
HAL Id: hal-02613724
https://hal.inrae.fr/hal-02613724v1

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Tamm Review: Influence of forest management activities
on soil organic carbon stocks: A knowledge synthesis

Mathias Mayer, Cindy Prescott, Wafa E A Abaker, Laurent Augusto, Lauric
L. Cecillon, Gabriel W D Ferreira, Jason James, Robert Jandl, Klaus

Katzensteiner, Jean-Paul Laclau, et al.

To cite this version:
Mathias Mayer, Cindy Prescott, Wafa E A Abaker, Laurent Augusto, Lauric L. Cecillon, et al..
Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge
synthesis. Forest Ecology and Management, 2020, 466, pp.118127. �10.1016/j.foreco.2020.118127�.
�hal-02613724�

https://hal.inrae.fr/hal-02613724v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Tamm reviews

Tamm Review: Influence of forest management activities on soil organic
carbon stocks: A knowledge synthesis
Mathias Mayera,b,⁎, Cindy E. Prescottc, Wafa E.A. Abakerd, Laurent Augustoe, Lauric Cécillonf,g,
Gabriel W.D. Ferreirah, Jason Jamesi, Robert Jandlj, Klaus Katzensteinera, Jean-Paul Laclauk,l,
Jérôme Laganièrem, Yann Nouvellonk,l, David Parém, John A. Stanturfn, Elena I. Vanguelovao,
Lars Vesterdalp
a Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Straße 82, 1190
Vienna, Austria
b Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
c Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
dDepartment of Silviculture, Faculty of Forestry, University of Khartoum, Sudan 13314 Shambat, Sudan
e INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, 33882 Villenave d'Ornon, France
fUniversité de Normandie, UNIROUEN, INRAE, ECODIV, Rouen, France
g Laboratoire de Géologie, UMR 8538, Ecole Normale Supérieure, Université PSL, CNRS, Paris, France
h Savannah River Ecology Laboratory, University of Georgia, P O Drawer E – Aiken, SC 29802, USA
i Exponent, Inc., 15375 SE 30th Pl, Suite 250, Bellevue, WA 98007, USA
jDepartment of Forest Ecology and Soils, Austrian Research Center for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
k CIRAD, UMR Eco&Sols, 34060 Montpellier, Franc
l Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro 34060, Montpellier, France
mNatural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 Du P.E.P.S. Street, P.O. Box 10380, Québec, QC G1V 4C7, Canada
n Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
o Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
p Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark

A B S T R A C T

Almost half of the total organic carbon (C) in terrestrial ecosystems is stored in forest soils. By altering rates of input or release of C from soils, forest management
activities can influence soil C stocks in forests. In this review, we synthesize current evidence regarding the influences of 13 common forest management practices on
forest soil C stocks. Afforestation of former croplands generally increases soil C stocks, whereas on former grasslands and peatlands, soil C stocks are unchanged or
even reduced following afforestation. The conversion of primary forests to secondary forests generally reduces soil C stocks, particularly if the land is converted to an
agricultural land-use prior to reforestation. Harvesting, particularly clear-cut harvesting, generally results in a reduction in soil C stocks, particularly in the forest
floor and upper mineral soil. Removal of residues by harvesting whole-trees and stumps negatively affects soil C stocks. Soil disturbance from site preparation
decreases soil C stocks, particularly in the organic top soil, however improved growth of tree seedlings may outweigh soil C losses over a rotation. Nitrogen (N)
addition has an overall positive effect on soil C stocks across a wide range of forest ecosystems. Likewise, higher stocks and faster accumulation of soil C occur under
tree species with N-fixing associates. Stocks and accumulation rates of soil C also differ under different tree species, with coniferous species accumulating more C in
the forest floor and broadleaved species tending to store more C in the mineral soil. There is some evidence that increased tree species diversity could positively affect
soil C stocks in temperate and subtropical forests, but tree species identity, particularly N-fixing species, seems to have a stronger impact on soil C stocks than tree
species diversity. Management of stand density and thinning have small effects on forest soil C stocks. In forests with high populations of ungulate herbivores,
reduction in herbivory levels can increase soil C stocks. Removal of plant biomass for fodder and fuel is related to a reduction in the soil C stocks. Fire management
practices such as prescribed burning reduce soil C stocks, but less so than wildfires which are more intense. For each practice, we identify existing gaps in knowledge
and suggest research to address the gaps.
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1. Introduction

Soils store immense amounts of carbon (C), about two-thirds of
which is in organic form derived from metabolic activities of living
organisms. Most estimates of global soil organic C (hereafter soil C)
stores are roughly 1500 petagrams of carbon (Pg C). Globally, soils
store two-to-three times as much C in organic form as there is C in the
atmosphere (Scharlemann et al., 2014), and organic C stocks in soil
exceed those in plant biomass in most IPCC climatic regions (Fig. 1).

Forests cover an estimated 4.0–5.0 billion hectares globally (Birdsey
and Pan, 2015; Keenan et al., 2015; Bastin et al., 2017), and contain
about 860 Pg C. Globally, >40% of the total organic C in terrestrial
ecosystems is stored in forest soils (IPCC, 2007; Wei et al., 2014). In
2007, total soil C stocks (including litter) were estimated at 202, 69,
and 155 Pg for boreal, temperate and tropical forests, respectively (Pan
et al., 2011). These soil C stocks equate to ~70% of the ecosystem C
stock in the boreal forest, ~60% in temperate forests and ~30% in
tropical forests, respectively (Pan et al., 2011).

The soil C stock represents the balance between inputs of organic
matter to soils and the loss of C through decomposition, leaching, and
erosion of organic matter (Fig. 2). The principal source of organic
matter is dead plant material (litter) from both aboveground and be-
lowground tissues. Other organic inputs are rhizodeposits, including
exudates from plant roots and associated symbionts (e.g. mycorrhizal
fungal mycelia), and faecal material and bodies of the soil biota. Once
in or on the soil, organic materials are progressively transformed by soil
fauna and microorganisms (fungi, bacteria and archaea). Extracellular
enzymes released by microorganisms decompose the material into
simpler compounds, which may be assimilated. Within microbes, a
portion is respired as CO2 and the remainder is synthesized into mi-
crobial biomass or into microbial metabolites, some of which (espe-
cially enzymes and polysaccharides) are exuded from the cell.

Turnover of the microbial biomass generates microbial products
such as cell wall residues (including melanin, peptidoglycan and
chitin), proteins, and enzymes (Miltner et al., 2009; Haddix et al., 2016;
Paul, 2016). Proteins and amino acids can be directly adsorbed to clay
minerals (Sollins et al., 2006) and microbial residues such as cell walls
and mucilage have also been observed to be directly associated with
mineral particles (Foster and Martin, 1981; Campbell and Porter, 1982;

Foster et al., 1983; Miltner et al., 2012; Chenu et al., 2015; Paul, 2016).
Bonding of organic matter at mineral surfaces is considered a major
mechanism of long-term protection of soil C against decomposition
(von Lützow et al., 2006; Hemingway et al., 2019). Other important soil
C stabilization mechanisms are chemical associations, physical protec-
tion within micro-aggregates and micropores where the organic matter
is less accessible to microbial exoenzymes (Görres et al., 1999; Six et al.,
2002; Jastrow et al., 2007; Ruamps et al., 2011; Dungait et al., 2012;
Quigley et al., 2018; Kravchenko et al., 2019).

Evidence that the more stable (i.e. slow turnover) soil C pools can be
dominated by microbial products (Kelleher and Simpson, 2006;
Simpson et al., 2007; Gleixner, 2013; Barré et al., 2018) prompted the
suggestion that labile organic matter such as sugars may be as or even
more important than recalcitrant organic matter in generating soil C –
particularly stable soil C (Schmidt et al., 2011; Cotrufo et al., 2013;
Cotrufo et al., 2015; Lehmann and Kleber, 2015; Kallenbach et al.,
2016). Belowground fluxes of labile C in forests can be substantial
(Högberg et al., 2001) and their release from roots and associated
mycorrhizal fungi may be important C sources for microbial biomass
and soil organic matter formation.

The size of the forest soil C stock is influenced by the interacting
driving factors that determine the fertility and productivity of the site
(climate, vegetation, topography, soil chemical, physical and biological
properties and parent material) and the land-use and management
practices (Barré et al., 2017; Jackson et al., 2017; Rasmussen et al.,
2018; Wiesmeier et al., 2019). A detailed review of the key drivers and
indicators for soil C stocks can be found in Wiesmeier et al. (2019).
Natural and anthropogenic disturbances influence soil C stocks by af-
fecting rates of organic matter input and decomposition. Natural dis-
turbances such as wildfire, pests, diseases and windthrow can tem-
porarily reduce soil C stocks of forests (Certini, 2005; Thom and Seidl,
2015; Zhang et al., 2015). Anthropogenic disturbance, related to both
conversion of forests to other land uses, and modifications of forests
involved in the provision of forest products and services also influence
forest soil C stocks (Nave et al., 2010; Achat et al., 2015b; James and
Harrison, 2016).

As the manner and intensity in which forests are managed can in-
fluence soil C stocks (Jandl et al., 2007), there is potential to consider
this factor when planning management activities. Sustaining or in-
creasing soil C stocks has many benefits in addition to ecosystem C
sequestration, such as increased soil fertility and water-holding capa-
city, increasing potential site productivity, and fostering belowground
biodiversity.

Here we synthesize the current scientific evidence regarding the
influences of forest management practices on forest soil C stocks. We
selected thirteen management practices which are relevant and ap-
plicable for forest practitioners (Fig. 3). For each management practice,
we discuss considerations that must be assessed before implementing
the practice in a given area, including potential barriers to adoption and
contexts in which the practice might be most, and least, appropriate.

2. Afforestation

Afforestation of agricultural land is suggested as a measure for mi-
tigation of climate change (Bastin et al., 2019) through on-site C se-
questration in biomass and soil and by production of wood products
and biomass that displace fossil fuel. The contribution of new forest
biomass to C sequestration is well understood and modeled, but C se-
questration in soil is more complex in terms of process understanding
and assessments of soil C stock changes.

Several meta-analyses at regional and global scales have emerged in
recent years (Laganiere et al., 2010; Don et al., 2011; Poeplau et al.,
2011; Li et al., 2012; Nave et al., 2013; Bárcena et al., 2014b). The main
messages from these studies are that afforestation on former cropland
may result in a significant increase in soil C stocks over 100 years. In
some studies, no new steady-state levels were reached within 100 years
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Fig. 1. Organic carbon stocks in subsoil (brown) and topsoil (orange), and in
aboveground and belowground phytomass (green). Figure modified after
Scharlemann et al. (2014).
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(Poeplau et al., 2011; Bárcena et al., 2014b) while in others, modest
decadal increases culminated in a ~15% net increase in soil C stock by
the end of the first century (Nave et al., 2013). In contrast, following
afforestation of grasslands, mean soil C stocks may increase less, remain
unchanged or even decrease (Guo and Gifford, 2002; Bárcena et al.,

2014b). Poeplau et al. (2011) reported that 75% of all grassland-to-
forest conversions showed soil C losses, even after 100 years. The soil C
sequestration rate after afforestation generally increases proportionally
with temperature and precipitation, and a global meta-analysis by
Laganiere et al. (2010) found rates to be highest for clay-rich (>33%)
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soils.
Forest-floor development was the main driver for the positive effects

of afforestation on soil C, especially in the case of conifer afforestation,
but mineral soil C sequestration was higher under broadleaved species
(Laganiere et al., 2010). Forest floors were the main initial C sink while
there was little change in mineral soil C within the first three decades
after afforestation in temperate regions (Nave et al., 2013; Poeplau and
Don, 2013; Bárcena et al., 2014b). In tropical climates, a positive rate of
sequestration was reported already within the first three decades (Don
et al., 2011; Pausas and Fernández-Muñoz, 2012).

Overall synthesis studies showed higher and positive mineral soil C
change when afforestation was on cropland, and limited or negative soil
C change when afforestation was on grassland (Guo and Gifford, 2002;
Laganiere et al., 2010; Don et al., 2011; Poeplau et al., 2011; Li et al.,
2012; Bárcena et al., 2014b). Positive soil C changes were always ob-
served in the organic layers regardless of the previous land use and the
soil types. However, negative soil C changes were observed after af-
forestation of shallow and deep peat soils (Zerva and Mencuccini, 2005;
Swain et al., 2010; Simola et al., 2012; Chapman et al., 2013;
Vanguelova et al., 2019).

Site-level studies have revealed how the distribution of sequestered
C in the soil profile changes over time. Resampling of oak (Quercus
robur L.) and Norway spruce (Picea abies (L.) Karst.) chronosequences
after afforestation of cropland in Denmark have shown that during the
initial 30 years, soil C sequestration occurred mainly in the forest floor
(spruce > oak) whereas the mineral soil (0–30 cm) exhibited small
losses of soil C (Vesterdal et al., 2002). When these chronosequences
were resampled 45 years after afforestation, soils appeared to be tran-
sitioning from forest floor to mineral soil C sequestration (Bárcena
et al., 2014a). Studies of long-term trends are rare. Broad-leaved af-
forestation (50–110 years) on former cropland in the UK increased soil
C stock at a rate of 0.49 Mg C ha−1 yr−1 in top 0–20 cm soil (including
both organic and mineral layers) and soil C stocks were comparable to
those found in old woodlands (>400 years) after 110 years (Ashwood
et al., 2019). In Germany, ancient beech forests (>230 years old) stored
on average 47% more organic C in the soil than beech afforestations
(50–128 years old) (Leuschner et al., 2014). At Rothamsted (UK), where
arable land reverted to acid woodland after abandonment in 1886, soil
C (to 70-cm depth) increased at a rate of 0.38 Mg C ha−1 yr−1 and more
than doubled over 100 years (Poulton 1996).

