground has a major impact
on all the fluxes taking place at the interface between
the Earth’s atmosphere and its surface. However, NWP
models often use single-layer snow schemes with ho-
mogeneous physical properties because they are rela-
tively inexpensive, have relatively few parameters and
capture first-order processes (Douville et al., 1995).
Models with more complexity have also been devel-
oped but are not yet implemented in most NWP sys-
tems. The most detailed ones are able to represent a de-
tailed stratigraphy of the snowpack with an explicit de-
scription of the time evolution of the snow microstruc-
ture (Lehning et al., 2002; Vionnet et al., 2012). Snow
model intercomparison projects (Krinner et al., 2018)
suggest that detailed snowpack models are among the
most accurate models in the reproduction of the snow-
pack evolution in various climates and environments.
Operationally, these snow models are sometimes forced
by NWP outputs to forecast the risk of avalanche (Du-
rand et al., 1999). Concerning the topic of this study,
it is known that these models also provide better esti-
mates of the height of new snow than direct NWP out-
puts (Champavier et al., 2018). This is explained by
the ability of these schemes to simulate the mechanical
compaction of snow on the ground occurring during the
snowfall, the possible impact of changes in precipitation
phase during a storm event, the possible occurrence of
melting at the surface or at the bottom of the snowpack
and the dependence of falling snow density on meteoro-
logical conditions.

To benefit from both the advantages of ensemble NWP
and detailed snowpack modelling, Vernay et al. (2015) de-

veloped the PEARP-S2M modelling system (PEARP: Prévi-
sion d’Ensemble ARPEGE; ARPEGE: Action de Recherche
Petite Echelle Grande Echelle; S2M: SAFRAN-SURFEX-
MEPRA; SAFRAN: Système Atmosphérique Fournissant
des Renseignements Atmosphériques à la Neige; SURFEX:
SURFace EXternalisée; MEPRA: Modèle Expert pour la
Prévision du Risque d’Avalanches). In this system, the Cro-
cus detailed snowpack model (Vionnet et al., 2012) im-
plemented in the SURFEX surface modelling platform is
forced by the ensemble version of the ARPEGE NWP model
(Descamps et al., 2015) after an elevation adjustment of the
meteorological fields by the SAFRAN downscaling tool (Du-
rand et al., 1998). However, the PEARP-S2M system still
suffers from various biases and deficiencies (Vernay et al.,
2015; Champavier et al., 2018). Biases in atmospheric en-
semble forecasts may be caused by insufficient model res-
olutions (Weisman et al., 1997; Mullen and Buizza, 2002;
Szunyogh and Toth, 2002; Buizza et al., 2003), subopti-
mal physical parameterizations (Palmer, 2001; Wilks, 2005)
or suboptimal methods for generating the initial conditions
(Barkmeijer et al., 1998, 1999; Hamill et al., 2000, 2003;
Sutton et al., 2006). In the case of HN forecasts, the errors
also originate from the snow models (Essery et al., 2013;
Lafaysse et al., 2017). Due to the systematic biases in en-
semble forecasts and the challenge of detecting and correct-
ing their origins, many methods of statistical post-processing
have been developed that leverage archives of past forecast
errors (Vannitsem et al., 2018). In the literature, these prob-
abilistic post-processing methods are often referred to as en-
semble model output statistics (EMOS) as an extension to
ensemble approaches of the traditional model output statis-
tics (MOS) applied for several decades to deterministic fore-
casts (Glahn and Lowry, 1972). EMOS are now routinely
applied for meteorological predictands such as temperature,
precipitation and wind speed. The techniques are for instance
non-homogeneous regression methods (Jewson et al., 2004;
Gneiting et al., 2005; Wilks and Hamill, 2007; Thorarins-
dottir and Gneiting, 2010; Lerch and Thorarinsdottir, 2013;
Scheuerer, 2014; Scheuerer and Hamill, 2015; Thorarins-
dottir and Gneiting, 2010; Baran and Nemoda, 2016; Ge-
betsberger et al., 2017), logistic regression methods (Hamill
et al., 2004; Hamill and Whitaker, 2006; Messner et al.,
2014), Bayesian model averaging (Raftery et al., 2005), rank
histogram recalibration (Hamill and Colucci, 1997), ensem-
ble dressing approaches (i.e. kernel density) (Roulston and
Smith, 2002; Wang and Bishop, 2005; Fortin et al., 2006),
and quantile regression forests (Taillardat et al., 2016, 2019).

However, statistical post-processing of ensemble HN fore-
casts is rarely reviewed in the literature. Stauffer et al. (2018)
and Scheuerer and Hamill (2019) are the first studies to the
best of our knowledge to present post-processed ensemble
forecasts of HN. However, they only considered direct en-
semble NWP output as predictors (precipitation and tem-
perature) and did not incorporate physical modelling of the
snowpack. It can be expected that physical modelling could
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capture some complex features explaining the variability of
HN. This variability is difficult to reach by multivariate sta-
tistical relationships, especially the common high temporal
variations of temperature and precipitation intensity during a
storm event with highly non-linear impacts on the height of
new snow. Furthermore, because they do not consider direct
predictors of HN, these recent studies partly rely on precip-
itation observations in their calibration procedure, whereas
solid precipitation is particularly prone to very high measure-
ment errors (Kochendorfer et al., 2017). The physical sim-
ulation of HN enables observations of this variable for the
post-processing to be considered directly. This is a major ad-
vantage because HN measurement errors (typically 0.5 cm,
WMO, 2018) are considerably lower than errors in solid pre-
cipitation measurements.

The goal of this study is to test the ability of a non-
homogeneous regression method to improve the ensemble
forecasts of HN from the PEARP-S2M ensemble snowpack
modelling system. More precisely, the regression method of
Scheuerer and Hamill (2015) based on the censored shifted
Gamma distribution was chosen in this work for the advan-
tages identified by the authors in the case of precipitation
forecasts. In particular, this method allows one to extrapo-
late the statistical relationship between predictors and pre-
dictands from common events to more unusual events. Con-
sidering the specificities of the available datasets in terms of
predictands and predictors, two other scientific questions are
considered: (1) can statistical post-processing be applied at
a larger spatial scale than the observation points? (2) What
are the requirements of a robust training forecast dataset for
statistical post-processing?

The structure of the paper is as follows. Section 2 describes
the model components of the PEARP-S2M system, the ob-
servation and forecast datasets used in this study, the non-
homogeneous regression method chosen for post-processing
and the evaluation metrics. In Sect. 3, the results of the post-
processing method are presented for different training con-
figurations. The discussion in Sect. 4 focuses on the implica-
tions of our study for the possibility of implementing such
post-processing in operational automatic forecast products
and recommendations for improvements.

