A. Varki, R. Schauer, . Sialic, and . Acids, Essentials of Glycobiology, 2009.

E. R. Vimr, K. A. Kalivoda, E. L. Deszo, and S. M. Steenbergen, Diversity of microbial sialic acid metabolism. Microbiol, Mol. Biol. Rev, vol.68, pp.132-153, 2004.

P. R. Crocker, J. C. Paulson, and A. Varki, Siglecs and their roles in the immune system, Nat. Rev. Immunol, vol.7, pp.255-266, 2007.

E. Nutku, Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis, Blood, vol.101, pp.5014-5020, 2003.

G. Dharmadhikari, Siglec-7 restores ?-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes, Sci. Rep, vol.7, p.45319, 2017.

O. J. Adams, M. A. Stanczak, S. Von-gunten, and H. Läubli, Targeting sialic acid-siglec interactions to reverse immune suppression in cancer, Glycobiology, vol.28, pp.640-647, 2018.

A. F. Nardy, C. G. Freire-de-lima, A. R. Pérez, and A. Morrot, Role of Trypanosoma cruzi trans-sialidase on the escape from host immune surveillance, Front. Microbiol, vol.7, p.348, 2016.

M. Ohuchi, N. Asaoka, T. Sakai, and R. Ohuchi, Roles of neuraminidase in the initial stage of influenza virus infection, Microbes Infect, vol.8, pp.1287-1293, 2006.

P. Palese, K. Tobita, M. Ueda, and R. W. Compans, Characterization of temperature sensitive influenza virus mutants defective in neuraminidase, Virology, vol.61, pp.397-410, 1974.

P. Palese and R. W. Compans, Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action, J. Gen. Virol, vol.33, pp.159-163, 1976.

S. Schenkman, M. Jiang, G. W. Hart, and V. Nussenzweig, A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells, Cell, vol.65, pp.1117-1125, 1991.

S. Manco, Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis, Infect. Immun, vol.74, pp.4014-4020, 2006.

L. Yang, H. Connaris, J. A. Potter, and G. L. Taylor, Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor, BMC Struct. Biol, vol.15, p.15, 2015.

Y. Chang and V. Nizet, The interplay between Siglecs and sialylated pathogens, Glycobiology, vol.24, pp.818-825, 2014.

B. Khatua, Sialic acids acquired by Pseudomonas aeruginosa are involved in reduced complement deposition and siglec mediated host-cell recognition, FEBS Lett, vol.584, pp.555-561, 2010.

H. Xiao, E. C. Woods, P. Vukojicic, and C. R. Bertozzi, Precision glycocalyx editing as a strategy for cancer immunotherapy, Proc. Natl Acad. Sci. USA, vol.113, pp.10304-10309, 2016.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

S. L. Newstead, The Structure of Clostridium perfringens NanI sialidase and its catalytic intermediates, J. Biol. Chem, vol.283, pp.9080-9088, 2008.

C. Adlam, J. M. Knights, A. Mugridge, J. M. Williams, and J. C. Lindon, Production of colominic acid by Pasteurella haemolytica serotype A2 organisms, FEMS Microbiol. Lett, vol.42, pp.23-25, 1987.

H. J. Jennings, Structure, conformation and immunology of sialic acidcontaining polysaccharides of human pathogenic bacteria, Pure Appl. Chem, vol.56, pp.893-905, 1984.

P. G. Leiman, The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities, J. Mol. Biol, vol.371, pp.836-849, 2007.

H. Hildebrandt, M. Mühlenhoff, B. Weinhold, and R. Gerardy-schahn, Dissecting polysialic acid and NCAM functions in brain development, J. Neurochem, vol.103, pp.56-64, 2007.

I. Röckle, Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons, Dev. Neurobiol, vol.68, pp.1170-1184, 2008.

S. P. Galuska, R. Geyer, R. Gerardy-schahn, M. Mühlenhoff, and H. Geyer, Enzyme-dependent variations in the polysialylation of the neural cell adhesion molecule (NCAM) in vivo, J. Biol. Chem, vol.283, pp.17-28, 2008.

D. Ndeh, Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature, vol.544, pp.65-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595600

L. Chuzel, M. B. Ganatra, E. Rapp, B. Henrissat, and C. H. Taron, Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156), J. Biol. Chem, vol.293, pp.18138-18150, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094476

M. D. Joshi, Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the ph optimum of a glycosidase 1 1edited by M. F. Summers, J. Mol. Biol, vol.299, pp.255-279, 2000.

B. M. Marathe, V. Lévêque, K. Klumpp, R. G. Webster, and E. A. Govorkova, Determination of neuraminidase kinetic constants using whole influenza virus preparations and correction for spectroscopic interference by a fluorogenic substrate, PLoS ONE, vol.8, p.71401, 2013.

T. J. Morley, L. M. Willis, C. Whitfield, W. W. Wakarchuk, and S. G. Withers, A new sialidase mechanism: bacteriophage k1f endo-sialidase is an inverting glycosidase, J. Biol. Chem, vol.284, pp.17404-17410, 2009.

E. Gasteiger, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res, vol.31, pp.3784-3788, 2003.

A. Ochoa-leyva, Exploring the structure-function loop adaptability of a (?/?)8-barrel enzyme through loop swapping and hinge variability, J. Mol. Biol, vol.411, pp.143-157, 2011.

R. A. Laskowski, J. Jab?o?ska, L. Pravda, R. S. Va?eková, and J. M. Thornton, PDBsum: structural summaries of PDB entries, Protein Sci, vol.27, pp.129-134, 2018.