The above reported rates of soil C changes are typical for temperate
conditions. However, in warmer climates, mineral soil C may accu-
mulate faster and without the initial lag period often reported under
temperate conditions (Bárcena et al., 2014a; Bárcena et al., 2014b). For
example, in a review of reforestation of abandoned tropical agricultural
lands (Silver et al., 2000), soil C accumulated at an average rate of
0.41 Mg ha−1 yr−1 over a 100-year period, and at faster rates during
the first 20 years (1.30 Mg C ha−1 yr−1). In Ethiopia, afforestation of
degraded croplands and grazing lands with Eucalyptus elevated soil C
stocks to nearly 70% of levels found in a natural dry subtropical
montane forest within 30 years (Assefa et al., 2017).

The specific agricultural land-use prior to afforestation is a crucial
factor for soil C sequestration rates. While there is a general consensus
that cropland-to-forest conversion eventually leads to higher soil C
stocks, evidence from a large-scale synthesis (Poeplau et al., 2011) and
site-specific studies (Ashwood et al., 2019), Ražauskaitė (2019) suggest
that afforestation of grasslands and pastures results in very modest rates
of soil C sequestration. Repeated surveys of afforested sites over the
past 30 years indicated that permanent grassland conversion to forest
was the only land use change that reduced soil C stocks in the 0–30 cm
soil layer (Hannam et al., 2016). Afforestation of pastures and grass-
lands or Cerrado savannahs have also resulted in soil C losses (Zinn
et al., 2002; Cook et al., 2014; Moore et al., 2018), although increases in
soil C after afforestation of such land uses with Eucalyptus has also been
reported (Maquère et al., 2008; Cook et al., 2014; Soares et al., 2019).
The effect of grassland afforestation may be higher in drier climates as

demonstrated in a study of grassland afforestation with Eucalyptus in
subtropical areas (Argentina and Uruguay), where soil C was gained in
areas with low annual rainfall and lost at sites with the highest annual
rainfall (Berthrong et al., 2012). However, once the plantations reached
an age of 40 years, soil C was steady or increasing at all sites, empha-
sizing the importance of controlling for stand age.

In northern Europe, many wet upland sites with thick organic peat
layers have been afforested with conifers. This entails lowering of the
water table through drainage and site preparation to enhance aeration,
which increases rates of organic matter oxidation (Morison et al., 2012;
Simola et al., 2012; Vanguelova et al., 2018). A net loss in soil C stock of
1.5 Mg ha−1 yr−1 was reported after afforestation of drained peatlands
in Finland (Simola et al., 2012). Chronosequence studies (~100 years)
in the UK of afforestation with Sitka spruce (Picea sitchensis (Bong.)
Carr.) on moorland with peaty gley soils (Zerva and Mencuccini, 2005;
Vanguelova et al., 2019), detected C loss from the peat layer during the
first 30 years of the first rotation. This loss was compensated by C ac-
cumulation in the forest floor, such that overall C stock reached pre-
afforestation levels after two forest rotations, e.g. after 100 years since
afforestation (Vanguelova et al., 2019).

Most studies to date have investigated the changes of soil C in
topsoil (0–30 cm depth), however, changes deeper in the profile may be
important due to the large amount of soil C stored there (De Vos et al.,
2015), and the potential for long-term C sequestration due to C stabi-
lization. Positive but also negative changes in deeper soil C stocks (20−
>60 cm) after afforestation have been reported at temperate and tro-
pical sites (Shi et al., 2013). Over 40 years after afforestation, Mobley
et al. (2015) observed that soil C increases in the light fraction from the
topsoil (0–7.5 cm) were offset by significant losses in the subsoil silt-
and clay-associated fractions (35–60 cm). Previous land use also in-
fluences subsoil soil C changes: conversions to forestry increase soil C
from cropland and decrease soil C from grassland (Shi et al., 2013). In
some cases, afforestation of former grassland increases soil C in deep
soil layers (40–100 m soil depth), likely due to C inputs from tree roots
(Ražauskaitė, 2019; Soares et al., 2019). Grasses have variable root
systems but are generally shallower than those of trees in temperate
forests (Canadell et al., 1996; Jackson et al., 1996).

There is mixed evidence regarding the stability of sequestered soil C
after afforestation. After afforestation of grasslands, Ražauskaitė (2019)
found more labile C in the topsoil of grassland than in afforested
woodland in the UK (a 200-year chronosequence), but more stable C in
deep soil layers in the woodland compared to the grassland. In contrast,
in the Italian Alps, natural forest succession on abandoned grasslands
led to a decline in soil C stability in the mineral soils, suggesting that
soil C can become susceptible to management and environmental
changes (Guidi et al., 2014). Rahman et al. (2017) found no evidence of
changes in stability of soil C within 45 years of cropland afforestation in
Denmark.

Grassland and cropland soils hold more soil C in the mineral hor-
izons and in mineral-associated C fractions than forest soils, which
could be less susceptible to environmental factors and more stable
under a changing climate (Poeplau and Don, 2013). Soil C stabilization
is influenced by the quality of the C inputs and the protection me-
chanisms that depend on soil chemical, physical and biological prop-
erties (Sollins et al., 1996). This highlights the need to study full soil
profile soil C and individual soil C pools to determine vertical patterns
of C distribution, allocation and stabilization in order to quantify soil C
sequestration potential of afforestation.

2.1. Relevance and considerations

Several co-varying factors must be considered when evaluating ef-
fects of afforestation on soil C stocks. The rate and direction of soil C
change following afforestation depend strongly on the previous land
use, soil type, climate, tree species, forest age and management.
Although gains in soil C are observed within decades of afforestation of
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cropland, centuries may be required for soil C stocks to reach a new
steady state. Soil C sequestration following afforestation is greater and
more rapid in warm climates than in cold climates. In temperate and
boreal zones, the initial C sequestration within the first three decades
mainly occurs in the forest floor, whereas gains in mineral soil C stocks
develop after a lag period of around three decades. The soil C seques-
tration rate is influenced by tree species (conifer–broadleaves), but this
is mainly because of higher initial forest floor C sequestration rates
under conifers. The previous land use has a major influence on soil C
gains following afforestation – gains are more pronounced in frequently
tilled croplands that have lower initial soil C stocks than pastures or
grasslands (Laganière et al., 2010). The rate of soil C accumulation also
varies with soil type. In a meta-analysis, Bárcena et al. (2014b) reported
higher rates of soil C after afforestation of coarse-textured than fine-
textured soils. There is some evidence that afforestation on organo-
mineral soils could have a negative effect on soil C stocks during the
first decades, depending on the site preparation practice, but may sta-
bilize during the following decades and second rotation due to accu-
mulation of C in forest floors.

2.2. Gaps in knowledge and research needs

Further studies are necessary to better quantify the afforestation
impacts on deep soil C (below 30 cm) and on highly organic soils, as the
few existing case studies have not provided conclusive results. More
research on soil C fractions is required to provide information about the
stability and the potential for long-term sequestration of soil C in forest
ecosystems compared to other land uses. Reviews to date on the mag-
nitude and direction of change of soil C stocks in organo-mineral soils
after afforestation were inconclusive (Reynolds, 2007), and more case
studies are needed encompassing a large range of climates, land-uses
and soil conditions after afforestation of organic soils.

3. Conversion of primary forest to secondary forest or plantation

Primary forests are defined by FAO as naturally regenerated forest
of native species where there are no clearly visible indications of human
activities and the ecological processes are not significantly disturbed
(Bernier et al. 2016). The operational use of primary and secondary
forest for land classification is mostly used in tropical regions. In a
meta-analysis of the impacts of land-use change on soil C in the tropics,
conversion of primary forest to secondary forest being managed for
wood extraction and planting of productive tree species caused a mean
soil C loss of 7% or 9 Mg C ha−1 (over an average of 3 decades; Don
et al. (2011)). The loss was mostly in the upper 20 cm of soil. Con-
version of primary forests to secondary forests is often associated with a
transitional stage of agricultural land use, especially in tropical regions.
This land-use change has a much greater impact on soil C than does
harvesting. For example, conversion of forest to agriculture caused a
large decrease in soil C stocks within the topsoil (0–30 cm) (52% de-
crease in temperate regions, 41% decrease in tropical regions and 31%
in boreal regions) (Wei et al., 2014).

Losses of soil C are more modest when primary forests are converted
directly to managed forests. In six long-term monitoring sites across the
Canadian boreal forest, Kishchuk et al. (2016) showed that soil C levels
in harvested plots declined initially and rapidly converged over time to
baseline levels, while plots subjected to a common natural disturbance
(wildfire), took longer time to recover pre-disturbance soil C levels.
Conversion of Cerrado woodland to Eucalyptus plantations in Brazil
resulted in losses of 0.22 Mg C ha−1 yr−1 over two decades of ob-
servation (Cook et al., 2016), which was associated with declines in
microbial biomass and loss of aged soil C, particularly in subsoils
(James et al., 2019).

A modeling study by Dean et al. (2017) indicated that conversion of
primary forest to rotation forestry could be associated with a long-term
decline in soil C. Their analysis suggested that soil C was lost gradually,

over centuries, once forests were converted, which could explain why
short-term studies (<20 years) of effects of clearcut harvesting on soil C
have provided conflicting conclusions. Once forests were converted, the
rate of soil C losses with each harvest declined (Dean et al., 2017).
However, studies documenting the long-term patterns of soil C accu-
mulation in the absence of natural or anthropogenic disturbances have
shown diverging results. Some studies have reported net soil C accu-
mulation that goes beyond the aboveground aggradation phase (Zhou
et al., 2006; Luyssaert et al., 2008; Andrieux et al., 2018) while others
report a steady-state level of soil C stocks at a point in time (Wardle
et al., 2004; Ward et al., 2014; Gao et al., 2018). As illustrated by Senez-
Gagnon et al. (2018), short-term accumulation of soil organic matter
following disturbance typically shows a U-shaped curve. It is often
difficult, however, to predict whether the long-term pattern of soil C
accumulation, following this U-shaped curve, is a steady state or a slow
continuous accretion because changes are slower in old-growth stands
than in aggrading stands. Noormets and Nouvellon (2015) explored the
underlying causes of the lower soil C stocks in managed compared to
primary forests found in some studies. They found that globally, man-
aged forests are about 50 years younger, include 25% more coniferous
stands, and have about 50% lower C stocks than unmanaged forests.
Gross primary productivity (GPP) and total net primary productivity
(NPP) were similar, but relatively more of the assimilated C was allo-
cated to aboveground pools in managed forests, whereas allocation to
fine roots and rhizo-symbionts was lower.

3.1. Relevance and considerations

The conversion of primary forest is possible only where such forests
remain, although restoration of degraded forests can assist in rebuilding
soil C stocks. The benefit of retaining primary forest for soil C depends
on the natural disturbance regime; where disturbance such as wildfire is
frequent, for example in the boreal biome where a large portion of
global primary forest area is located (Bernier et al., 2017), benefits for
soil C will be smaller. The benefit also depends upon what the forest is
being converted to; detrimental effects of conversion to managed forest
or even monoculture plantations are less than from conversion to row-
crop agriculture. The impact of converting primary forests to secondary
forests may be greater if primary forests are first converted to an
agricultural land use. Nave et al. (2019) found greater soil C losses
associated with harvesting on afforested sites than on secondary forest
sites.

Well-managed secondary forests can have higher productivity than
primary forests and so may sequester more atmospheric CO2 (Turner
et al., 2017). Managed forests also provide wood products and biofuels
that can serve as long-term C stores, depending on their end use, and
substitute for C-rich fossil products (Soimakallio et al., 2016; Timmons
et al., 2016; Laganière et al., 2017b). Active management of forests
allows for better control of C stocks, because forest dynamics are less
influenced by natural disturbances.

Primary forest may provide less direct economic benefit compared
with conversion to agriculture or commercial forestry. However, pro-
tection of remaining primary forests can provide additional ecosystem
services such as conservation of biodiversity, water supply and quality,
recreational and welfare benefits, biological heritage and potential for
an ecotourism industry.

3.2. Gaps in knowledge and research needs

There is a lack of consistency in the way that different countries
define their primary forest area. In fact, most countries do not directly
identify or distinguish primary forests from other forests in their na-
tional forest inventories. This makes assessing the impact of converting
primary forest on soil C difficult (Bernier et al., 2017). Furthermore,
certain regions, notably the boreal zone, are subject to frequent natural
disturbances, such as wildfire and insect outbreaks that potentially
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affect soil C dynamics.
A clear definition of baseline information on what is a primary

forest would help to better frame this issue (Bernier et al., 2017) and
whether it should refer to an undisturbed forest, or a forest undergoing
a natural disturbance regime. Various results have been found on the
long-term trajectories of soil C in the absence of disturbance and
whether this reservoir saturates or continues accretion (reviewed in
Andrieux et al. (2018), Reichstein et al. (2009)).

4. Harvesting

Clearcut harvesting represents the most common forest harvesting
practice worldwide, with generally negative consequences for soil C
stocks. Clearcut harvesting results in reductions of < 10% of the soil C
in the entire soil profile with greatest loss of the forest floor (Johnson,
1992; Johnson and Curtis, 2001; Achat et al., 2015b). In a meta-ana-
lysis of studies in temperate forests, forest harvesting reduced total soil
C by an average of 8%: C storage declined by 30% in the forest floor,
whereas the mineral horizons showed no significant overall change
(Nave et al., 2010). Forest floor C storage losses were greater in hard-
wood forests (−36%) than in coniferous or mixed forests (−20%)
(Nave et al., 2010). In a meta-analysis of 112 publications from around
the world, forest harvesting reduced soil C stocks by an average of
11.2% with greatest losses occurring in organic horizons (-30.2%;
James and Harrison (2016)). Significant losses also occurred in top soil
(0–15 cm depth; −3.3%) and deep soil layers (60– >100 cm;
−17.7%). Chronosequence studies and meta-analyses suggest that soil
C stocks in the forest floor and mineral soil start to recover 1 to 5
decades following harvest (Sun et al., 2004; Tang et al., 2009; Nave
et al., 2010; Achat et al., 2015b; James and Harrison, 2016).