2 Data and methods

2.1 Models

2.1.1 PEARP ensemble NWP system

PEARP is a short-range ensemble prediction system op-
erated by Météo-France up to 4.5 d, fully described in
Descamps et al. (2015). It includes 35 forecast members of
the ARPEGE NWP model. In 2019, it is based on a 25-
member ensemble assimilation combined with the singu-
lar vector perturbation methods (Buizza and Palmer, 1995;

Molteni et al., 1996) to provide 35 initial states. The singular
vector perturbations are designed to optimize the spread of
the large-scale atmospheric fields at a 24 h lead time. Finally,
the 35 members are randomly associated with 10 different
sets of physical parameterizations, including different deep
and shallow convection schemes, among others. The current
horizontal resolution is about 10 km over France (truncature
T798C2.4) with 90 atmospheric levels. All these features
have been improved over time with a new operational con-
figuration provided almost every year.

2.1.2 SAFRAN downscaling tool

SAFRAN (Durand et al., 1993, 1998) is a downscaling and
surface analysis tool specifically designed to provide meteo-
rological fields in mountainous areas (i.e. with high-elevation
gradients). The principle of SAFRAN is to perform a spatial-
ization of the available weather data in mountain ranges with
so-called “massifs” of about 1000 km2 where meteorological
conditions are assumed to depend only on altitude. SAFRAN
variables include precipitation (rainfall and snowfall rate), air
temperature, relative humidity, wind speed as well as incom-
ing longwave and shortwave radiations. Although SAFRAN
was initially designed to work as an analysis system adjust-
ing a guess from NWP outputs with the available meteoro-
logical observations, SAFRAN also comes with a forecast
mode which can be considered simply to be a downscaling
tool to convert an NWP model grid (PEARP in our case) to
the massif geometry. The originality of this system is the use
of different vertical levels of the NWP model to obtain sur-
face fields at different elevations.

2.1.3 Crocus snowpack model

Crocus (Vionnet et al., 2012) is a one-dimensional multilayer
physical snow scheme which simulates the evolution of the
snow cover affected by both the atmosphere and the ground
below. It is implemented in the SURFEX surface modelling
platform (Masson et al., 2013) as the most detailed snow
scheme of the ISBA (Interactions between the Soil Biosphere
and Atmosphere) land surface model. Each snow layer is de-
scribed by its mass, density, enthalpy (temperature and liq-
uid water content) and age. The evolution of snow grains
is described with additional variables (optical diameter and
sphericity) using metamorphism laws from Brun et al. (1992)
and Carmagnola et al. (2014). Snow density is a particularly
important property for the height of new snow. It is mainly
affected by two key processes: the density of falling snow
and the compaction of snow on the ground. Falling snow
density was empirically parameterized as a function of air
temperature and wind speed (Pahaut, 1975). This parameter-
ization is associated with significant uncertainties (Lafaysse
et al., 2017; Helfricht et al., 2018). Snow compaction is mod-
elled with a visco-elastic scheme in which the snow viscos-
ity of each layer is parameterized depending mainly on the
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layer density and temperature. The parameterization of snow
viscosity is also uncertain as various expressions were for-
mulated in the literature (Teufelsbauer, 2011). Furthermore,
the compaction velocity actually has a high dependence on
snow microstructure (Lehning et al., 2002). This complex de-
pendence cannot be described in Crocus by the visco-elastic
concept and microstructure-dependent models of compaction
are only available for very specific conditions (Schleef et al.,
2014). These limitations partly explain the errors of simu-
lated HN identified by Champavier et al. (2018) in combina-
tion with the known errors and underdispersion of precipita-
tion input.

2.2 Data

2.2.1 Study area

The study area covers the French Alps and Pyrenees. In
all operational productions of avalanche hazard forecasting,
these regions are divided respectively into 23 and 11 massifs
(Fig. 1), identical to the ones used in SAFRAN discretization
(Sect. 2.1.2). The climate is contrasted, colder and wetter in
the northern Alps and much drier in the southern Alps and
eastern Pyrenees due to the Mediterranean influence (Durand
et al., 2009). White dots correspond to stations where daily
meteorological and snow observations are available in winter
in the so-called nivo-métérologique observation network.

2.2.2 Predictors

Two separate sets of training data for the statistical post-
processing were used in this study as predictors. Their spec-
ifications detailed below are also summarized in Table 1.

Reforecasts used for training

First, the PEARP reforecasts consist of 10 members, includ-
ing 1 control member, and were issued in 2018. The re-
forecasts (Boisserie et al., 2016) are based on a homoge-
neous model configuration identical to the operational re-
lease of 5 December 2017 (same resolution and physical pa-
rameterizations), but they only include physical perturbations
and no perturbation of the initial state, contrary to opera-
tional PEARP forecasts. The initial states are built with ERA-
Interim reanalysis (Dee et al., 2011) for the atmospheric vari-
ables and by the 24 h stand-alone coupled forecasts of the
SURFEX/ARPEGE model for the Earth parameters. These
reforecasts were downscaled with SAFRAN for all stations
in the French Alps and Pyrenees where snow observations
are available. These downscaled forecasts were used to force
the Crocus snowpack model to provide simulated heights of
new snow. The training period length is 22 seasons (from
1994 till 2016).

Real-time forecasts used for training

Second, the real-time forecasts of PEARP consist of 35 mem-
bers, including a control member. In contrast to the refore-
casts, model configuration has changed over time and the
earlier versions were different from the currently operational
version (lower horizontal and vertical resolution, different
set of model physics). Both physical perturbations and ini-
tial state perturbations are included in the real-time fore-
casts. These forecasts have experimentally forced the S2M
snowpack modelling chain in real time since 2014. How-
ever, these real-time snow forecasts were only issued for the
French Alps massifs at specific elevations of 1200, 1500,
1800, 2100, 2400 and 2700 m. They are used for training over
the 2014–2017 period.

Real-time forecasts used for verification

Statistical methods have to be evaluated on datasets inde-
pendent of the ones used for the calibration. Hence, the 35-
member real-time forecasts of PEARP-S2M covering the
2017–2018 winter were used as predictors for verification
(last line of Table 1). The version of PEARP is homoge-
neous over the verification period and identical to the re-
forecast configuration (resolution and physics), but it also
accounts for the initial perturbations. Thus, there are more
members than in the reforecasts. These verification forecasts
were downscaled and forced the Crocus snowpack model for
all the stations available in the snow reforecasts. These ver-
ification forecasts were used to evaluate all the training sce-
narios described in Sect. 2.5.