S. Crennell, T. Takimoto, A. Portner, and G. Taylor, Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase, Nat. Struct. Biol, vol.7, pp.1068-1074, 2000.

S. Crennell, E. Garman, G. Laver, E. Vimr, and G. Taylor, Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain, Structure, vol.2, pp.535-544, 1994.

M. F. Amaya, Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase, Structure, vol.12, pp.775-784, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-02554101

E. C. Schulz, Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF, J. Mol. Biol, vol.397, pp.341-351, 2010.

A. Buschiazzo, M. F. Amaya, M. L. Cremona, A. C. Frasch, and P. M. Alzari, The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis, Mol. Cell, vol.10, pp.757-768, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-02554093

L. Holm and C. Sander, Dali: a network tool for protein structure comparison, Trends Biochem. Sci, vol.20, pp.478-480, 1995.

W. J. Bradshaw, J. M. Kirby, A. K. Roberts, C. C. Shone, and K. R. Acharya, The molecular structure of the glycoside hydrolase domain of Cwp19 from Clostridium difficile, FEBS J, vol.284, pp.4343-4357, 2017.

S. Wydau-dematteis, Cwp19 is a novel lytic transglycosylase involved in stationary-phase autolysis resulting in toxin release in Clostridium difficile, mBio, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02164689

J. Hehemann, A. G. Kelly, N. A. Pudlo, E. C. Martens, and A. B. Boraston, Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes, Proc. Natl Acad. Sci. USA, vol.109, pp.19786-19791, 2012.

M. Linder, G. Lindeberg, T. Reinikainen, T. T. Teeri, and G. Pettersson, The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution, FEBS Lett, vol.372, pp.96-98, 1995.

S. J. Crennell, E. F. Garman, W. G. Laver, E. R. Vimr, and G. L. Taylor, Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase, Proc. Natl Acad. Sci. USA, vol.90, pp.9852-9856, 1993.

A. G. Watts, Trypanosoma c ruzi trans-sialidase operates through a covalent sialyl?enzyme intermediate: tyrosine is the catalytic nucleophile, J. Am. Chem. Soc, vol.125, pp.7532-7533, 2003.

G. Davies and B. Henrissat, Structures and mechanisms of glycosyl hydrolases, Structure, vol.3, pp.853-859, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310748

J. D. Mccarter and G. Stephen-withers, Mechanisms of enzymatic glycoside hydrolysis, Curr. Opin. Struct. Biol, vol.4, pp.885-892, 1994.

J. Rouvinen, T. Bergfors, T. Teeri, J. Knowles, and T. Jones, Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei, Science, vol.249, pp.380-386, 1990.

M. Juy, Three-dimensional structure of a thermostable bacterial cellulase, Nature, vol.357, p.89, 1992.

J. Hehemann, L. Smyth, A. Yadav, D. J. Vocadlo, and A. B. Boraston, Analysis of keystone enzyme in agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds, J. Biol. Chem, vol.287, pp.13985-13995, 2012.

B. Pluvinage, Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont, Nat. Commun, vol.9, p.1043, 2018.

S. Newstead, J. N. Watson, T. L. Knoll, A. J. Bennet, and G. Taylor, Structure and mechanism of action of an inverting mutant sialidase ?, Biochemistry, vol.44, pp.9117-9122, 2005.

C. Bull, M. A. Stoel, M. H. Den-brok, and G. J. Adema, Sialic acids sweeten a tumor's life, Cancer Res, vol.74, pp.3199-3204, 2014.

A. Varki and P. Gagneux, Multifarious roles of sialic acids in immunity: roles of sialic acids in immunity, Ann. N. Y. Acad. Sci, vol.1253, pp.16-36, 2012.

P. Brossart, The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic Tlymphocytes, Cancer Res, vol.61, p.6846, 2001.

J. P. Fürste, Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector, Gene, vol.48, pp.119-131, 1986.

V. Ramakrishnan, J. T. Finch, V. Graziano, P. L. Lee, and R. M. Sweet, Crystal structure of globular domain of histone H5 and its implications for nucleosome binding, Nature, vol.362, pp.219-223, 1993.

M. T. Clabbers, T. Gruene, J. M. Parkhurst, J. P. Abrahams, and D. G. Waterman, Electron diffraction data processing with DIALS, Acta Crystallogr. D, vol.74, pp.506-518, 2018.

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution?, Acta Crystallogr. D, vol.69, pp.1204-1214, 2013.

N. S. Pannu, Recent advances in the CRANK software suite for experimental phasing, Acta Crystallogr. D, vol.67, pp.331-337, 2011.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D, vol.60, pp.2126-2132, 2004.

G. N. Murshudov, REFMAC 5 for the refinement of macromolecular crystal structures, Acta Crystallogr. D, vol.67, pp.355-367, 2011.

A. J. Mccoy, Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

A. A. Lebedev, JLigand: a graphical tool for the CCP 4 template-restraint library, Acta Crystallogr. D, vol.68, pp.431-440, 2012.

H. Berman, K. Henrick, and H. Nakamura, Announcing the worldwide Protein Data Bank, Nat. Struct. Mol. Biol, vol.10, pp.980-980, 2003.

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

Y. He, A. K. Bubb, K. A. Stubbs, T. M. Gloster, and G. J. Davies, Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses, Amino Acids, vol.40, pp.829-839, 2011.

E. R. Vimr, L. Lawrisuk, J. Galen, and J. Kaper, Cloning and expression of the Vibrio cholerae neuraminidase gene nanH in Escherichia coli, J. Bacteriol, vol.170, pp.1495-1504, 1988.