Partial harvesting methods such as continuous cover, variable re-
tention, selection cutting and careful logging that retain living trees
may reduce soil C losses associated with forest harvest. Strukelj et al.
(2015) reported that 9 years following harvesting of boreal aspen
stands, clearcut areas were a net C source, while partially harvested
areas were a net C sink. In Norway-spruce-dominated stands in Austria,
single-tree-selection management resulted in 11% greater soil C stocks
in the upper mineral soil compared to conventional age-class manage-
ment (Pötzelsberger and Hasenauer, 2015). Shelterwood cuts generated
only short-term losses of soil C in the Lenga forest of the Chilean Pa-
tagonia (Klein et al., 2008). In an oak-hardwood forest in New England,
Warren and Ashton (2014) reported a decrease in the soil C stocks in
the mineral soil, but neutral effects in the litter layer following shel-
terwood harvest. However, others have found little or no difference
between effects of partial, selection, shelterwood, and clearcut har-
vesting on soil C stocks (Hoover, 2011; Christophel et al., 2015; Puhlick
et al., 2016).

Soil C losses following clearcut harvesting can principally be related
to reduced C inputs (i.e. litter) and/or faster decomposition. Higher
insolation and warmer, more favourable soil microclimatic conditions
have been suggested to stimulate microbial respiration after canopy
removal (Pumpanen et al., 2004; Morehouse et al., 2008; Kulmala et al.,
2014; Mayer et al., 2017b). However, it has also been demonstrated
that enzymatic processes involved in the breakdown of organic matter
and litter decomposition can be unaffected or even decrease following
clearcutting (Prescott, 1997; Prescott et al., 2000a; Cardenas et al.,
2015; Kohout et al., 2018). Lower enzymatic activity was related to
ceased rhizodeposition from tree roots and changes in the soil microbial
community (Kohout et al., 2018), and lower moisture conditions in soil
surface layers have been suggested to reduce litter decomposition rates
(Prescott, 1997; Prescott et al., 2000a). Accelerated erosion, leaching
and avalanches may also contribute to reduced on-site soil C stocks
following forest harvesting (Katzensteiner, 2003; Jandl et al., 2007),
but the translocated C may be buried/sequestered somewhere else
(Hoffmann et al., 2013)

4.1. Relevance and considerations

Forest harvesting is practiced around the globe, but specific strate-
gies vary among countries, regions and landowners. The impacts on soil
C depend on the degree and intensity of soil disturbance associated with
particular harvesting methods (and even individual operators), as well
as soil moisture at the time of harvesting, soil type, and tree species.
Impacts may be ameliorated by extending harvest rotations (Law and
Waring, 2015; Noormets and Nouvellon, 2015), maintaining harvesting
debris on site (Jandl et al., 2007), and minimizing soil disturbance
(Achat et al., 2015b). Harvesting effects on soil C stocks can be sub-
stantially increased from machinery-induced soil disturbance (James
and Harrison, 2016). These negative effects may be alleviated by
choosing harvesting methods that disturb the soil as little as possible
(e.g. harvesting during winter when soils are frozen or snow-covered,
hoe-forwarding, CPRS (cut with protection of regeneration and soil; in
Québec) and CLAAG (careful logging around advanced growth; in On-
tario, Canada). Minimizing disturbance of forest soils can increase the
rate at which soil C stocks are replenished following harvest (Laganiere
et al., 2010). Pre-treatment and post-treatment strategies are also im-
portant considerations for maintaining soil C following harvest; prac-
tices such as blading/tilling and broadcast burning result in greater C
losses (Jandl et al., 2007; Nave et al., 2011; James and Harrison, 2016).

4.2. Gaps in knowledge and research needs

Despite the consistent overall effects of harvesting on soil C docu-
mented by recent meta-analyses, site factors may lead to substantial
differences in the results of individual studies. These factors include soil
type, climate, time since harvest, sampling depth, harvesting practice,
and tree species. Some soil types have much more coverage in the lit-
erature than others; 66% of the observations (497/746) in the meta-
analysis of James and Harrison (2016) were in just three soil orders —
Alfisols, Spodosols, and Ultisols (USDA taxonomy; Luvisols, Lixisols,
Podzols, Acrisols, and Alisols in WRB taxonomy) — while 15% had no
soil type specified. Furthermore, soil C change following harvest takes
place over decades if not a century (Achat et al., 2015b; James and
Harrison, 2016), but most studies examine soil C change within
15 years of harvest. Creating and maintaining long-term research sites
across a range of soil and forest ecosystem types is necessary to address
this gap (Clarke et al., 2015). There is much greater uncertainty in the
effects of forest harvest on C in deep soil horizons due to a paucity of
research. Examining deep soil C effects remains a major research need
in the forest C cycling literature. Finally, an understanding of the me-
chanisms underlying soil C losses following harvest is far from com-
plete. Particularly the interplay of abiotic (e.g. climate) and biotic (e.g.
microbes) effects on decomposition processes and soil C losses fol-
lowing harvesting requires deeper understanding.

5. Removal of harvest residues

Forest harvest residues are a mixture of tree components with a low
merchantable value that are left on-site after harvesting. Harvest re-
sidues consist of leaves/needles, branches, twigs, low-quality or small-
diameter stems, bark, dead wood and roots. The current demand for
renewable energy sources (e.g. fuelwood) has increased interest in
utilization of forest harvest residues. Biomass currently represents by
far the largest renewable energy source (IPCC, 2011) and most IPCC
pathways limiting global warming to 1.5 °C incorporate increased used
of biomass for energy (de Coninck et al., 2018). Whole-tree harvesting
(WTH), stem-only harvesting (SOH), stemwood-only harvesting (stem
de-barking on site - SwOH), and stump harvesting are the most common
harvesting practices used in production forestry. These practices differ
in machinery requirements, and in the amount and type of residues that
are removed or retained on the site. Stump harvesting is the most in-
tensive harvesting practice as it causes additional soil disturbance and
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reduced root litter input to soil. Although root and stump harvesting
have not been widely adopted, they have been practiced in Sweden,
Finland and the UK to generate bioenergy stock (Melin et al., 2010;
Moffat et al., 2011) and to reduce the risk of diseases after planting
(Vasaitis et al., 2008; Moffat et al., 2011; Cleary et al., 2013). Stumps
and coarse roots are also commonly removed in rubber (Hevea brasi-
liensis) plantations to reduce the occurrence of white root disease
(Vrignon-Brenas et al., 2019).

The removal of harvest residues from the forest site has implications
for soil C stocks, so the actual net C balance of replacing fossil fuels with
forest harvest residues for energy production needs to account for these
possible changes. Meta-analyses investigating the effects of forest har-
vest residue removal on soil C stocks have shown diverging results
ranging from a decrease of soil C by 7.5% in mineral soil after
10–30 years of stem-only harvests (Achat et al., 2015a) to no effects
(Clarke et al., 2015; Hume et al., 2018). The forest floor or organic
horizon are the most affected by forest harvest residue removal.
Johnson and Curtis (2001) found that WTH led to a decrease (−6%) in
soil C stocks whereas an increase was found with SOH (+18%). Achat
et al. (2015b) found that removing harvesting residues led to significant
losses of soil C stocks in the forest floor (10% to 45%) and
even > 20 cm deep soil layers (10%). This meta-analysis also showed
that exporting harvest residues has a greater impact in temperate than
in cold (boreal) forests (Achat et al., 2015b). Forest-floor C stocks also
declined with increasing harvest intensity (-24% under WTH). Ex-
porting harvest residues resulted in an average loss of 11% of entire soil
profile soil C. Other meta-analyses (Clarke et al., 2015; James and
Harrison, 2016; Hume et al., 2018) as well as reviews (Johnson and
Curtis, 2001; Thiffault et al., 2011; Clarke et al., 2015) did not find
clear evidence of a general reduction in soil C following the removal of
forest residues. In addition, 14 experimental sites of the Long-Term Soil
Productivity (LTSP) network in Canada (Morris et al., 2019) or in
Europe (Olsson et al., 1996; Walmsley et al., 2009) did not find clear
effects of residue removal on soil C stocks up to 20 years following
harvest. In contrast, in second-rotation Sitka spruce forests on peaty
soils in the UK, soil C stocks in both organic and mineral soil were
higher under WTH compared to SOH after 28 years due to higher mi-
neralization of the peat under brash compared to areas where brash had
been removed (Vanguelova et al., 2010). In boreal and northern tem-
perate forests, WTH generally leads to either no significant difference or
a small reduction in soil C compared with SOH, most often in the or-
ganic layer (Clarke et al., 2015). Nevertheless, very high soil C losses
with WTH have been reported under specific conditions; in planted
Eucalyptus forests in Congo and Brazil, successive WTH over multiple
(>2) rotations led to a decrease in soil C stocks up to 50% in the 0–5 cm
soil layer compared with SwOH (Epron et al., 2015; Rocha et al., 2018).
Negative effects appeared to be more pronounced in sandy than in
clayey soils (Oliveira et al., 2018). A meta-analysis by Wan et al. (2018)
showed that site properties influence the susceptibility of soils fol-
lowing residue removal; while soil C increased by about 7% following
SOH compared with WTH in coarse- and medium-textured soils, dif-
ferences between the two residue management practices were not sig-
nificant in fine-textured soils. Most field studies of stump harvesting on
mineral soils have found either no reduction in soil C stocks (Strömgren
et al., 2013; Jurevics et al., 2016), or only a small decline (Hyvönen
et al., 2016; Kaarakka et al., 2016; Vanguelova et al., 2017). However,
stump harvesting caused a 24% reduction in soil C stock in a temperate
forest in Washington, USA (Zabowski et al., 2008). In central Sweden,
stump harvested sites showed significantly lower soil C pools in the
humus layer compared to clearcut sites where patch scarification was
applied (Persson et al., 2017). The impacts of stump harvesting on soil
C seems to be greater in organic soils; on highly organic soils in Wales,
for example, up to 50% of total soil C in 0–80 cm of the peat was lost
during the first four years after stump harvesting (Vanguelova et al.,
2017).

5.1. Relevance and considerations

Governments and non-governmental entities have developed a
range of governance tools, such as policies, regulations, certification
schemes, national guidelines and practical guides, to ensure that forest
biomass harvesting is sustainable (Stupak et al., 2007). The impact of
removing harvest residues on soil C stocks varies with climate, soil type,
and forest management practices and these are central in all available
tools and guidelines. Some guidelines are based on soil types and their
sensitivity to biomass harvesting in terms of C loss amongst other risks
(Evans et al., 2013). However, the mechanisms explaining how harvest
residues are converted into soil C and how we can promote the transfer
of C from harvest residues to the soil are not clear. Harvest residue
removal restrictions seem to be more meaningful and thus should be
applied to poor sites, short-rotation forestry, and intensively managed
forestry. Mitigation measures such as fertilization and wood ash ap-
plication may be needed for sites that are most sensitive to harvest
residue removal. Soil C losses related to the removal of harvest residues
is argued to be negligible in comparison with the greenhouse mitigation
benefit of avoided fossil-fuel emissions (Cowie et al., 2006). Proponents
of stump harvesting also point out that stumps left to decay on site
would ultimately be transformed into CO2. Stump extraction is poten-
tially confined to sites: 1) with root systems large enough to make the
operation worthwhile, 2) accessible to heavy machinery, and 3) with
mineral soils that are less sensitive to soil C loss and sufficiently light to
allow easy root extraction.

5.2. Gaps in knowledge and research needs

Research is needed to more clearly identify sites and practices at risk
of soil C depletion with harvest residue removal. The mechanisms of
soil C storage and how they are impacted by the environmental effects
of harvest residue removal need to be better understood. Harvesting
residues can, for example, influence microbial communities (Zhang
et al., 2018c; Mushinski et al., 2019) and soil microclimate (Roberts
et al., 2005; Devine and Harrington, 2007), and therefore indirectly
influence soil C stocks, but this link has yet to be investigated. Changes
in soil C as result of harvest residue management may occur first in
labile C pools (Lajtha et al., 2014; Rocha et al., 2018). Thus, future
studies should consider the fractionation of organic matter in labile and
recalcitrant pools to offer insights into soil C quality and stability
changes. The intensity of harvesting might also result in shifts in or-
ganic matter chemistry as residues are a mix of chemically different
materials, e.g., different C to N ratios and lignin content. This has po-
tential implications to soil C residence time, however, there have been
very few studies on this topic. Efforts to sequester soil C by managing
litter inputs are unlikely to increase total soil C stocks over short
timeframes. Studies evaluating harvest residue management across
multiple rotations and along climate and soil type gradients are needed,
particularly in tropical forests. Few data are available on the long-term
responses of harvest residue manipulation in tropical forests compared
to temperate or boreal forests, which hampers proper comparisons
(Achat et al., 2015b). Finally, studies of harvest residue impact on soil C
is usually confined to the upper soil layers. However, deep soil layers
can also be affected, particularly if root and stump harvesting is
adopted, so future studies should consider the implications of harvest
residue management for deep soil C (Harrison et al., 2011; James and
Harrison, 2016; Gross and Harrison, 2019). Isotopic studies in the field
could be useful to gain insight into the effect of harvest residue man-
agement practices on C dynamics in deep soil layers where changes in
total C contents are difficult to measure (Balesdent et al., 2018).