Common features

Note that in all cases (snow reforecasts and real-time snow
forecasts used for training and verification), each snow fore-
cast is initialized by a SURFEX/ISBA-Crocus run forced
by SAFRAN analysis (assimilating meteorological observa-
tions) from the beginning of the season. For each season, the
snow reforecasts and real-time forecasts were issued only for
months from November to April. Months outside of this time
window were neglected due to insufficient observation data.
In this study, we consider only HN snow reforecasts and real-
time forecasts at four different lead times (+24, +48, +72
and +96 h).

Summary

These two training datasets correspond to two different ap-
proaches to estimate the operational model statistical prop-
erties. The real-time forecasts represent the closest version
to the operational system, but on a short period so that un-
usual events cannot be taken into account. The reforecasts
are based on a simpler version of the ensemble system which
does not contain all sources of error of the system but over
a long climatological period. The theoretical version of a re-
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Figure 1. Map of massifs in the French Alps (a) and Pyrenees (b), with altitude in metres and the observation stations represented as white
dots.

forecast would be the exact reproduction of the operational
system over a long period, but it is currently not performed
within the computing facilities of any national weather ser-
vice.

2.2.3 Observations

The observation data used in this study have been collected
from a network of stations mainly located in French ski re-
sorts. These observation stations are illustrated as white dots
in Fig. 1. All the observations have been manually measured

www.nonlin-processes-geophys.net/26/339/2019/ Nonlin. Processes Geophys., 26, 339–357, 2019
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Table 1. Summary of the predictor dataset used for training and evaluation.

Predictor Use Members Perturbation of Model physics Snow simulations geometry Period
initial conditions and resolution

HN reforecasts Training 10 no constant stations (Alps and Pyrenees) 1994–2016
HN real-time forecasts Training 35 yes variable 300 m elevation bands (Alps) 2014–2017
HN real-time forecasts Evaluation 35 yes constant stations (Alps and Pyrenees) 2017–2018

by the staff members of these resorts. Measurement of the
variable of 24 h height of new snow (HN24) is done daily by
measuring the fresh snow height on top of a measuring board.
After each measurement, the board is cleaned. These obser-
vations are usually carried out every morning. They can be
compared directly to the snow reforecasts which are avail-
able at each station. This yielded a total of 113 stations in
the French Alps and Pyrenees. However, since the real-time
snow forecasts used for training are issued only at specific
elevations with a 300 m resolution, the observations were in
this case associated with the closest standard elevation level
in the simulations when the altitude difference was lower
than ±100 m, and were ignored for higher differences. This
procedure yielded a total of 47 stations only in the French
Alps.

2.3 Post-processing method

Non-homogeneous Gaussian regression (NGR) is one of the
most commonly used EMOS methods. NGR was first pro-
posed by Jewson et al. (2004), Gneiting et al. (2005), and
Wilks and Hamill (2007). In these early applications of non-
homogeneous regression, the predictive (i.e. post-processed)
distributions are specified as Gaussian. The mean and vari-
ance of the Gaussian distribution are typically modelled with
a linear regression model using the raw ensemble mean and
variance as predictors. Unlike in ordinary regression-based
methods, the dependence of the predictive variance on the
ensemble variance in non-homogeneous regressions allows
one to exhibit less uncertainty when the ensemble disper-
sion is small and more uncertainty when the ensemble dis-
persion is large (Vannitsem et al., 2018). The regression co-
efficients can be estimated from the training data by using
optimization techniques based on the maximum likelihood or
minimum continuous ranked probability score (CRPS) (Ge-
betsberger et al., 2018). However, Gaussian predictive dis-
tributions are not adequate for certain meteorological pre-
dictands such as precipitation. This can be solved by trans-
forming the target predictand and its predictors such that
it is approximately normal (Baran and Lerch, 2015, 2016)
or by using non-Gaussian predictive distributions. Many al-
ternative predictive distributions have been proposed. Mess-
ner et al. (2014) applied logistic distribution for modelling
square-root transformed wind speeds. Generalized extreme-
value distributions were used by Lerch and Thorarinsdottir
(2013) for forecasting the maximum daily wind speed and

by Scheuerer (2014) for precipitation. Scheuerer and Hamill
(2015) also proposed a non-homogeneous regression with
gamma distribution. Non-negative predictands such as pre-
cipitation have high probability mass at zero, and thus the
use of a transformation comes with a number of problems.
To address this, non-homogeneous regression methods based
on truncating and censoring of predictive probabilities have
been developed. For example, Thorarinsdottir and Gneiting
(2010) applied a non-homogeneous regression approach with
zero-truncated Gaussian distributions for wind speed fore-
casting. A zero-truncated distribution is a distribution where
a random variable has non-zero probability only for posi-
tive values and the negative values are excluded. Censoring
instead allows a probability distribution to represent values
falling below a chosen threshold. Commonly, in the case of
ensemble post-processing of precipitation forecasts, the cen-
soring threshold is set to zero and any negative probability
is assigned to zero, providing a probability spike at zero.
Scheuerer (2014) used zero-censored GEV predictive distri-
bution in a non-homogeneous regression model for precipita-
tion. A similar approach with a zero-censored shifted-gamma
distribution (CSGD) for non-homogeneous regression was
introduced by Scheuerer and Hamill (2015, 2018) and Baran
and Nemoda (2016).

Indeed, as precipitation occurrence/non-occurrence and
quantity are modelled together, Scheuerer and Hamill (2015)
argued for using a continuous distribution that permits nega-
tive values and left-censors it at zero. According to their ex-
ploratory data analysis, a predictor variable which often takes
small values (e.g. the ensemble-mean precipitation forecast)
calls for a strongly right-skewed distribution. But as the mag-
nitude of this predictor variable increases, the skewness be-
comes smaller. This sort of behaviour can be reproduced to
some extent by using gamma distributions. The gamma dis-
tributions can be defined by a shape parameter k and a scale
parameter θ , which are related to the mean µ and the stan-
dard deviation σ of the distribution (Wilks, 2011):

k =
µ2

σ 2 ;θ =
σ 2

µ
. (1)

Scheuerer and Hamill (2015) introduce an additional param-
eter, the shift δ > 0. The purpose of this parameter is to deal
with the non-negativity of gamma distribution by shifting the
CDF of gamma distribution somewhat to the left. Therefore,
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the CSGD model is defined by

G̃k,θ,δ(y)=

{
Gk(

y−δ
θ
) for y>0,

0 for y < 0,
(2)

where Gk denotes the cumulated distribution function of a
gamma distribution with unit scale and shape parameter k.
This distribution can be parameterized with µ, σ and δ by
using Eq. (1).