6. Soil disturbance from site preparation

Intentional soil disturbance is a common form of site preparation
used in forestry in order to improve regeneration success. It promotes
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the growth and survival of tree seedlings by removing competing ve-
getation, improving soil temperature, moisture or aeration, increasing
nutrient availability, and reducing potential damaging effects by insects
(e.g. weevils) and small mammals (Schmidt et al., 1996; Jandl et al.,
2007; Van Miegroet and Olsson, 2011; Löf et al., 2012; Mjöfors et al.,
2017). Mechanical site preparation encompasses a variety of soil cul-
tivation practices with different intensities of soil disturbance, in-
cluding scarification from disc-trenching (blade-scarification), pit-
mounding, plowing and bedding. Scarification involves removing the
pioneer vegetation and the uppermost organic soil layer. Disc-tren-
ching/harrowing creates continuous furrows where the organic layer is
removed and turned over to form ridges (Löf et al., 2012; Piirainen
et al., 2015). Mounding creates deep furrows, either continuous (bed-
ding, plowing) or in the form of pits and elevated mounds with an in-
verted or mixed soil layer. Most knowledge on effects of soil dis-
turbance comes from agriculture, where continuous soil disturbance via
plowing plays a significant role in the loss of soil C (Lal, 2004; Ogle
et al., 2005). Management practices that minimize soil disturbance lead
to the accumulation of soil C (Six et al., 2006; Powlson et al., 2014).

Intentional disturbance of forest soils through site-preparation
practices can cause substantial soil C losses (Walmsley and Godbold,
2010). Several studies that compared different site-preparation
methods found that the loss of soil C increased with the intensity of the
soil disturbance (Johansson, 1994; Schmidt et al., 1996; Mallik and Hu,
1997). Sandy soils are particularly sensitive to soil disturbance (Carlyle,
1993). When combined with herbicide application for brush control
(i.e. removal of pioneer vegetation) in Canadian conifer forests, blade
scarification resulted in a 2–3 fold reduction in soil C (Burgess et al.,
1995). Scarification resulted in a roughly 50% soil C reduction in
Ponderosa pine (Pinus ponderosa) stands in the US 24 years after ap-
plication (Esquilín et al., 2008). Along dwarf-bamboo (Sasa sp.)
chronosequences in Japan, scarification resulted in a significant re-
duction in the soil C stocks, an effect which was present even after
35 years (Aoyama et al., 2011). Restricting sampling to the uppermost
soil layer may exaggerate the effects of disturbance as they are usually
most pronounced in the forest floor (Piirainen et al., 2015); soil C can
moreover be translocated, buried and stabilized with depth as found by
Swain et al. (2010). Significant reductions in total soil C contents were
reported 60–70 years after mechanical site preparation (Örlander et al.,
1996), but the changes were small when soil C was measured to a depth
of 1 m and so would have included the buried organic matter (Prescott
et al., 2017). Schmidt et al. (1996) found lower soil C in site-prepared,
but the difference was significant only in microsites such as the trench
bottom from which the organic layer had been displaced. In Swedish
conifer plantations Nordborg et al. (2006) found significantly lower soil
C stocks in humus layers when comparing deep-soil trenching (~50 cm
deep) and shallow patch scarification (~5 cm deep); however, when
comparing the whole soil profile, no differences in soil C were found
between the treatments. In 20-year-old conifer plantations in Canada,
blade-scarification resulted in 54% lower soil C stocks in the forest
floor, while mineral soil C stocks kept rather unaffected (Maillard et al.,
2010). In wetland soils, intensive site preparation is often required to
create the desired environment for tree establishment, including low-
ering of the water table through drainage and ground preparation such
as mounding, bedding or plowing. All practices enhance aeration, or-
ganic matter oxidation and soil C loss (Morison et al., 2012; Pitkänen
et al., 2013; Vanguelova et al., 2018). Increased occurrence of fire after
drainage further contributes to soil C loss following drainage of peat-
lands (IPCC, 2014).

6.1. Relevance and considerations

The negative effect of soil disturbance from site preparation on soil
C stocks is expected to be overridden by enhanced tree growth and
increased C input to soil, such that the long-term effect of site pre-
paration may be reduced (Jandl et al., 2007; Mason et al., 2009; Trettin

et al., 2011; Hommeltenberg et al., 2014; Mjöfors et al., 2017). In
boreal forests, for example, mounding and disc-trenching increased tree
biomass and total ecosystem C stocks (Mjöfors et al., 2017). Assessment
of site preparation practices, particularly drainage, should consider
fluxes of major greenhouse gases, as water table depth strongly impact
CO2, CH4, and N2O emissions (Levy et al., 2012; Ojanen et al., 2013;
Yamulki et al., 2013; Vanguelova et al., 2018). Drainage of highly or-
ganic peatlands for afforestation usually increases CO2 emissions from
soil, and emissions increase with depth of drainage (Haddaway et al.,
2014; IPCC, 2014).

6.2. Gaps in knowledge and research needs

Soil disturbance from site preparation can translocate soil C down
the soil profile, but the rate of decomposition of this surface organic
matter when buried in mineral soil at depth is unknown. Its potential
stabilization mechanisms depend on the site preparation practice, forest
type and soil type. Overall, the reported effects of disturbance on soil C
do not distinguish between those due to ground preparation, drainage
or displacement of the organic layer horizontally and vertically within
the soil profile. Such information is needed to underpin best manage-
ment practices and guidance for soil protection and soil C storage.
Quantification of the loss of soil C from wet peat soils by different
ground preparation techniques is rarely reported in the literature, so
there is considerable uncertainty in estimates of the full C balance in
forested peatlands. Furthermore, short-term changes can be misleading
in interpreting the long-term effects of drainage on peat C balances
(Hommeltenberg et al., 2014). Thus, studies of long-term effects of
drainage are needed.

7. Nitrogen addition

Increased stocks of soil C are often encountered in forests amended
with nitrogenous fertilizers or simulated nitrogen (N) deposition (de
Vries et al., 2009; Janssens et al., 2010). In a meta-analysis of the im-
pacts of elevated N inputs (including N fertilisation) on the storage of C
in forest soils based on 72 experimental sites, Nave et al. (2009) found
that N inputs increased total soil C stocks (combined forest floor and
mineral soil) by 7.7%. Stocks of organic C increased predominantly in
the mineral soil (by 12.2%). In the review by Johnson and Curtis
(2001), N fertilization was the only forest management practice that
had a clear positive effect on the soil C pool. Greater accumulations of
humus are often noted following N fertilization of boreal forests
(Nohrstedt, 1990; Mälkönen and Kukkola, 1991; Mäkipää, 1995; Olsson
et al., 2005) and simulated N deposition in temperate forests (Lovett
et al., 2013), as have greater soil C concentrations in mineral soil
(Pregitzer et al., 2008; Cusack et al., 2011; Huang et al., 2011). Added
N may also increase accumulation of C in occluded particulate organic
matter (Zak et al., 2017). Increased mineral-associated C stocks in re-
sponse to N fertilization have also been reported in temperate and
tropical forests, even in the absence of a detectable increase in bulk soil
C (Hagedorn et al., 2003; Cusack et al., 2011).

The mechanisms through which N addition to forests increases
amounts of soil C include increased litter input and reduced decom-
position. In forests in which primary production is limited by low N
supply, increased production of aboveground biomass and litter in-
creases C input to soil (Huang et al., 2011), but increases in soil C have
been noted in the absence of increased production (Pregitzer et al.,
2008; Cusack et al., 2011; Frey et al., 2014). Additional N appears to
reduce rates of late-stage decomposition of soil organic matter (Berg
et al., 1987; Berg and Matzner, 1997; Knorr et al., 2005) by suppressing
the activity of lignin-degrading enzymes such as peroxidases (Fog,
1988; Carreiro et al., 2000; DeForest et al., 2004; Frey et al., 2014). A
meta-analysis by Chen et al. (2018) showed that increased soil C as-
sociated with N additions across a range of ecosystems was consistently
predicted by decreased production of lignin-modifying enzymes.
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Increased soil C and selective preservation of a range of plant-derived
compounds including lignin-, cutin- and suberin-derived compounds
was observed in a temperate forest treated with high N inputs
(100 kg N ha−1 yr−1) over two decades; (Wang et al. 2019). Craine
et al. (2007) suggested that lignin-oxidizing enzymes are suppressed
under conditions of abundant inorganic N because these enzymes are
usually employed in order to ‘mine’ N from organic matter. Chemical
binding of ammonium and amino N to phenolic compounds in humus
may also render it more recalcitrant (Nõmmik, 1970; Janssens et al.,
2010).

Recognition of the centrality of the soil microbial biomass and mi-
crobial products and residues in generating soil organic matter (Liang
and Balser, 2011; Wiesmeier et al., 2013; Kallenbach et al., 2016; Paul,
2016) suggests another mechanism behind the increase in soil C fol-
lowing N addition. Additions of N can increase N concentrations (i.e.,
reduce C:N) of soil microbes (Li et al., 2014), which would generate
more of the N-rich microbial products that generate stable soil organic
matter. Microbial biomass is rich in N: the average C to N ratio of soil
microbial biomass is 7 to 9 (Cleveland and Liptzin, 2007; Xu et al.,
2013; Xue et al., 2019), while the average C:N ratio of plant residues
is > 20. The C:N ratio is 10–15 for fungi and is about 5 for bacteria
(Paul, 2016). Soil organic matter is also rich in N; nitrogenous com-
pounds comprise approximately 20–35% of soil organic matter
(Bremner and Hauck, 1982; Haddix et al., 2011; Paul, 2016). Soil or-
ganic matter has an average C:N ratio of 10 to 13, and when the plant
residues in the light fraction and particulate soil organic matter are
removed, the ratio is 8 to 10 (Paul, 2016), quite like that of the mi-
crobial biomass. Turnover of the microbial biomass releases microbial
products, some of which (e.g., peptidoglycans) are N-rich. Proteins and
amino acids are directly adsorbed to clay minerals (Sollins et al., 2006;
Nannipieri and Eldor, 2009; Yuan and Theng, 2012), and are thought to
form a stable inner core to which other organics are sorbed (Kleber
et al., 2007; Paul, 2016).

7.1. Relevance and considerations

Addition of N is not advisable in ecosystems where N is plentiful due
to atmospheric N deposition or previous agricultural use, as it could
stimulate losses as nitrate in water or as greenhouse gases through
denitrification (Gao et al., 2015). In degraded soils with low organic
matter and clay contents, N would be better added in organic forms
such as composts or municipal biosolids that would increase retention
of the N in the soil (Larney and Angers, 2012). Given that equivalent
soil C gains are achievable through incorporation of N-fixing tree spe-
cies (Nave et al., 2010), this may be preferable to chemical fertilizers in
many situations.

The potential benefits of N fertilization for increasing tree growth
and soil C stocks must be weighed against the associated environmental
costs, as the production, transport and application of synthetic fertili-
zers all entail fossil fuel combustion and emission of CO2. When N is
chronically applied, fundamental changes in soil C cycling due to
changes in microbial biomass, enzyme expression, and soil C compo-
sition could reduce or alter the cycling of other nutrients (Wang et al.,
2019). Barriers to implementation include costs of fertilization, oppo-
sition to use of synthetic fertilizer on public lands and public concerns
over potential eutrophication of drainage waters, although N fertilizer
in forestry generally leads to small and transient increases in N con-
centrations in stream water (Binkley et al., 1999; Smethurst, 2010).

7.2. Gaps in knowledge and research needs

Soil organic matter remains enigmatic with respect to its chemical
nature, although significant insights have been gained recently. An
improved understanding of the forms in which N is found in soil organic
matter of various stability classes would assist in devising ways of
generating more stable forms of soil C. An improved understanding of

the mechanisms through which N addition generates greater soil C
stocks would help in better predicting the sites on which the benefits
would be greatest or most likely. Linkages between the changes in the
composition and abundance of mycorrhizal fungi reported after N fer-
tilization, and the amount and composition of soil C should be explored.
In some situations, forests are fertilized with both N and P due to co-
limitation or secondary limitations, and it is not known if soil C dy-
namics would be similar in this situation.

8. Selection of species with nitrogen-fixing associates

Many studies show that trees with N-fixing root associates (here-
after referred to as N-fixing species) change soil properties more rapidly
than other species, with consistent increases in stocks. In a meta-ana-
lysis for north-temperate forests, Nave et al. (2009) reported a sig-
nificant increase (+12%) in mineral soil C storage in response to N-
fixing vegetation. Analyzing 19 case studies with N-fixing species of
Alnus and Ceanothus in temperate forests and Leucaena, Falcataria and
Casuarina in the tropics, Binkley (2005) showed a mean rate of C ac-
cretion in soils of 87 g C m−2 yr−1 relative to non-fixing tree species.
Inclusion of N-fixing Acacia trees into plantations of Eucalyptus can be
effective at increasing soil C stocks after a single rotation (Forrester
et al., 2013; Koutika et al., 2014; Voigtlaender et al., 2019). Nitrogen-
fixing trees increase soil C stocks much faster than other species on
degraded soils such as post-mining sites (Frouz et al., 2009), eroded
soils (Zhang et al., 2018a), or after afforestation of savannas (Tang and
Li, 2013). Afforestation with N-fixing species can also be used on de-
graded soils to improve the fertility to a level where more demanding
tree species can be planted. For example, Dipterocarps have been grown
in gaps of Acacia trees in the tropics (Norisada and Kojima, 2005). Fi-
nally, N-fixing plants, grown in the understory or intercropped (Watt
et al., 2003), can improve the ecosystem nutritive status (Prietzel et al.,
2008) and in some case the soil C stocks (Vidal et al., 2019).

The mechanisms driving C accretion in soils in response to repeated
N fertilizer additions are probably also involved in the enhancement of
soil C stocks under N-fixing trees. However, studies comparing N-fixing
stands with adjacent repeatedly fertilized stands of non-fixing trees
reported that soil C in the mineral soil is generally higher under N-
fixing trees than in N-fertilized stands (Binkley et al., 2004; Nave et al.,
2010; Forrester et al., 2013), which suggests that additional mechan-
isms could enhance soil C accretion in forests with N-fixing trees.
However, the underlying mechanisms were not fully understood. Iso-
topic studies at four tropical sites on three soil types showed that the
increase in soil C under N-fixing trees was due to both gain of new soil C
and reduced loss of old soil C (Resh et al., 2002). Rapid changes in soil
microbial communities have been shown after planting N-fixing trees in
eucalypt plantations (Rachid et al., 2013; Pereira et al., 2019), in-
cluding in very deep soil layers (Pereira et al., 2017).

On N-poor soils, the higher biomass production of N-fixing trees
relative to non-fixing trees probably contributes to increasing soil C
stocks (Epron et al., 2013; Forrester et al., 2013). Higher biomass
production in forests including N-fixing trees can also result from an
increase in the availability of soil phosphorus (Giardina et al., 1995),
even though this positive effect is not general (Binkley et al., 2000;
Koutika et al., 2016). Actinorhizal N-fixing trees can accelerate rock
weathering, and thereby enhance their access to multiple rock-derived
nutrients, thus lowering the limitations for C uptake and storage
(Lambers et al., 2019; Perakis and Pett-Ridge, 2019). In Brazil, mixing
Acacia mangium and Eucalyptus grandis trees increased fine root biomass
and led to shifts in C allocation from above- to belowground, and from
growth to litter production, which may promote soil C accretion
(Nouvellon et al., 2012; Laclau et al., 2013). Higher detrital inputs were
also found belowground in pure Falcataria stands relative to Eucalyptus
stands in Hawaii, which was involved in the enhancement of soil C
stocks (Binkley, 2005).
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8.1. Relevance and considerations

A positive effect of N-fixing species on soil C stocks is well docu-
mented, which suggests that including N-fixing species in forests could
contribute to sequestering C in soil. Because N-fixing trees are more
abundant in subtropical and tropical climates (Menge et al., 2017;
Steidinger et al., 2019), the opportunities for mixing N-fixing plants
with other tree species are more common at low latitudes, although the
abundance of N-fixers at mid- or high latitude may increase over the
next decades due to climate change (Liao et al., 2017). However, native
N-fixing tree species are not among the commercial species in many
regions and some drawbacks of N-fixing species have been pointed out.
For example, a theoretical model suggested that N-fixing trees could
either mitigate or exacerbate climate change relative to other species,
depending on whether the enhanced CO2 sequestration outweighs po-
tentially enhanced nitrous oxide N2O emissions from soil (Kou-
Giesbrecht and Menge, 2019).

The introduction of N-fixing species outside of their natural ranges
carries the risks associated with introduction of any non-native species.
Negative impacts of invasive N-fixing species have been reported in
tropical and subtropical rangelands around the globe (Vitousek et al.,
1987; Richardson et al., 2011), but awareness of the consequences of
the rapid expansion of N-fixing species in cool climates is more recent
(Hiltbrunner et al., 2014). Changes due to N-fixing species can be si-
milar to those of anthropogenic atmospheric N deposition, including
declines in biodiversity, soil acidification, and leaching of nitrate and
cations (Van Miegroet and Cole, 1984; Compton et al., 2003) and N2O
emission. Indigenous species are generally preferable to exotics because
the competitive advantage of N-fixing species can make them invasive,
such as Robinia pseudoacacia in central Europe (Vítková et al., 2017) or
Acacia sp. in tropical and subtropical regions (Richardson et al., 2011;
Aguiar et al., 2014).

Exotic N-fixing tree species (including Robinia pseudoacacia and
Acacia sp.) are used in many areas to meet the needs of people without
major risk of invasion (Richardson et al., 2011). Furthermore, in some
cases, native pioneer or invasive alien N-fixing tree species facilitate the
recovery of natural forests on deforested and degraded soils, allowing
the establishment and growth of more demanding tree species, and the
progressive recovery of forest species diversity across several succes-
sional stages (Yeo and Fensham, 2014; Geldenhuys et al., 2017; Root-
Bernstein et al., 2017). However, these positive effects of N-fixers on
forest regeneration are not universal (e.g. Taylor et al. (2017)) as the
balance between facilitative versus inhibitory effects of N-fixers de-
pends on several site-specific factors including climate and soil nutrient
availability.

8.2. Gaps in knowledge and research needs

The mechanisms accounting for the general trend of C accretion in
soils under N-fixing trees are not fully understood and long-term field
studies are needed in contrasting environments to disentangle the
consequences of enhanced tree growth, increased C allocation below-
ground and reduced loss of old soil C. The mechanisms driving N2O
emissions under N-fixing trees also deserve more attention to identify
the conditions under which positive climate mitigation effects of the
introduction of N-fixing trees on soil C may be countered by large N2O
emissions.

9. Tree species selection

Tree species selection is a well-known management lever for for-
esters, and in recent decades it has also been discussed as a means of
sequestering C in soils (Jandl et al., 2007). Differences between con-
iferous and broadleaved tree species have been reported in the rate of
soil C accumulation, the distribution of soil C between forest floor and
mineral soil, and the stability of soil C. According to a meta-analysis, the

average increase in soil C 2–3 decades following afforestation with
broadleaf tree species was 25%, compared with 2% with conifers
(Laganiere et al., 2010). Soil C stocks in the forest floor are generally
greater under conifers than under broadleaved species (Augusto et al.,
2003; Vesterdal et al., 2013; Boča et al., 2014; Augusto et al., 2015),
while larger mineral soil C have been reported under broadleaf an-
giosperm species (Vesterdal et al., 2008; Vesterdal et al., 2013). In
temperate mixed deciduous forests in USA, stands dominated by ecto-
mycorrhizal (ECM) species contained more soil C in topsoil (forest floor
and 0–10 cm), but stands dominated by arbuscular (AM) species con-
tained more soil C between 10 cm and 1 m depth (Craig et al., 2018).
Differences in total soil C stocks over the entire soil profile are often
insignificant among conifers and broadleaf angiosperms (Vesterdal
et al., 2008; Boča et al., 2014; Gahagan et al., 2015).

The stability of soil C in the mineral soil also appears to be greater
under certain broadleaved tree species, particularly those associated
with AM, and rapidly decomposing leaf litter (Wiesmeier et al., 2013;
Laganière et al., 2017a; Soucémarianadin et al., 2018). The mechanisms
appear to be greater C incorporation and stabilization in mineral hor-
izons under these species (Wiesmeier et al., 2013; Augusto et al., 2015),
related at least partly to the more abundant soil macrofauna commu-
nities under these tree species (Frouz et al., 2013; Schelfhout et al.,
2017). A common garden study by Angst et al. (2019) revealed that soil
C stability varied substantially among tree species, and this variability
was independent of the pool of soil C. The stability of soil C was highest
in species with high N concentrations and low amounts of acid-in-
soluble compounds in their roots, and lowest in species with high cal-
cium tissue concentrations.

The greater accumulation of soil C in forest floors under conifer
species can be attributed to slower decomposition that, in turn, is the
consequence of different litter quality and soil functioning (e.g. Augusto
et al. (2003), Augusto et al. (2015), Maes et al. (2019), Berg et al.
(2015), Russell et al. (2007)). Aboveground litterfall flux is not species-
dependent (Augusto et al., 2003; Vesterdal et al., 2008; Hansen et al.,
2009; Augusto et al., 2015), and there is a paucity of data on below-
ground C fluxes associated with root turnover and soil biota to explain
the development of mineral soil C stocks. Therefore, while tree species
can influence C stocks in soils, our understanding of the processes in-
volved remains elusive (Felipe-Lucia et al., 2018), probably because of
important interactions with other factors such as soil properties and
local climate (Versini et al., 2013; Augusto et al., 2015; Ribbons et al.,
2018; Verstraeten et al., 2018). For example, enhanced soil C seques-
tration in mineral soil may not occur under broadleaf species planted on
a poor site where conditions do not allow macrofaunal activity; like-
wise, enhanced soil C sequestration in forest floors may not occur under
conifers on a rich site, where conditions allow for more rapid decom-
position and mixing of litter into mineral soil (Ribbons et al., 2018).

9.1. Relevance and considerations

A trade-off between soil C storage and wood production should be
considered (Bellassen and Luyssaert, 2014) because many broadleaf
species grow slower than conifers in nutrient-poor or harsh environ-
ments (Chapin et al., 1993; Augusto et al., 2014). Broadleaf species are
expected to be most beneficial in terms of sequestration of stable mi-
neral soil C in forests under favourable conditions (fertile soil, mild
climate), whereas conifer species are expected to achieve higher eco-
system C stocks under less favourable conditions.

In conclusion, tree species differ in the rate of accumulation, the
distribution between forest floor and mineral soil, and the stabilization
level of soil C Conifers and ECM-associated species store more C in
forest floors, and broadleaved and AM-associated species might store
more soil C in mineral horizons. There appears to be no simple corre-
lation between the magnitude of soil C stocks and their stability. The
selection of tree species to optimise soil C sequestration likely depends
on the nature of the site in terms of abiotic as well as biotic properties.
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9.2. Gaps in knowledge and research needs

Further research is needed to tease apart species and site influences.
We need to know where and why certain tree species will be beneficial
to sequestration of soil C, and in which forms and soil layers. This could
be achieved by combining common-garden experiments in networks at
greater spatial scales. While there is a large body of literature and data
on tree species effects on aboveground litter and forest floor, below-
ground C fluxes associated with root turnover and biota in the mineral
soil remain to be addressed in detail using well-designed experimental
platforms.

10. Management of tree species diversity

Intensive forest management with focus on wood production has
often favored the single most commercially important tree species
through planting and selective thinning (Baeten et al., 2019). However,
recent research has shown that such single-species forests provide a
narrower range of ecosystem services compared with forests of higher
tree species diversity (Gamfeldt et al., 2013; Ratcliffe et al., 2017).
Silvicultural transition to mixed-species forestry has therefore been
suggested as a means to provide a wider range of ecosystem services
and adaptation to climate change (Pretzsch, 2014).

Establishing mixed stands instead of monocultures could result in
higher soil C stocks as a consequence of several mechanisms, including:
above- and below-ground niche complementarity; higher aboveground
litter inputs to soils because of canopy packing and higher productivity
of mixtures (Hulvey et al., 2013; Jucker et al., 2014; Pretzsch, 2014);
and higher belowground litter inputs because of more efficient ex-
ploitation of the soil volume by roots in mixtures (Finér et al., 2017).
Belowground overyielding, i.e. higher root biomass or production in the
mixture than predicted from weighted averages of the monoculture
stands, has also been reported in mixed-species stands in some (Laclau
et al., 2013; Ma and Chen, 2017; Germon et al., 2018) but not all cases
(Jacob et al., 2013). However, observed effects of tree species diversity
on soil C appear more complex than expected based on aboveground
niche-complementarity. In national forest inventory plots of temperate
and boreal forests across Sweden, a consistent positive relationship
between species diversity and soil C stock was found (Gamfeldt et al.,
2013). Only a few studies have been able to separate the effect of
species diversity from that of tree species identity. In such an ex-
ploratory design at the European level (five regions spanning boreal to
Mediterranean climate), Dawud et al. (2017) found a small but additive
effect of species diversity on soil C stocks (0–20 cm depth), i.e., the
effect was predictable from soil C stocks in the respective single-species
stands. There was no effect of tree species diversity on aboveground
litter production along the studied tree species diversity gradient
(Ratcliffe et al., 2017), but a positive effect of species diversity on root
biomass (as a proxy for root input) emerged in broadleaf mixtures
(Finér et al., 2017).

More pronounced effects were observed in studies across finer
spatial scales. In Bialowieza, Poland, Dawud et al. (2016) reported
higher soil C stocks in deeper layers (20–40 cm) in species-diverse
stands of up to five tree species. Moreover, this effect was non-additive,
i.e. larger than expected based on corresponding monoculture stands,
and was positively related to greater root biomass, possibly due to
belowground niche differentiation in the most species-diverse stands
(Finér et al., 2017).

Case studies at single sites have also indicated C storage in more
stable forms in species-diverse broadleaved forests, e.g. European beech
(Fagus sylvatica) forests admixed with other broadleaved species had
lower forest-floor C stocks but higher mineral-soil C stocks and higher
percent C per unit clay than the adjacent beech monocultures
(Guckland et al., 2009; Schleuß et al., 2014). However, this effect could
not be separated from the effect of “diluting” beech with other broad-
leaves, thereby emphasizing the need for dedicated experimental

designs for testing the true effect of species diversity. In subtropical
China, soil C stock in the 0–20 cm layer was 14% and 8% higher in
mixed plantations than in single-species plantations of Pinus massoniana
and Castanopsis hystrix plantations, respectively, and there was a lower
net emission of greenhouse gases from the soil of mixed plantations
compared to C. hystrix plantations (Wang et al., 2013).

10.1. Relevance and considerations

Species identity, i.e. species per se, or functional group such as
conifers or N-fixers, potentially has more impact on soil C than tree
species diversity (Dawud et al., 2016; Dawud et al., 2017). The effects
on soil C of tree species mixing are smaller and less consistent than
effects of tree species identity or functional group (conifers v. broad-
leaves). The results that have been published show that the effect of
species diversity on soil C is at best weak-to-moderate (Wang et al.,
2013; Dawud et al., 2016; Dawud et al., 2017), but may also be insig-
nificant, particularly in large-scale inventories in which broadleaf,
conifers and mixed forests are compared (Wiesmeier et al., 2013; Brunel
et al., 2017). Results are also context-dependent, i.e. they differ ac-
cording to climate, soil type, or species identity (Dawud et al., 2017;
Ratcliffe et al., 2017).