In the non-homogeneous regression model defined by
Scheuerer and Hamill (2018), when the predictability be-
comes weak, the forecast CSG distribution converges to-
wards a CSG distribution of meanµcl, standard deviation σcl,
and shift δcl, corresponding to the best fit of the gamma law
with the climatological distribution of observations. The va-
lidity of the adjustment of the climatology with a gamma law
was verified over the whole observation dataset in Fig. 2. It
only exhibits a small underestimation of extreme values (for
frequencies of exceedance lower than 1/1000).

Thus, for a given day, µ, σ and δ are linked to the raw
ensemble forecasts with the regression model of Scheuerer
and Hamill (2018):

µ=
µcl

α1
log1p

[
expm1(α1)

(
α2+α3POP+α4

x

xcl

)]
, (3)

σ = β1σcl

√
µ

µcl
+β2MD, (4)

δ = δcl. (5)

In Eq. (3), log1p(u)= log(1+u) and expm1(u)= exp(u)−1.
In this regression model, the ensemble forecasts are summa-
rized by the ensemble mean x (normalized by the climato-
logical mean of the forecasts xcl), the probability of precipi-
tation POP, and the ensemble mean difference MD (a metric
of ensemble spread), as defined by Eqs. (6), (7) and (8):

x =
1
M

M∑
m=1

xm, (6)

POP=
1
M

Ixm>0, (7)

MD=
1
M2

M∑
m=1

M∑
m′=1

|xm− xm′ |, (8)

with xm the forecast of each member m among the M mem-
bers, and Ixm>0 = 1 if xm > 0, and 0 otherwise.

The regression coefficients α1, α2, α3, α4, β1 and β2 are
estimated by the optimization process used by Scheuerer and
Hamill (2015) as described in the next section.

In addition to the convergence of this model towards
the climatological distribution for weak predictability, this
model also includes several advantages compared to standard
non-homogeneous regressions. First, the POP predictor can
improve the forecast distribution compared to models based

only on the ensemble mean by providing complementary in-
formation about the expected precipitation occurrence. Then,
the links between µ and x and between µ and POP are not
supposed to be linear in Eq. (3) (the model tends to the linear
case when α1→ 0). Finally, Eq. (4) introduces an explicit
heteroscedasticity (σ does not only depend on MD, but also
on µ). This important property for precipitation (or snow-
fall) may not be sufficiently reproduced by the spread of the
raw ensemble. Extended justifications of the form of this re-
gression model are provided in Scheuerer and Hamill (2015,
2018).

2.4 Evaluation metrics

It is commonly admitted that reliability and resolution are
the two main properties to qualify the skill of a probabilis-
tic prediction system (Candille and Talagrand, 2005). Relia-
bility is defined as a statistical consistency between the pre-
dicted probabilities and the subsequent observations. For in-
stance, a probabilistic prediction system is reliable if a given
snowfall occurs with frequency p when it is predicted to oc-
cur with the probability p∀p ∈ [0,1]. A system can be reli-
able if it would always predict the climatological distribution
of the atmospheric variable under consideration. However,
that would lack practical usefulness, and therefore the sec-
ond property, resolution, implies that the individual spread
of the predicted distributions must be smaller than the clima-
tological spread.

2.4.1 CRPS

The continuous ranked probability score (CRPS) is one of the
most common probabilistic tools to evaluate the ensemble
skill in terms of both reliability (unbiased probabilities) and
resolution (ability to separate the probability classes) (Can-
dille and Talagrand, 2005). For a given forecast, the CRPS
corresponds to the integrated quadratic distance between the
CDF of ensemble forecast and the CDF of observation. Com-
monly, the CRPS is averaged over N available forecasts fol-
lowing Eq. (9):

CRPS=
1
N

N∑
i=1

∫
R

(Fi(x)−H(x− oi))
2dx, (9)

where Fi(x) is the cumulative distribution function of the
ensemble simulation at time i, oi the observation at time
i, and H(y) is the Heaviside function (H(y)= 0 if y ≤ 0;
H(y)= 1 if y > 0). The CRPS value has the same unit as
the evaluated variable and tends towards 0 for a perfect
system. Note that in the case of a CSG distribution (when
Fi = G̃k,θ,δ), an analytic expression of CRPS allows one to
directly compute the score from the parameters k, θ and δ
(Scheuerer and Hamill, 2015). In this study, CRPS is used to
optimize the six regression parameters (α1, α2, α3, α4, β1, β2)
of Eqs. (3) and (4) by minimizing this score on the training
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Figure 2. Distribution functions of positive HN observations over all dates and stations. (a) Frequency histogram of the raw data (grey) and
probability density function of the fit with a gamma law (blue). (b) Cumulative distribution functions of observations (black) and gamma law
(blue) with a focus on the distribution tail.

data. We remind the reader that the correspondence between
(µ, σ ) and (k, θ ) is given by Eq. (1). Then, CRPS is also used
to evaluate the overall skill of the HN raw forecasts of the
PEARP-S2M system. Finally, to assess the improvement ob-
tained by the post-processing compared to the raw forecasts,
we compute the continuous ranked probability skill score:

CRPSS= 1−
CRPS

CRPSref
, (10)

where CRPSref is the reference mean CRPS of the raw en-
semble forecasts. Therefore, positive CRPSS values indicate
an improvement compared to the raw forecasts. In this work,
CRPS and CRPSS were computed separately for each sta-
tion, and we present the distribution of these scores among
stations.

2.4.2 Rank histograms and quantile–quantile plots

Statistical post-processing is mainly expected to improve the
reliability of ensemble forecast systems. Therefore, we chose
to present complementary diagnostics to better illustrate the
improvement obtained by the post-processing in terms of re-
liability compared to the raw forecasts. For that purpose, we
used rank histograms and quantile–quantile plots.

Rank histograms (Hamill, 2001) illustrate the occurrence
frequency of the different possible ranks of the observations
ok among the sorted ensemble members. The flatness of this
histogram is a condition of the system reliability (if the sim-
ulated probabilities are unbiased regardless of the probabil-
ity level, the different ranks should have a uniform occur-
rence frequency). It is also an indicator of the spread skill
as underdispersion will result in a U-shaped rank histogram
and overdispersion in a bell-shaped rank histogram. Rank
histograms are commonly computed for the whole forecast
dataset, but this can hide contrasted behaviours between
the different parts of the distribution. Forecast stratification

(Broecker, 2008), as the process of dividing the whole dataset
into different subsets and computing verification metrics for
each subset, has been introduced as a way to better diagnose
where the deficiencies of the forecast system lie. Bellier et al.
(2017) compared different strategies for the stratification cri-
teria based on either the observations or the forecasts, and
justified the use of a forecast-based stratification criterion for
verification rank histograms. Indeed, they showed that con-
ditioning the rank histogram to observations is likely to draw
erroneous conclusions about the real behaviour of ensemble
forecasts. Therefore, in this study, a forecast-based stratifica-
tion is used by considering three HN intervals [0cm,10cm[,
[10cm,30cm[ and [30cm,+∞[ for the ensemble mean. To
guarantee a sufficient sample size for rank histograms, they
are computed for the whole evaluation dataset by considering
all dates and stations to be independent.