Although above- and even belowground overyielding would be ex-
pected to support higher organic matter inputs to soils, output fluxes as
represented by respiration rates or decomposition rates may also be
affected. However, the evidence that mixtures or diverse tree species
affect decomposition rates as well as the nature (non-additivity) and
direction of such effects appear weak and context-dependent (Prescott
et al., 2000b; Ball et al., 2014; Ratcliffe et al., 2017), and effects differ
between forest floor and mineral soil (Ball et al., 2014). It is possible
that these variable effects of tree species diversity on output fluxes of C
compensate for any positive effects of above- and belowground over-
yielding on soil C stocks.

In conclusion, effects of species diversity on soil C stocks are smaller
and less consistent than the effects of tree species identity or functional
group (conifers v. broadleaves), and results are context-dependent.
Mixed forest stands are reported to have greater resilience to dis-
turbances including climate change and so may contribute to long-term
preservation of soil C stocks (Silva Pedro et al., 2015). However, tar-
geted selection of tree species with complementary traits for efficient
resource use appears to be the preferred management approach for
influencing soil C stocks in mixed forests, rather than increasing tree
species diversity per se.

10.2. Gaps in knowledge and research needs

Further research should unravel how tree species diversity affects
the processes and soil biota controlling input and output fluxes of C that
in turn determine soil C stocks. Most studies of tree species diversity
effects in mixed forests have been conducted at the stand level, and
belowground niche complementarity effects as a driving mechanism for
C sequestration remain to be documented at the tree level. The ultimate
goal would be to identify the specific mixtures of tree species or func-
tional groups of tree species that are most conducive to sequestration of
soil C. More common-garden experiments comparing plots with dif-
ferent tree species diversity (e.g. Verheyen et al. (2016)) are needed.

11. Management of stand density and thinning

Forest stands planted with a high density of stems generally have
larger basal area than low-density stands. High-density stands should
therefore have higher C inputs to soil than low-density stands, which
could increase their soil C stocks compared to low-density stands
(Laganiere et al., 2010). These expected effects on soil C stocks in
densely planted stands are similar to those expected in forest stands
with lower thinning.
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In a meta-analysis, Laganiere et al. (2010) showed that afforested
plantations with high planting density (>1600 stems ha−1; 53 ob-
servations) did not have greater soil C stocks (mean depth: 0–26 cm)
compared to plantations with low planting density (<1600 stems ha−1;
55 observations) over a 21-year period. Recent case-studies, however,
show contrasting results regarding the stand density effect on soil C
stocks. Recent case studies in China (Fraxinus mandshurica plantations,
Sun et al. (2019); Cunninghamia lanceolata plantations, Farooq et al.
(2019) and in Canada (Populus plantations, Truax et al. (2018)) showed
increased soil C stocks (soil organic matter content for Farooq et al.
(2019)) in high-density afforested stands compared to low-density af-
forested stands, 10 to 17 years after planting. Conversely, no clear ef-
fects of stand density on soil C stocks were detected 8 years after
plantation establishment in a case-study in Uruguay (Eucalyptus and
Pinus plantations; Hernández et al. (2016)). Another study in 103
Quercus stands in Spain suggested a positive tree density effect on soil C
stocks (González et al., 2012). Conversely, lower soil C stocks in high-
density stands (842 stems ha−1) than in low-density stands (450 trees
ha−1), were observed in a mature (65- to 75-year-old) Pinus densiflora
forest in South Korea (Noh et al., 2013). Finally, no stand-density effect
on soil C stocks were observed in mature Douglas-fir (Pseudotsuga
menziesii) plantations in France (Cécillon et al., 2017).

Thinning of forests, in which a portion of the stems are removed,
would be expected to reduce soil C stocks, due to reduced litter input
and/or increased rates of decomposition because of higher tempera-
tures and moisture (Vesterdal et al., 1995). However, most studies of
effects of stand thinning on soil C stocks have reported no significant
effects on soil C stocks of mineral soil (Skovsgaard et al., 2006; Jandl
et al., 2007; Hoover, 2011; Powers et al., 2011; Jurgensen et al., 2012;
Cheng et al., 2013; Ruiz-Peinado et al., 2013; Zhou et al., 2013; Achat
et al., 2015b; Noormets et al., 2015; Strukelj et al., 2015; Kim et al.,
2016), though some have documented soil C losses (Mattson and Smith,
1993; Strong, 1997; Chiti et al., 2015; Moreno-Fernández et al., 2015;
Mushinski et al., 2019), even in deeper soil horizons (down to 1 m
depth) (Gross et al., 2018). A recent meta-analysis including 53 studies
did not find a remarkable thinning effect on soil C stocks, although soil
CO2 efflux increased by almost 30% (Zhang et al., 2018b). Similarly, an
earlier meta-analysis (Zhou et al. (2013) based on 28 observations (11
studies) found no significant effects of partial cutting (compared to
uncut controls) on soil C stocks.

Organic C stocks of the forest floor can be reduced if thinning is
intense, i.e. up to 50% reduction of basal area compared to unthinned
control (Vesterdal et al., 1995; Novak and Slodicak, 2004; Powers et al.,
2012; Achat et al., 2015b; Bravo-Oviedo et al., 2015). In a meta-ana-
lysis, light thinning (≤33% removal of volume, stand basal area or
stems) increased soil C by 17% whereas heavy thinning (≥65% re-
moval) decreased soil C by 8%; moderate thinning (33–65% removal)
did not alter soil C stocks (Zhang et al., 2018b). The same meta-analysis
showed that soil C increased in early stages (≤2 years) after thinning
(+30%) but was similar to control stands in medium (2–5 years) to late
stages (>5 years) after thinning. This suggests an increased soil C loss
from decomposition in the first years after thinning when the canopy is
open and soil temperatures are increased (Vesterdal et al., 1995; Zhang
et al., 2018b). Thinning may also result in large reductions in coarse
woody debris (Powers et al., 2011; Zhou et al., 2013; Achat et al.,
2015b).

11.1. Relevance and considerations

Effects of stand density and thinning on soil C stocks are not con-
sistent among published studies and are often not significant. In sec-
ondary forests, the increased risk of disturbance in unthinned stands
(and related C-losses) may, moreover, outweigh any positive effect of a
high stand density.

11.2. Gaps in knowledge and research needs

Long-term field experiments to study soil C stocks under different
intensities of stand thinning are needed (Zhang et al., 2018b). Such
experiments would be necessary to relate soil C stocks to thinning in-
tensities and to determine thresholds for stem numbers to be removed.
Moreover, regions such as South America or Africa are under-
represented in the current literature.

12. Herbivory regulation

Ungulate herbivores are important regulators of plant-soil feedbacks
(Bardgett and Wardle, 2003; Tanentzap and Coomes, 2012; Andriuzzi
and Wall, 2017) and reduction of herbivory pressure has been proposed
to increase terrestrial C stocks at local and regional scales (Tanentzap
and Coomes, 2012). In relation to body size, feeding strategy (e.g.
grazing or browsing), and population density, herbivores can modify
plant community properties and functioning with consequences for the
quantity and quality of organic matter inputs to soil (Wardle et al.,
2002; Ayres et al., 2004; Wardle and Bardgett, 2004; Carline and
Bardgett, 2005; Semmartin et al., 2010; Metcalfe et al., 2014; Wang
et al., 2018; Ramirez et al., 2019; Valdés-Correcher et al., 2019). Meta-
analyses revealed that ungulate herbivores had a strong negative effect
on abundance, density, richness, structure and growth of tree re-
generation (Ramirez et al., 2018) and significantly reduced above-
ground biomass C and litter C in tropical, temperate, and boreal forests
(Tanentzap and Coomes, 2012). Herbivores feed preferably on fast-
growing, pioneer tree species (e.g., Sorbus sp.) than on slow-growing
tree species (e.g., Picea abies) (Ramirez et al., 2012; Pröll et al., 2014),
which can lead to changes in litter decomposability (Wardle et al.,
2002). Moreover, herbivores can affect decomposition processes and
soil properties by depositing urine and dung and by trampling and
digging (Mohr et al., 2005; Gass and Binkley, 2011; Tanentzap and
Coomes, 2012; Andriuzzi and Wall, 2017; Valdés-Correcher et al.,
2019). Herbivore-induced changes in plant community structure and
composition can indirectly enhance soil CO2 fluxes and decomposition
processes by altering soil microclimatic conditions (e.g., higher soil
temperatures due to loss of crown shading) (Stark et al., 2000; Mayer
et al., 2017a; Mayer et al., 2019).

While herbivory effects on soil C storage and the underlying me-
chanisms are well-documented for grasslands and shrublands, only a
few studies have investigated herbivory effects on soil C storage in
forests (Milchunas and Lauenroth, 1993; Tanentzap and Coomes, 2012;
McSherry and Ritchie, 2013; Andriuzzi and Wall, 2017). The majority
of the studies demonstrated a significant soil C increase with ungulate
exclusion in tropical, temperate and boreal forests, but underlying
mechanisms were mainly speculative. In a Brazilian tropical dry forest,
for example, topsoil C stocks were 107% greater in non-grazed and
lightly grazed plots compared to plots with high grazing intensity
(Schulz et al., 2016). The authors related these findings to higher litter
input rates and lower soil C losses when herbivory was low. Similarly,
exclusion of elk significantly increased soil C in regenerating willow
(Salix spp.) and aspen (Populus tremuloides) stands in the Rocky
Mountains and in Arizona, respectively (Stritar et al., 2010; Gass and
Binkley, 2011). Gass and Binkley (2011) proposed that changes in soil
bulk density and moisture conditions as well as lower decomposition
rates were responsible for the higher soil C content. Stritar et al. (2010)
suggested that faster C accumulation led to the increase in soil C.
Likewise, Prietzel and Ammer (2008) found a positive effect of ungulate
exclusion on soil C stocks in temperate forests of the German Alps, and
attributed this to higher litter input rates and reduced soil erosion from
avalanches. In Scottish broadleaf forests, dissolved organic C was 36%
higher when red deer were excluded; an outcome which was explained
by higher rhizosphere deposits of soluble C compounds to soil (Harrison
and Bardgett, 2004). In boreal Alnus and Salix stands of the Alaskan
taiga, moose exclusion increased soil C by 54% (Kielland and Bryant,
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1998). Higher fine-root production and lower soil respiration rates were
thought to cause the higher soil C content. In a study across New
Zealand, covering subtropical to temperate forests, Wardle et al. (2001)
reported both positive and neutral responses of soil C stocks to her-
bivory exclusion. Inconsistent effects of herbivory on soil C were
speculated to be related to differences in how browsers affected plant
community composition. However, other studies did not find increased
soil C pools following herbivore removal (Stark et al., 2000; Kooijman
and Smit, 2001; Binkley et al., 2003; Köster et al., 2013; Relva et al.,
2014) and lower soil C concentrations were found when herbivores
were excluded in a German Quercus forest (Mohr et al., 2005).

12.1. Relevance and considerations

Across North America and Europe, population densities of wild
ungulates have increased during recent decades (Rooney, 2001; Côté
et al., 2004; Milner et al., 2006; Reimoser and Reimoser, 2010). In
temperate and boreal forests with a high herbivory pressure, a reduc-
tion of wild ungulates can therefore be seen as a strategy to foster soil C
stocks. However, in tropical forests (particularly in the Neotropics)
herbivory by large mammals is unlikely to affect soil C stocks, since
many wild animal species are either threatened, restricted in range, or
frugivorous (Tanentzap and Coomes, 2012). To reduce soil C losses
from domestic ungulate herbivory in tropical forests, Schulz et al.
(2016) recommended grazing management that considers compulsory
rotation systems. The establishment of denser tree regeneration under
reduced grazing and browsing allows also for better protection of soil
from erosion, landslides, avalanches and rock fall. As shown for a
shrub-grassland ecosystem (Davies et al., 2016), herbivory can also
reduce forest fire intensities by decreasing fuel loads. Nonetheless, a
reduction in grazing animals can lead to reduced income from hunting
or from meat/dairy production.

12.2. Gaps in knowledge and research needs

The depicted discrepancies in study results highlight the need for
additional experiments on the effect of herbivory on soil C stocks in
forest ecosystems (particularly in the tropics), but also for a better
mechanistic understanding of how ungulate herbivores modulate plant-
soil interactions and processes relevant for soil C storage. For example,
whether and how herbivory-related shifts in plant community compo-
sition affect decomposition processes have to be untangled (e.g., due to
changes in microclimate or soil microbial community), C input rates to
soil (e.g., contribution of above- and belowground litter), and C stabi-
lization processes in mineral soil horizons (e.g., aggregate formation).
Studies incorporating other aspects such as physical soil disturbance
from trampling are also needed. Moreover, experiments along gradients
with different herbivory pressure levels are recommended to identify
critical herbivory loads and ecologically sustainable population den-
sities of ungulate herbivores.

13. Removal of litter and biomass for fodder, fuel or animal
bedding

In many regions of the world, rural communities collect fuelwood,
lop or pollard trees for fodder, and collect forest litter to be used as
bedding for their livestock and, enriched with faeces and urine, used as
compost for arable land. The continuous extraction of C and nutrients
by these practices can have detrimental effects on forest soils, as de-
monstrated by studies of historical litter-raking practices in Europe.