To understand the connection between forecast errors and
the magnitude of observed HN, quantile–quantile plots of
sorted observations as a function of the forecast quantiles for
the equivalent frequency levels are also presented. Contrary
to the rank histograms, quantile–quantile plots do not dis-
criminate the probability classes in the ensemble forecasts,
but they allow one to verify that the post-processing removes
the biases for any value of the forecast variable, with a re-
duced constraint on sample size compared to the stratified
rank histogram. Similarly to the rank histograms, quantile–
quantiles plots are computed for the whole evaluation dataset
(all dates and stations).

2.5 Experiments

The post-processing method described in Sect. 2.3 was cal-
ibrated on the data listed in Sect. 2.2.2. Several experiments
were performed. First, for each station, the predictor is the
simulated HN from the snow reforecast and the predictand
is the observed HN at the station. This leads to a different
calibration for each station. Then, for each massif, the same
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predictors and predictands of all stations inside the massif
boundaries are mixed in the same training vectors as inde-
pendent events. This method will be further referred to as
massif-scale calibration because it leads to a unique calibra-
tion for each massif. The results of these first two experi-
ments are described in Sect. 3.2.1. Finally, the same massif-
scale calibration is applied by using the real-time forecasts
as predictors. The comparison of both training datasets is
analysed in Sect. 3.2.2. The skill of the raw forecast and
all post-processing experiments is assessed with the indepen-
dent evaluation dataset described in Sect. 2.2 with the metrics
of Sect. 2.4.

3 Results and discussion

3.1 Evaluation of raw forecasts

Raw HN real-time forecasts of winter 2017–2018 (Sect. 2.2)
are evaluated. The CRPS at different lead times of the raw
forecast is given in Fig. 3a. The boxplots represent the vari-
ability of the score between stations, which is relatively large
at all lead times. The mean CRPS slightly deteriorates with
longer lead times.

The rank histogram of the raw forecast is presented in
Fig. 3b and stratified according to the ensemble mean with
three different categories (low subset in blue: 0–10 cm,
medium subset in green: 10–30 cm, high subset in red: above
30 cm). The raw HN forecasts are biased with high under-
dispersion on all three subsets (U shape). Above 10 cm fore-
casts, about 50 % of the observed values are not included in
the ensemble (rank 1 or rank 36). Note that the small sample
size of the high subset (79 events) causes a high sampling
variability in the different probability classes.

To understand the link between forecast errors and the
magnitude of HN, a Q–Q plot of sorted observations as a
function of the forecast quantiles for the equivalent probabil-
ity levels is presented in Fig. 3c. The systematic bias in the
forecast increases as the observed HN increases. However,
since the sample size of the high observed HN is small, we
can expect significant sampling variability in the upper tail.

3.2 Evaluation of post-processed forecasts

3.2.1 Comparison of local-scale and massif-scale
training

In this section, we present only the results obtained by us-
ing the reforecast dataset as training and we compare the im-
pact of a local-scale calibration for each station to a massif-
scale calibration where all observations in the same massif
are mixed in the same training vector in order to obtain only
one set of parameters by massif for Eqs. (3) and (4) that can
be applied at any point in the massifs. The evaluation is per-
formed on 113 stations in 30 different massifs.

Figure 3. Evaluation of raw HN forecasts from PEARP-S2M during
winter 2017–2018. (a) CRPS of HN as a function of prediction lead
time. The boxplot represents the variability of scores between the
113 stations. (b) Rank histograms of HN forecasts for three classes
of HN ensemble mean (indigo: [0cm,10cm[, cyan: [10cm,30cm[,
red: [30cm,+∞[). (c) Quantile–quantile plot: the black dots repre-
sent sorted observations as a function of the forecast quantiles for
the equivalent frequency levels. Red line illustrates the ideal distri-
bution.

The CRPSS of each station for the verification period and
with the raw forecast as a reference is presented in Fig. 4a
and b. Post-processing with both local-scale and massif-scale
training significantly improves the CRPS in the majority of
the stations (positive skill scores for a large majority of sta-
tions), although in both cases, the improvement decreases
with longer lead times. The CRPSS of local-scale training
is slightly better than the CRPSS of massif-scale training on
smaller lead times (24 and 48 h), but for longer lead times
(72 and 96 h), the difference between local scale and massif
scale decreases. Overall, the difference between local-scale
and massif-scale training according to the CRPSS is limited.

The rank histograms of the post-processed ensembles with
local-scale and massif-scale snow reforecast training are pre-
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Figure 4. Comparison of post-processing skill between local-scale training (left column) and massif-scale training (right column) for post-
processed HN forecasts calibrated with the reforecast dataset (1994–2016) and evaluated during winter 2017–2018. (a, b) CRPS of HN (cm)
as a function of prediction lead time; the boxplot represents the variability of scores between the 113 stations. (c, d) Rank histograms; the
three HN classes are the same as in Fig. 3b. (e, f) Quantile–quantile plot.

sented in Fig. 4c and d. In both cases the shapes of the his-
tograms are similar and show that the reliability has been
greatly improved compared to the raw forecast (Fig. 3b). This
is the expected behaviour of the post-processing, and obtain-
ing such a result on the validation period independent of the
training period proves the robustness of the model. However,
a relative overdispersion of the post-processed forecasts can
be noticed (slight bell shape of the histograms). As for the
rank histogram of the raw forecast, the sample size of the
high subset is small and causes variability in the correspond-
ing rank histogram (red bars).

Q–Q plots of both post-processing training scenarios with
the snow reforecast are presented in Fig. 4e and f. In both
cases, a significant improvement compared to the raw Q–Q
plot (Fig. 3c) can be noted over all quantiles. Indeed, the Q–
Q plot shows that the post-processed forecasts and the ob-
servations have almost the same climatological distribution.
Again, the sample size of high observed HN is small and
causes sampling variability in the upper tail.