Forest litter raking was commonly practiced in northwestern Europe
(as part of the ‘plaggen management’, probably since the Bronze Age
(Blume and Leinweber, 2004; Schulp and Verburg, 2009), and in cen-
tral Europe with a peak between the 17th and 19th century (Ebermayer,
1876; Glatzel, 1990, 1991; Burgi and Gimmi, 2007; Gimmi et al., 2013).
The litter was an important nutrient source for agriculture and the

amount of litter extracted from the forest was even listed in official
statistics (Katzensteiner and Englisch, 2007). Ebermayer (1876) de-
scribed the negative consequences of litter raking on forest soils, par-
ticularly in mountain areas, including changes in humus content, al-
tered water infiltration and storage, increased erosion, decreased
fertility, and shifts in plant species composition. Comparing soil organic
matter contents of a litter-raked stand to an adjacent protected stand,
he found 36% less soil organic matter and 42% less N (forest
floor + 47 cm mineral soil). Litter raking experiments by Hofmeister
et al. (2008) showed that base-cation removal by litter raking in
Norway spruce stands exceeded annual inputs from weathering and
atmospheric deposition. Direct negative effects on tree nutrition and
biogeochemical nutrient and C cycling were evident. Negative impacts
of litter raking on productivity (Fiedler et al., 1962; Zang and Rothe,
2013) may reduce aboveground litterfall in the long run, thereby in-
directly affecting soil C input. In harvest residue and litter removal
experiments in a tropical Eucalyptus plantation Laclau et al. (2010)
found that tree growth was much higher when organic residues from
the previous rotation were not removed. There was also clear evidence
that nutrient supply in this sandy tropical soil was largely dependent on
the nutrients released by the decomposition of organic residues (Versini
et al., 2013; Versini et al., 2014). Glatzel (1991) detected reduced base
saturation and N contents of formerly litter-raked forest soils several
decades after litter raking and lopping had ceased (based on data of the
Tyrolean Soil Survey 1988). Using the same data source, a legacy of
litter raking on soil C concentrations is evident while forest grazing had
no significant effect (Simon, pers. comm.). Gimmi et al. (2013) mod-
elled a 17% reduction of soil C pools due to litter raking in Swiss forests
and legacy effects even 130 years after abandonment of this practice
(2% average reduction). Indirect effects of altered N input on soil C
sequestration are likely (see section 7).

Litter raking, lopping of forest trees, forest grazing and collection of
dung are still common practices of subsistence agriculture in the
Himalayas (Giri and Katzensteiner, 2013; Baral and Katzensteiner,
2015). Baral and Katzensteiner (2015) found 23% less soil C in an in-
tensively utilized community forest area (in which 80% of the above-
ground litterfall is harvested annually) compared to an adjacent pro-
tected forest area. In the Sahel, population growth and associated
disturbances such as cutting trees for fuelwood and charcoal produc-
tion, together with cultivation and overgrazing, have considerably re-
duced the cover and density of trees, and have significantly contributed
to the depletion of soil C stocks (Tieszen et al., 2004; UNEP, 2012; Doso
Jnr, 2014). In Senegal, constant loss of woody biomass has been
documented (Woomer et al., 2004), and attributed to overexploitation
of trees for fuel (Gonzalez, 2001). In Ethiopia, Gebeyehu et al. (2019)
studied the effect of disturbance severity on C stocks by assessing the
harvesting and canopy openness due to removal of trees with stem
diameter ≥ 5 cm. The disturbance level (number of stems removed
from the forest) resulted in a decrease in aboveground C stocks of 36%
in the highly disturbed compared with least-disturbed forest. A negative
correlation between the canopy openness and soil C stocks indicated
that increasing canopy openness was associated with decreasing soil C
stocks.

Regulating forest use may reduce biomass extraction and allow
vegetation biomass and soil C to accumulate. Exclosures can be effec-
tive in enhancing the composition, diversity and density of vegetation,
restoring degraded soils and increasing soil C (Yayneshet et al., 2009;
Mekuria et al., 2011; Birhane et al., 2017). However, exclosures can be
socially unacceptable in areas where smallholder farmers depend on
these materials for their livelihoods and may increase pressure on other
areas. Community-based forest management, in which local people
manage the forest for multiple purposes including forest and soil re-
storation, may be the best option for restoration of soil C levels. When
communities gain responsibility for managing resources sustainably,
the vicious cycle of forest degradation can be interrupted (MFSC, 2013).
Community-based forest management has been practiced in Nepal since

M. Mayer, et al. Forest Ecology and Management 466 (2020) 118127

13



the 1970s, and large areas have been handed over to community forest
user groups for sustainable management (MFSC, 2013; Baral et al.,
2018). Besides increasing forest cover and growing stock, community
forestry has contributed to income generation (including non-timber
forest products) and has played a significant role in improving liveli-
hood of rural people (Zewdie, 2008; Baral et al., 2019).

Plantations of fast-growing trees (e.g., Eucalyptus or bamboo) for
fuelwood production may be effective in increasing soil C stocks.
Zewdie (2008) investigated soil C pools (0–30 cm depth) along a
chronosequence of coppiced Eucalyptus plantations established on
former agricultural fields in the Ethiopian highlands. He found a de-
crease in soil C and nutrient stocks with the number of cutting cycles
and related the degradation to combined effects of whole-tree har-
vesting and litter raking (the latter also used as a fuel). Litter raking is
probably the main cause of soil C depletion as no significant coppice
effects on soil C stocks have been found in studies comparing coppice
forests to high forests (Bruckman et al., 2011; Bruckman et al., 2016) or
chronosequence of coppices (Sferlazza et al. (2018). Plantations of fast-
growing, frequently exotic species may not be appreciated by the
community. For example, in Nepal, communities were replacing
planted exotic pines with native broadleaved species which had mul-
tiple uses (Baral and Katzensteiner, 2015), and, in the long run may
have positive impacts on soil C stability.

Multipurpose agroforestry tree species that produce fodder and
fuelwood may also be effective in restoring stocks of soil C. Trees with
N-fixing root associates may be particularly effective in this regard.
Along an afforestation chronosequence of Acacia senegal in Sudan, soil C
stocks (0–50 cm) increased with plantation age (Abaker et al., 2016).
The increase in soil C stocks was attributed to both the trees and the
greater ground vegetation biomass beneath the trees.

13.1. Relevance and considerations

Biomass other than timber may still be important in countries where
forests are still a major source of fuelwood and where subsistence
agriculture still relies on forest resources (e.g., for fodder). Litter-raking
seems to have a detrimental long-lasting effect on soil C pools. On the
other hand, litter which is transformed into compost and is applied to
arable lands increases soil C stocks there. Shrestha and Singh (2008)
found higher soil C stocks in arable land than in litter raked forests in
Nepal. Therefore, recommendations regarding C stocks need to be
based on a holistic view of the land use system, and C accounting at the
landscape level. Additionally, litter raking may reduce fuel loads in fire-
prone forest ecosystems such as pine plantations.

Establishment of exclosures or protected forests can enhance the
pressure on the remaining agricultural and grazing land and on natural
forest remnants (e.g., church forests in Ethiopia), accelerating erosion
and C losses in these areas. Likewise, plantations of Eucalyptus or other
fast-growing trees on fertile soils comes at the cost of food production
and may provide little fodder.

13.2. Gaps in knowledge and research needs

The potential for community-managed stands of multipurpose
agroforestry trees to provide fodder and fuel while simultaneously
improving soil C stocks merits investigation. Identification of tree spe-
cies appropriate to the area and the needs of the local community, and
the optimal management regime (planting, assisted natural regenera-
tion, coppicing) would support sustainable forest fodder and fuelwood
production. Long-term monitoring of soil C stocks and other indicators
of soil quality in these forests would further indicate their potential for
slowing or reversing land degradation. Nitrogen-fixing tree species
warrant particular attention.

14. Fire management

Many forest ecosystems globally are affected by wildfire; annually,
the area burned globally is about 3.5 million km2, mostly in savannas.
The area burned by forest fires is greatest in equatorial Asia (62%),
boreal North America (48%) and boreal Asia (36%) (Giglio et al.,
2013). Carbon emissions from wildfires are greatest in the Tropics
(about 84% 1830 Tg C yr−1; (Van Der Werf et al., 2017). Rapid re-
vegetation after fire sequesters approximately the same amount of C
over a period of several years to decades (Landry and Matthews, 2016).
Losses of C to the atmosphere from deforestation fires and burning of
drained peatlands, however, are not balanced by vegetation regrowth
and thus are a net CO2 source (Van Der Werf et al., 2017).

Fire intensity and duration (Wooster et al., 2005; Keeley, 2009)
determine the amount of C combusted and the impact on soil C (Simard
et al., 2001; Czimczik et al., 2003; Neary et al., 2005). In turn, intensity
is a function of the amount and characteristics of fuel and weather
conditions (Luo et al., 2017). Hot fires that occur under dry and warm
conditions in flammable fuels release more C than fires that occur under
cool, moist conditions (Wiedinmyer and Hurteau, 2010; Bradstock
et al., 2012; Spessa et al., 2013). Fire severity depends upon the amount
and characteristics of the fuels combusted during a fire (Wells et al.,
1979). Effects on soil depend also upon the speed of the fire front (i.e.,
the duration of soil heating) as well as soil moisture. High-severity
crown fires can sweep so rapidly over a landscape that not much of the
heat is transferred downward to the soil surface (Bentrup et al., 2012).
Conversely, low-intensity smoldering fires in roots, duff, or peat layers
can cause extensive soil heating and large changes in mineral soil (Rein
et al., 2008).

Impacts of fire on soil C are variable. Nave et al. (2011) examined a
combined total of 468 soil C responses from 57 publications comparing
wildfire to prescribed fire in temperate forests. They found that fire
significantly reduced soil C by 26%, primarily in the forest floor (forest-
floor C stock was reduced by an average of 59%). Recovery of the C in
burned forest floors required an average of 128 years. Reductions in
forest-floor C storage from prescribed fires were smaller (-46%) than
from wildfires (-67%). Carbon storage in mineral soils did not change.
Mineral soil C concentrations did not change following prescribed burns
but were significantly reduced in response to wildfires. The unchanged
mineral soil C stock after wildfire was attributed to a possible com-
pensating effect of increased soil bulk density.

A meta-analysis of fire (wildfire, prescribed fire and broadcast
burning) effects on soils in North America, (Johnson and Curtis, 2001)
detected significant differences in soil C 10 years after the fire event.
Soil C content was higher following wildfire than prescribed fire, which
they attributed to greater accumulations of charcoal and recalcitrant
hydrophobic organic matter and to greater occurrence of N-fixing ve-
getation after wildfire. Several other studies have not reported the ex-
pected positive relationship between fire severity and soil C losses
(Campbell et al., 2007; Johnson et al., 2007; Boerner et al., 2009; Meigs
et al., 2009).

Boreal forests store up to 20% of global soil C (Tarnocai et al.,
2009), much of which is in peatlands that cover approximately 4 mil-
lion km2 and store an estimated 500–600 Gt of C (Turetsky et al., 2015).
Surface drainage of boreal peats for forestry stimulates tree growth and
enhances total vegetation C uptake (Päivänen and Hånell, 2012), but
the resulting drying of peat makes it susceptible to fire. Peat fires are
dominated by smoldering combustion which moves slowly through
surface and subsurface soil layers, often persisting for days or months
(Rein et al., 2008). Drier soils and increased lightning ignitions as a
result of the predicted warming climate at northern high latitudes in-
crease the likelihood of peat fires. Tropical peatlands, primarily in
Southeast Asia, store an additional ~100 Gt C across 400,000 km2

(Turetsky et al., 2015). Drainage and logging in tropical peatlands have
shortened fire frequencies, and repeated burning has further reduced
soil C stocks (Langner and Siegert, 2009; Hoscilo et al., 2011). Drainage
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and increased frequency of human-caused ignitions in peatlands near
densely populated urban areas has converted many peatlands from fire-
resistant to fire-prone systems (Turetsky et al., 2015).

In addition to consuming 50% or more of the organic matter in
surface soil layers, forest fires rearrange C into new forms and dis-
tribution within lower soil layers (Foereid et al., 2011). Some of the
litter turns into particulate, fine-earth sized (<2 mm) particles causing
a net increase in the soil C content. Fires also transform C compounds
into new forms that can be resistant to microbial decomposition such as
black carbon (González-Pérez et al., 2004; Czimczik and Masiello,
2007; Lehmann et al., 2008). Much effort has been devoted to char-
acterizing black-carbon chemistry and its recalcitrance and persistence
in the environment (Bird et al., 2015) but recent evidence suggests that
climate, soil type, biota, and land use influence whether black carbon
accumulates or is lost from soil (Czimczik and Masiello, 2007; Gibson
et al., 2018).

Fires negatively affect soil microbial populations in boreal forests
and temperate forests. A meta-analysis of 42 published microbial re-
sponses to fire (Dooley and Treseder, 2012) found an average decline in
total microbial biomass of 33.2% following fires. Fungi were more
sensitive to fire than bacteria; soil fungal abundance declined by an
average of 47.6% and bacterial biomass declined by 33.3% following
fire (Dooley and Treseder, 2012; Holden and Treseder, 2013). Mycor-
rhizae in particular may be affected by the reduction in vegetation after
fire; declines have been reported in both vesicular–arbuscular mycor-
rhizal and ectomycorrhizal fungi (Allsopp and Stock, 1994; Rashid
et al., 1997; Dahlberg et al., 2001; Treseder et al., 2004). Decomposi-
tion processes are slowed as well in recently burned boreal forest stands
but recover after 10–15 years (Holden and Treseder, 2013).

14.1. Relevance and considerations

Wildfire is of increasing concern due to changes in land use and
occupancy, fragmentation of forests, and climate change effects on fuels
(Flannigan et al., 2016), fire weather (Liu et al., 2010), and possibly
increased lightning ignitions (Romps et al., 2014; Veraverbeke et al.,
2017). A 50% increase in fire occurrence is projected in boreal forests
by the end of the century (Flannigan et al., 2009), and fire potential will
likely increase significantly in other geographic areas (Cochrane and
Laurance, 2008; Lindner et al., 2008; Liu et al., 2013; Dwomoh and
Wimberly, 2017; Le Page et al., 2017; Schoennagel et al., 2017; Seidl
et al., 2017; Taufik et al., 2017). Of great concern is the increasing
frequency of extreme wildfire events – the so-called megafires
(Stephens et al., 2014; Barbero et al., 2015; Tedim et al., 2018). The
potential for fire frequency to increase beyond natural levels and reduce
the time for recovery may drive soil C levels lower and ultimately ad-
versely affect vegetation productivity (Pellegrini et al., 2018).

Fire suppression can delay but cannot prevent wildfires over the
long term. It leads to an apparent net C accumulation that increases the
risk of large C release during catastrophic fires (Jandl et al., 2007).
Adaptations to wildfire center on accommodating forest fire in fire-
adapted ecosystems primarily by managing fuel loads through pre-
scribed burning and silvicultural practices. Where fire suppression has
resulted in hazardous levels of fuels, re-introducing fire may require
first altering structure by mechanical means followed by a series of
carefully planned controlled burns (Boerner et al., 2008; Schwilk et al.,
2009; Phillips et al., 2012) that may include increased harvest to reduce
old and susceptible stands (Schelhaas et al., 2010). These treatments,
particularly prescribed fire, result in soil C losses that take decades to
recover (Nave et al., 2011; James and Harrison, 2016), but may be
favorable when compared to wildfire soil C losses (James et al., 2018).
Other options include conversions to less flammable species, such as
from conifers to broadleaves (Schelhaas et al., 2010). Fire breaks of less
flammable species, bare ground, or even agricultural crops can prevent
fire spreading and protect infrastructure (Lloret et al., 2002; Syphard
et al., 2014; Khabarov et al., 2016). In all cases, mitigating wildfire

impacts on forest soil C will require attention to the ecological context
and will involve trade-offs among C sequestration and other values.

14.2. Gaps in knowledge and research needs

Fire behavior, particularly flaming and smoldering combustion that
drives heat transfer into soil, is a critical knowledge gap underlying
other deficiencies in our understanding of physical and chemical
transformations of soil organic matter (Dickinson and Ryan, 2010).
Needed are measurements of fundamental processes that can be in-
corporated into fire behavior models (Massman et al., 2010). Additional
interdisciplinary research is needed relating soil heating temperatures
to soil biotic changes to better understand the biophysical processes
initiated by fire (Dickinson and Ryan, 2010; Pingree and Kobziar,
2019). Significant development would be a methodology or metric that
indicates the cumulative and additive effects of soil heating over time
(Wiesmeier et al., 2019). Physics-based fire models are under devel-
opment that better predict the behavior of extreme wildfires (Werth
et al., 2016; Coen, 2018; Hoffman et al., 2018) and other work, such as
the Fire Modeling Intercomparison project, seeks to reduce un-
certainties in future projections by evaluating the coupling of fire and
climate models (Rabin et al., 2017).

Changes in fire regime and emergence of novel ecosystems as a
result of global change (Williams and Jackson, 2007; Perring et al.,
2013; Radeloff et al., 2015) challenge our evidence base for sustainable
management of soil organic matter and the role of fire in global C cycles
(Flannigan et al., 2009; Flannigan et al., 2016). In particular, the effects
on soil C in fire-sensitive systems of shorter return intervals and more
intense fires (e.g., Cochrane and Laurance (2008)) requires greater re-
search effort in understudied regions, for example central Asia and the
Tropics (IUFRO, 2018). This is playing out today in forested permafrost
regions where wildfires burn the insulating layer and decrease surface
albedo causing the permafrost to thaw. Shorter return intervals be-
tween fires and rotation lengths are insufficient for the permafrost layer
to recover, exposing organic deposits to accelerated decomposition
(Aaltonen et al., 2019).

15. Summary and considerations

Current scientific knowledge on how forest management practices
affect soil C stocks in forest ecosystems is summarized below and in
Table 1.

The effect of afforestation on soil C stocks is largely related to land-
use history. On former croplands, soil C stocks generally increase fol-
lowing afforestation, while on former grass- and peatlands, soil C stocks
remain unchanged or even decrease following afforestation. The rate of
soil C sequestration is also affected by the tree species selected and by
soil properties. Studies on long-term sequestration, C stability, and
deep-soil C storage following afforestation are needed.

The conversion of primary forests to secondary forests cause a general
decrease in soil C stocks, particularly if it is first converted to an agri-
cultural land-use prior to reforestation. However, natural disturbances
in boreal forests can have stronger negative effects on soil C stocks than
forest harvesting. Retention of primary forests for the purposes of soil C
storage can, therefore, only be evaluated within the context of regional
natural disturbance regimes. Global estimation of forest conversion
effects on soil C stocks is made difficult by inconsistent definitions of
‘primary forest’. Information is needed on long-term soil C sequestra-
tion and on upper ecological set points (i.e. ‘C saturation’).

Harvesting, particularly clear-cut harvesting, generally results in a
decrease in soil C stocks, with highest C losses occurring in the forest
floor and the upper mineral soil. Studies on deep soil C storage are rare.
Although soil types strongly influence the response of soil C to har-
vesting, many soil types are not covered by available studies. There is a
need for long-term research sites across a range of soil- and forest
ecosystem types. Studies that address the mechanisms underlying soil C
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losses after harvest are needed.
The removal of harvest residues has an overall negative effect on

forest soil C stocks. Soil C losses are largest after whole tree and stump
harvesting operations. On nutrient-poor sites, this might have severe
consequences for fertility, productivity and long-term C sequestration.
The harvest of residues has a greater impact on soil C in temperate than
in boreal forests. Studies in tropical forests and studies following soil C
stocks after multiple rotations of residue harvesting are needed. Future
studies should also consider the implications of residue removal on
deep soil C stocks.

Soil disturbance from site preparation decreases soil C stocks, parti-
cularly in the organic topsoil; however, improved growth of tree
seedlings may outweigh soil C losses over a rotation. The incorporation
of organic material into deeper soil horizons may increase its stabili-
zation.

Studies distinguishing between disturbance effects from different
management techniques (e.g. ground preparation, drainage or dis-
placement of the organic layer) on soil C are needed. Long-term effects
of soil disturbance on soil C stocks in peatland forests requires study.

Nitrogen addition has an overall positive effect on soil C stocks across
a wide range of forest ecosystems. The benefits of N fertilization must
be weighed against the environmental costs of fossil-fuel combustion
and CO2 emissions associated with fertilizer production, distribution
and application. The forms in which N is found in soil organic matter of

various stability and the mechanisms through which N addition gen-
erates greater soil C stocks require clarification.

Soil organic C stocks under species with nitrogen-fixing associates are
higher than under other tree species. On degraded soils, N-fixing species
increase soil C stocks much faster than other species. The mechanisms
accounting for the general trend of C accretion in soils under N-fixing
trees are not fully understood and long-term field studies are needed in
contrasting environments to disentangle the influences of enhanced tree
growth, increase in C allocation belowground, and interference with
degradation of organic matter.

Tree species selection influences soil C stocks, with coniferous species
accumulating more C in the forest floor and broadleaved species
tending to store more C in the mineral soil. Certain broadleaved species
are associated with faster litter decomposition and a more abundant soil
macrofauna, but the implications for stabilization of C remains to be
elucidated. Broadleaf species are expected to sequester more soil C
under fertile and warm site conditions, while coniferous species are
expected to store more C under less fertile and cooler conditions. Tree
species effects are highly context-dependent, and soil C sequestration, C
stability and the interaction of species with site conditions should be
studied in networks of common-garden experiments over a broad spa-
tial range.

There is some evidence that increased tree species diversity could
positively affect soil C stocks in temperate and subtropical forests, but

Table 1
Thirteen forest management practices and how they affect forest soil organic carbon stocks. For each practice, existing gaps in knowledge and suggested research to
address the gaps are given.

Management practice Effect on soil C Gaps in knowledge Research needs

Afforestation Positive, but mainly if the former land
use was cropland

Effects on deep soil C stocks and soil C stability,
understanding of main driving fluxes and processes

Long-term repeated studies of chronosequences
targeting mineral as well as organic soils

Conversion of primary forest
to secondary forest and
plantation

Negative, especially if transitioning
through an agricultural land use

Clear definition of primary forest for benchmarking
is often lacking; Limited data on long-term impact.

Long-term research sites

Harvesting Negative Many soil types not covered by available studies;
Limited data on harvesting effects on deep soil C

Long-term research sites across a range of soil
and forest ecosystem types

Removal of harvest residues Negative Many soil types/practices not covered by available
studies; Limited data on long term impact and
duration of effects.

Long-term research sites across a range of soil
and forest ecosystem types

Soil disturbance from site
preparation

Negative Trade-off between intended effect (better
regeneration) and unintended effect (increased
decomposition rate of soil organic matter);
unknown duration of soil disturbance effect

Quantification of soil C loss due to soil
disturbance; mechanistic understanding of soil
disturbance effect on soil organic matter.

Nitrogen addition Positive Mechanisms of N incorporation into stabilized soil
organic matter

Linkages between the changes in the
composition and abundance of mycorrhizal
fungi as well as interaction with additional
nutrient (P, K) additions

Selection of species with
nitrogen-fixing associates

Positive Relative contribution of enhanced tree growth,
increase in C allocation belowground and reduced
loss of old soil C; risks of positive effects on soil C to
be offset by an increase in N2O emissions.

Comprehensive long-term field studies dealing
with both C sequestration and N2O emissions

Tree species selection Coniferous species store more C in the
forest floor; broadleaved species may
store more (and more stabilized) soil C
in soil mineral soil

Understanding of the interactions with site
conditions (soil properties, climate)

Large-scale studies of soil C pool size and soil C
stability as well as driving processes in common
garden experiments

Management of tree species
diversity

Positive or neutral Interactive roles of species diversity and functional
diversity

Long-term and large-scale monitoring of
common garden experiments with different
levels of species diversity and functional
diversity

Management of stand density
and thinning

Neutral Limited information on long-term effects and
thinning intensities on soil C stocks

Long-term experiments with different stand
density and/or thinning intensities

Herbivory regulation Positive Limited data for tropical forests; lack of
understanding of herbivore effects on plant-soil
interactions (including physical disturbance)

Experiments along herbivory gradients to
depict ecologically sustainable population
densities

Removal of litter and biomass
for fodder, fuel or animal
bedding

Negative Interaction effects between agriculture,
agroforestry and forestry. Limited information on
belowground root production/soil C effects of
lopping

Replicated experiments on sustainable forest
fodder and fuelwood production

Fire management Negative or positive in cases of fire
suppression and prescribed burning

Soil heating and changes in biophysical processes
initiated by fire; understudied regions, for example
central Asia and the Tropics

Effects of shorter return intervals and more
intense fires on soil C in fire-sensitive systems

M. Mayer, et al. Forest Ecology and Management 466 (2020) 118127

16



in many cases no clear species diversity effect on soil C is observed. Tree
species identity, particularly N-fixing species, seems to have a stronger
impact on soil C stocks than tree species diversity. Mixed forest stands
have greater resilience to natural disturbances and climatic changes,
which would preserve soil C stocks. Untangling the interactive roles of
species diversity and functional diversity and identifying tree species
mixtures that are most effective in sequestering soil C are needed. Tree-
diversity common-garden networks provide an experimental frame-
work to test such questions.

Management of stand density and thinning have small effects on forest
soil C stocks although soil CO2 fluxes are significantly increased. Long-
term experiments with different thinning intensities are needed, parti-
cularly in South America and Africa.

Soil C stocks tend to be higher under the exclusion of ungulate
herbivores and herbivory regulation is considered a pro-active manage-
ment practice that positively affects soil C stocks in forest ecosystems.
However, limited information is available for tropical forests and there
is a general lack in understanding of how herbivores affect plant-soil
interactions. Experiments along herbivory gradients are recommended
in order to predict critical herbivory loads and ecologically sustainable
population densities.

Removal of litter and biomass for fodder, fuel and animal bedding is
related to a reduction in the soil C stocks. However, negative effects can
be offset if litter used for animal bedding is later used as an organic
fertilizer on arable land. A holistic view at a landscape level is required
when assessing soil C in areas where communities rely on biomass re-
moval from forests. Studies of sustainable forest fodder and fuelwood
production that are based on replicated experiments are needed.
Investigations of the potential for multipurpose agroforestry trees,
especially N-fixing species, to increase soil C stocks and improve soil
while providing for the needs of local community are recommended.

Wildfires can have strong negative effects on forests soil C stocks,
with largest reductions occurring in the forest floor. Fire management
practices, such as prescribed burning, can also reduce soil C stocks, but
not as much as wildfires do. Practices to prevent wildfires in forest
ecosystems include harvesting susceptible stands, converting to less-
flammable species (e.g., from coniferous to broadleaved species), or
creating fire-breaks between stands. Drainage of peatlands can convert
them from fire-resistant to fire-prone ecosystems. Global change is al-
tering fire regimes, with shorter return intervals and more intense fires
affecting soil C in fire-sensitive systems. Additionally, the emergence of
novel ecosystems requires greater research effort in understudied re-
gions, for example central Asia and the Tropics.

As the largest pool of organic C in most forest ecosystems, changes
in the size and dynamics of the soil C pool can influence total ecosystem
C balance. In a more holistic perspective, the full accounting of the
influence of management practices on the mitigation of greenhouse gas
emissions requires, on the one hand, consideration of the synergies and
trade-offs between forest and ecosystem C storage, including the im-
portant soil C reservoir and on the other, consideration of the sub-
stitution and storage effects of timber, fibre or energy production from
the forest. Additionally, implications of changes in the size and dy-
namics of the soil C pool for nutrient cycling should be considered.
Particularly if soil C stocks increase due to forest management activ-
ities, C:nutrient ratios of soil organic matter must be maintained in
order to ensure a sustained stand nutrition.
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