Examples of raw and post-processed ensembles with the
snow reforecast training at local scale and massif scale are
given in Fig. 5. In all four cases, the CRPSS are around
+30 %, showing a clear improvement of the forecasts by the
post-processing over January 2018. Note that the scores over
this short period are provided for the example, but only the
previous scores computed over the whole evaluation period
(Fig. 4) should be considered for robust conclusions. The
better improvement is obtained with the local-scale train-
ing in the first example (Fig. 5a and b) but with the massif-
scale training in the second example (Fig. 5c and d). These
examples show that some differences can be observed be-
tween the skill of the local-scale and massif-scale training
but with variability between stations and no systematic im-
provement or deterioration. This is consistent with the sim-
ilar scores presented before between both spatial scales. In
both examples and regardless of the spatial scale of train-
ing, the post-processing increases the median and the spread
compared to the raw ensemble, consistent with the system-
atic negative bias and underdispersion of the raw forecast ob-
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Figure 5. Time series of the raw (blue) and post-processed (grey) ensemble forecasts during January 2018 from a training based on the
snow reforecasts. The envelopes represent the interval between the 10th and 90th percentiles and the solid lines represent the median. These
ensemble forecasts are compared to time series of HN observations (red lines). (a, b) Example of station 73 034 400 (Arêches) at the +48 h
lead time. (c, d) Example of station 73 235 400 (Saint-François-Longchamp) at the+96 h lead time. (a, c) Local-scale training. (b, d) Massif-
scale training.

served in Fig. 3b and c. Thus, for most days with observed
snowfall, the observations fall inside the EMOS quantiles,
whereas they frequently fall outside the raw ensemble. Nev-
ertheless, the method causes overdispersion especially visi-
ble by adding spread even for the days when all the raw fore-
cast members predict no snowfall.

3.2.2 Comparison of real-time snow forecast and snow
reforecast training

In this section, we present only the results obtained with a
massif-scale training and we compare the impact of using the
reforecast dataset or the real-time forecast dataset as training,
which do not have the same advantages and disadvantages.
As mentioned in Sect. 2.2.2, only 47 stations in 21 different
massifs were included in this comparison. Note that the re-
sults obtained in Sects. 3.1 and 3.2.1 are not significantly dif-
ferent between the 113 stations and this subset of 47 stations,
as shown by the similar diagnostics obtained for massif-scale
reforecast training in both sections (Fig. 4b, d and f just differ
from Fig. 6a, c and e by the number of stations considered.)
The CRPSS of each station for the verification period, with
the raw forecast as a reference, is presented in Fig. 6a and b.
In both cases, the CRPS is improved in the majority of the
stations. Similarly to Sect. 3.2.1, the CRPSS decreases with
longer lead times. However, this decrease is smaller with
the real-time snow forecast training, and it performs better
at 96 h lead time compared to the snow reforecast training.

As can be noted, the variability of mean CRPSS among the
stations is generally higher with the real-time snow forecast
training.

The rank histograms of post-processed forecasts for both
training scenarios are given in Fig. 6c and d. The calibration
of the post-processed ensembles between these two different
training scenarios is different. In the case of a snow reforecast
training, similar overdispersive behaviour for the low subset
(blue) can be noted as was in the previous comparison with a
higher number of stations, whereas such issue is not obtained
with the real-time snow forecast training. However, the real-
time snow forecast training causes a significant positive bias
for the medium and high subsets which is not observed with
the snow reforecast training.

Q–Q plots with the snow reforecast and the real-time snow
forecast are presented in Fig. 6e and f. Similarly to the Q–Q
plots in the previous comparison, there is a significant im-
provement over all quantiles compared to the raw Q–Q plot
(Fig. 3c). The biases in the ranks from Fig. 6d are not trans-
lated into a bias in the simulated quantiles.

Examples of two different stations and lead times of post-
processed ensembles with snow reforecast massif-scale train-
ing and the real-time snow forecast massif-scale training are
given in Fig. 7. In both examples with the snow reforecast
training (Fig. 7a and c), post-processing increases the spread
by stretching the distribution below and above the raw en-
semble, whereas with the real-time snow forecast training
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Figure 6. Comparison of post-processing skill between a training with the reforecasts dataset (1994–2016, left column) and a training with
the real-time forecasts dataset (2014–2017, right column) for post-processed HN forecasts calibrated at the massif scale and evaluated during
winter 2017–2018. (a, b) CRPS of HN (cm) as a function of prediction lead time; the boxplot represents the variability of scores between the
47 stations. (c, d) Rank histograms; the three HN classes are the same as in Fig. 3b. (e, f) Quantile–quantile plot.

(Fig. 7b and d), the distribution is mostly stretched above the
raw ensemble. In the example of Fig. 7c and d, the real-time
snow forecast training performs better since the raw forecast
underestimates the snowfall magnitude. However, in the ex-
ample of Fig. 7a and b, post-processing is improved with the
snow reforecast training because the raw forecast overesti-
mates the magnitude of the snowfall and the observations fall
multiple times below the raw forecast. In this example, the
post-processing based on the real-time snow forecast train-
ing deteriorates the raw forecast by only stretching the distri-
bution towards higher values. Similarly to the impact of the
spatial scale on the training data, there is not any systematic
positive or negative impact of the training dataset on the skill
of the post-processing. The main advantages and disadvan-
tages of the real-time snow forecast vs. the snow reforecast
training identified in the rank histograms are also emphasized
in these examples. First, the overdispersion on dry days ob-
tained by the snow reforecast training can be again observed
in Fig. 7c. This issue disappears with the real-time snow fore-
cast consistently with the satisfactory shape of the low subset

(blue bars) in the rank histograms. However, the reliability
of the forecasts for severe snowfall events is better with the
reforecast training in the example of Fig. 7a and b, consis-
tent with the systematic bias of the medium and high subsets
(green and red bars) obtained in Fig. 6d.

4 Discussion

4.1 Implications for operational automatic forecasts

4.1.1 Added value of post-processed HN forecasts

Evaluations of the HN raw forecast from the PEARP-S2M
ensemble snowpack modelling system in Sect. 3.1 exhibit a
significant underdispersion over all subsets as well as an in-
creasing systematic bias as a function of the height of new
snow. It is the result of a bias and underdispersion of the
PEARP precipitation forecasts (Vernay et al., 2015), but also
of errors in recent snow density in the Crocus snowpack
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Figure 7. Time series of the raw (blue) and post-processed (grey) ensemble forecasts during January 2018 from a massif-scale training. The
envelopes represent the interval between the 10th and 90th percentiles and the solid lines represent the median. These ensemble forecasts are
compared to time series of HN observations (red lines). (a, b) Example of station 73 235 400 (Saint-François-Longchamp) at the +24 h lead
time. (c, d) Example of station 73 023 401 (Aussois) at the +72 h lead time. (a, c) Training with the snow reforecasts. (b, d) Training with
the snow real-time forecasts.

model (Sect. 2.1.3) and a lack of accounting for uncertainty
in the associated processes in the raw forecasts. Therefore,
we recommend avoiding the development of automatic prod-
ucts of HN forecasts based on the raw simulations.

Statistical processing can help improve the reliability of
the forecasts in such products, while the correction of these
errors and underdispersion is too challenging to be quickly
solved in the NWP and snowpack models. According to the
results of this study, we can state that the use of statistical
post-processing with the CSGD method in the case of en-
semble HN forecasts is beneficial in most of the evaluated
stations in all of the experiments conducted. The extent of
these improvements was more or less similar to what had al-
ready been found by several authors in the case of statistical
post-processing of ensemble precipitation forecasts (Gebets-
berger et al., 2017; Scheuerer and Hamill, 2015, 2018). How-
ever, since statistical post-processing of ensemble forecasts
had never been applied in the literature on the outputs of a
detailed snowpack model, the findings of this study are very
promising in terms of automatic HN forecast developments.
Thanks to many advantages of the physical modelling of the
snowpack, the method represents an alternative to the more
complex statistical frameworks developed by Stauffer et al.
(2018) and Scheuerer and Hamill (2019) from direct NWP
diagnostics as predictors.

4.1.2 Spatial scale

Due to the similar improvements when training data were
considered at local scale or massif scale (Sect. 3.2.1), the
use of massif-scale training is justified. Indeed, it means that
the post-processing can be applied at any point of the mas-
sifs because homogeneous sets of calibration parameters are
obtained for each massif. This is especially interesting for
the operational HN forecasting, which has no reason to be
limited to observation stations. Note that a potential limi-
tation for applying the post-processing anywhere is the rel-
atively limited elevation range of observations used in the
evaluations (50 % of observation stations are between 1400
and 2000 m a.s.l.). Nevertheless, local-scale post-processing
is interesting as well and can be applied especially if the ob-
jective is to gain more reliable HN forecasts for specific lo-
cations (e.g. ski resorts).

4.1.3 Training dataset

Even though local-scale and massif-scale trainings resulted
in similar post-processing performances, that was not exactly
the case when training forecasts with different lengths and
characteristics were compared in Sect. 3.2.2. This compari-
son resulted in large differences between the snow reforecast
training and the real-time snow forecast training. The relia-
bility of severe snowfalls was not satisfactory with the real-
time snow forecast training. This may be due to the small
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training length, making highly possible the fact that the cli-
matology of the training period differs from the climatology
of the verification period. To understand this issue, Fig. 8
shows the differences in terms of the amount of snow cov-
erage in the northern Alps at 1800 m between the successive
seasons. As can be noted, the difference between the snow
coverage during the evaluation period (2018) and the train-
ing period (2015, 2016 and 2017) is significant. Even when
compared to all of the winters in Fig. 8, the year of 2018
is exceptional. Figure 9 presents a rank histogram obtained
by cross-validation of three different post-processing cali-
brations in which the training periods were 3 years of the
2014–2018 period excluding the evaluation year, repeating
this process with 2015, 2016 and 2017 as evaluation years.
The rank histogram is the mean of the rank frequencies of
these three simulations. Such a cross-validation procedure
reduces the impact of seasonal differences in the shape of
a rank histogram. The shape of the highest subset (red bars)
in the cross-validated rank histogram of 2014–2017 (Fig. 9)
is completely different from the rank histogram obtained for
the verification period of 2017–2018 (Fig. 6d). Instead of
positive bias, the cross-validated verification rank histogram
indicates a negative bias. Such behaviour supports the pre-
vious arguments about the impact of the seasonal differ-
ences, which is especially problematic for operational use in
case only short training periods are available for the post-
processing. Indeed, it is highly possible that the upcoming
season is significantly different from the past few seasons.
Such an issue can be avoided or minimized by using longer
training periods when reforecasts are available. This conclu-
sion is fully consistent with a significant decrease in the fore-
cast skill obtained by Scheuerer and Hamill (2015) for the
highest precipitation amount when reducing the training data
length among the same reforecast dataset.

However, the main limitation to the use of the PEARP-
S2M reforecast instead of the real-time forecasts is the
overdispersion generated in the post-processed forecast. It
may be due to the discrepancy in the perturbations and model
configurations between these two forecasts. As explained in
Sect. 2.2.2, the snow reforecast and the real-time snow fore-
cast have different perturbations and model configurations.
The snow reforecast accounts only for the physical pertur-
bations and, thus, it has 10 members, whereas the real-time
snow forecast accounts for both physical and initial pertur-
bations, making it a 35-member forecast. Due to the discrep-
ancy in the perturbations, the real-time snow forecast has a
higher spread than the snow reforecast. Hence, this can lead
to an overcorrection of the spread in case the model is trained
with the snow reforecast (lower spread) and verified with the
real-time snow forecast (higher spread). To understand the
importance of homogeneity between training and verifica-
tion forecasts, Fig. 10 shows CRPSS comparison between
two cases where the post-processing was applied with the
same training data (the snow reforecast local-scale) and for
the same verification period (winter 2015–2016), but first the

post-processing was verified with the snow reforecast as a
predictor and in the second case the verification was done
with the real-time snow forecast as a predictor. For this anal-
ysis, the verification period had to be included in the training
period due to the limited recovery between both datasets. Ac-
cording to the skill scores, the difference between these two
forecast evaluations was considerable. At all lead times, the
skill score with the snow reforecast verification is higher than
with the real-time snow forecast verification: the improve-
ment in the median CRPSS is about 0.12. Similar skill scores
were also obtained for different seasons when the snow re-
forecast was used for verification. Hence, the ideal training
forecast for statistical post-processing should be as homoge-
neous as possible with the verification (operational) forecast.
This is an important feedback of this work for research teams
in charge of atmospheric modelling: even if the numerical
costs are higher, applications of ensemble NWP need refore-
casts which include all perturbations implemented in the op-
erational system. Before such a dataset is available, it is diffi-
cult to decide whether an operational post-processing should
be based on the snow reforecast or on the real-time snow
forecast training as it depends on whether we prefer to opti-
mize for severe events with high socio-economic impacts or
to optimize the spread during dry days (which can be an im-
portant factor of confidence for the end-user in an automatic
product).

4.2 Possible refinements

To maximize the performance of the statistical post-
processing method used in this study, some refinements or
extensions could be considered. According to the personal
communications with the forecasters of Météo-France, the
systematic biases in NWP models may depend on circulation
regimes. Hence, categorizing the training data by weather
types and computing the regression parameters accordingly
may be interesting. However, this would decrease the train-
ing length and could be problematic especially in the case
of the real-time snow forecast training which already had a
relatively short training period.

Another extension of the method could be the addition of
new predictors. The use of a physical snowpack model re-
duces the need to consider both precipitation and temperature
variables compared to Stauffer et al. (2018) and Scheuerer
and Hamill (2019). Indeed, situations close to the critical
threshold of 0 ◦C are likely to already result in an increased
spread in the raw ensemble forecasts (some members are go-
ing to forecast rain, some others to forecast snow). Therefore
the post-processed forecasts naturally exhibit more spread
in this case as it is linked to ensemble spread by Eq. (4).
Nevertheless, it is still true that the system may not have the
same biases and skill scores depending on various meteoro-
logical variables such as temperature or wind speed, or even
depending on the month of the year. These variables might
be able to improve the statistical relationship in more com-
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Figure 8. Qualification of snow coverage at 1800 m on northern aspects in the French northern Alps: for each winter (November–April),
percentage of days with total snow depth much below average (lower than the 20th climatological percentile), below average (between the
20th and 40th percentiles), near average (between the 40th and 60th percentiles), above average (between the 60th and 80th percentiles), and
much above average (higher than the 80th climatological percentile).

Figure 9. Cross-validated rank histograms of the post-processed
HN forecasts from local-scale calibration with the real-time fore-
casts dataset. The evaluation is done separately for winters 2014,
2015, and 2016 with the training period 2014–2018 excluding the
evaluation year. The three HN classes are the same as in Fig. 3b.

plex statistical models. Quantile random forests for instance
could be tested (Taillardat et al., 2016) as they do not need
to presume the required predictors in advance and because
they could allow combination of the different available train-
ing datasets by adding a categorical variable. Taillardat et al.
(2019) showed that hybrid forest-based procedures produce
the largest skill improvements for forecasting heavy rainfall
events over France.

Figure 10. CRPS of HN (cm) as a function of prediction lead time
for post-processed forecasts from local-scale calibration with the
reforecast dataset (1994–2016) and applied during winter 2015–
2016. (a) Predictors for the verification are taken from the refore-
cast; (b) predictors for the verification are taken from the real-time
forecasts. The boxplot represents the variability of scores between
the 47 stations in the French Alps.

5 Conclusion

Various weather services are trying to increase the part of au-
tomatic forecasts in their production. This includes the chal-
lenging forecast of the height of new snow. The PEARP-S2M
modelling system, designed for avalanche hazard forecast-
ing, can also help for this application. Indeed, the PEARP
ensemble numerical weather prediction (NWP) model quan-
tifies the uncertainty of the forecast, the SAFRAN down-
scaling tool refines the elevation resolution, and the Crocus
snowpack model represents the main physical processes re-
sponsible for the variability of the height of new snow. How-
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ever, the raw outputs of PEARP-S2M are biased and under-
dispersive. The origins of these biases in atmospheric en-
sembles and snow models are challenging to detect and cor-
rect, and hence a statistical post-processing of the HN out-
put is necessary. In this study, a non-homogeneous regres-
sion method based on censored shifted gamma distributions
was tested to calibrate HN forecasts. The predictands are
snow-board measurements of the height of 24 h new snow
from a network of stations located in the French Alps and
Pyrenees. HN outputs from the PEARP-S2M model chain
were statistically post-processed by considering local-scale
and massif-scale training vectors. The method was applied
with two different predictor datasets for training (snow re-
forecast and real-time snow forecast).

The chosen statistical post-processing method was found
to be successful as the forecast skills were improved for the
majority of the stations in all the conducted experiments.
Local-scale and massif-scale trainings had similar improve-
ments and therefore the use of massif-scale training can be
preferred for its ability to be applied at a larger spatial scale
than the observation points. However, a potential limitation
comes with the relatively limited elevation range of the ob-
servations since most of the stations are between 1400 and
2000 m a.s.l. Comparison between the snow reforecast train-
ing and the real-time snow forecast training revealed two
main challenges. First, due to the higher spread in the ver-
ification (operational) forecast than in the snow reforecast
training, the statistical post-processing ended up overcorrect-
ing the spread. This was found to be especially problematic
in the case of dry days when it was nearly certain that no
snowfall would occur, but still the post-processed forecast
indicated a small probability of snowfall. Second, because
of the short training length of the real-time snow forecast,
the impact of seasonal differences was found to be signif-
icant. In this case, as the training period for the statistical
post-processing was significantly drier than the verification
period, the statistical post-processing did not perform well
with higher snowfall events.

An ideal training forecast was identified as being as ho-
mogeneous as possible with the operational forecast and as
having a long training length. However, such a dataset was
not available in our case, and before it becomes available,
it is difficult to decide whether an operational application of
post-processing should be based on the snow reforecast or
on the real-time snow forecast since both have advantages
and disadvantages. The possibility of initializing an incom-
ing version of PEARP reforecast with an ensemble of ini-
tial states coming for instance from ERA5 reanalyses should
be investigated in the future. This should reduce the discrep-
ancy with the operational ensemble system and encourage
post-processing based on the reforecast rather than on real-
time forecasts. The main limitation remains the high com-
putational time consumption of these reforecasts (Vannitsem
et al., 2018) and finding the balance with the frequency of

operational changes in NWP and snowpack modelling sys-
tems.

Code and data availability. The R code used for post-processing
was originally developed by Michael Scheuerer (Cooperative In-
stitute for Research in Environmental Sciences – University of Col-
orado Boulder – and NOAA Earth System Research Laboratory,
Physical Sciences Division, Boulder-Colorado, USA). The modi-
fied version can be provided on request, with the agreement of the
original author. The Crocus snowpack model is developed inside
the open-source SURFEX project (http://www.umr-cnrm.fr/surfex/,
last access: 23 September 2019). The most up-to-date version of
the code can be downloaded from the specific branch of the git
repository maintained by the Centre d’Études de la Neige. For re-
producibility of results, the version used in this work is tagged as
“s2m_reanalysis_2018” on the SURFEX git repository (git.umr-
cnrm.fr/git/Surfex_Git2.git, last access: 23 September 2019). The
full procedure and documentation to access this git repository
can be found at https://opensource.cnrm-game-meteo.fr/projects/
snowtools_git/wiki (last access: 23 September 2019). The codes
of PEARP and SAFRAN are not currently open source. For re-
producibility of results, the PEARP version used in this study is
“cy42_peace-op2.18”, and the SAFRAN version is tagged as “re-
forecast_2018” in the private SAFRAN git repository. The raw data
of HN forecasts and reforecasts of the PEARP-S2M system can
be obtained on request. The HN observations used in this work
are public data available at https://donneespubliques.meteofrance.fr
(last access: 23 September 2019).
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