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A B S T R A C T

The atomic force microscope (AFM) has opened access to the nanoscale observation of molecular and colloidal
structures in aqueous media, and of their dynamics upon environmental changes. As a miniature force scanner, it
furthermore allows the correlative mapping of mechanical properties at the nanoscale or precise indentation of
individual structures. Soon after its invention in 1986, the AFM rapidly found increasing applications in soft
matter physics, cellular biology, polymer science and microbiology. In spite of significant successes as early as
the 90s, the growth of AFM application in the field of food science has been comparatively slower. This review
points to the realizations and opportunities of AFM in showing the connections between the structural and
mechanical properties of food's building blocks and of their assemblies. Possible transfers from other disciplines
to food science are presented as suggestions for future applications.

1. Food structures at the nanoscale: assemblies, interfaces,
dynamics

Many concepts of cell biology, physiology, material sciences or
biophysics have been successfully passed on to food science, for a better
understanding of food structures and functional properties. Food may
indeed be considered as the successive disassembly and reassembly of
building blocks extracted from agricultural resources, processed into
edibles then eventually eaten and digested. Internal structures, shape,
porosity or surface properties of the building blocks, as well as the
tridimensional connections established between these blocks upon food
processing will determine texture or the capacity of the macrostructure
to entrap moisture, ligands or bacteria (Walstra, 2002). The three di-
mensional structure may vary with time or with environmental pres-
sure, such as a change in temperature, pressure or pH, and so will
evolve the functional properties of foodstuff upon processing or storage.
Surface phenomena are taking place at all boundaries of compart-
mented food structures, like particulate suspensions, porous gels,
emulsions, foams or tissues. Food interfaces encompass a large range of
complex two dimensional structures, from small surfactants to thin
films of multilayered proteins, particulate objects to polar lipid mem-
branes (Berton-Carabin, Sagis, & Schroën, 2018; Dickinson, 2015).
Reassembly events, transfers and biological reactions occur at food
interfaces with dynamics from sec to hr to days (Berton-Carabin et al.,
2018; Guo, Ye, Bellissimo, Singh, & Rousseau, 2017; Marze, 2013;

Sadek et al., 2015). Similarly, a multiscale approach is essential to link
local properties of the building block assemblies to the macroscopic
properties of the food (Roos et al., 2016). Local protein concentration at
the air/water interface can be as high as to induce a sol/gel transition
and affect the properties of a foam (Pasquier et al., 2016). Fluctuations
in the phase separation of polar lipids occur at the nano- or micrometer
scale depending on composition and temperature, and affect the phy-
sical properties of membranes (Connell, Heath, Olmsted, & Kisil, 2013;
Veatch, 2007). Meanwhile, rheology or aging of protein gels may be
inferred from scaling models based on the detailed characterization of
the structure and connectivity of the colloidal building blocks
(Mellema, van Opheusden, & van Vliet, 2002; Tanaka & Araki, 2007).

Since its invention in 1986 (Binnig, Quate, & Gerber, 1986), the
AFM has gained increasing attention from scientific communities in
biological sciences, including food science. AFM can show a sig-
nificantly greater spatial resolution than optical microscopes. Where
super-resolution techniques overcome the diffraction limit down to
~10 nm resolution, AFM can achieve nanometer detail in biological
samples, which gives access to the observation of the building blocks of
live objects at the molecular level (Dufrêne et al., 2017). AFM does not
need labelling nor fixation of the sample. The only requirement is that
objects are immobilized during raster scanning by the AFM probe.
Furthermore, AFM can examine samples in ambient or liquid environ-
ments, at a wide range of temperatures relevant for biological or food
samples (de sa Peixoto et al., 2015; Murthy, Guyomarc’h, & Lopez,
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2016a). Therefore, AFM has become a preferred imaging technique to
implement multiscale approaches using various microscopy techniques
(Bhatia, Husen, Ipsen, Bagatolli, & Simonsen, 2014; Lopez, Cauty, &
Guyomarc’h, 2015; Wackerbarth, Schön, & Bindrich, 2009). Dynamic
events can be accessed by continuously imaging the same sample area
while modifying the environment by, e.g., cooling or heating
(Leonenko, Finot, Ma, Dahms, & Cramb, 2004; Murthy et al., 2016a),
acidifying (de sa Peixoto et al., 2015; Ouanezar, Guyomarc’h, &
Bouchoux, 2012) or injecting light, adenosine triphosphate (ATP) or
enzymes (Giocondi, Besson, Dosset, Milhiet, & Le Grimellec, 2007;
Johnson, Vasilev, Olsen, & Hunter, 2014). AFM has also attracted in-
terest as a highly sensitive nano-indenter, opening access to local me-
chanical properties with nm or nanoNewton resolution (Gavara, 2017;
Withers & Aston, 2006). Grafting the AFM tips with specific ligands
further allows measurement of interaction forces between the ligand
and binding sites, and allows the molecular mapping of binding sites at
the surface of a biological structure (Marszalek & Dufrêne, 2012; Wei &
van de Ven, 2008). Eventually, the tip itself can be replaced by a col-
loidal sample to measure interactions with other particles or with sur-
faces (Beaussart et al., 2014; Gunning & Morris, 2018). Pioneer appli-
cations of the AFM for foodstuff emerged in the late 1990s at the
Institute of Food Research (IFR, Norwich, UK), shortly followed by the
Ryerson University (Toronto, Canada), the Technion Institute (Haifa,
Israel) and others. During the last 20 years, the applications of AFM
with food systems have diversified, benefiting from transfers of
knowledge from multidisciplinary scientific communities in material
sciences, biophysics, physical chemistry, membrane science, micro-
biology or cell biology. The purpose of this review is therefore to ex-
plore the potential of the AFM technique for food systems, through
these different approaches. Perspectives and opportunities opened by
crossing discipline thinking will specifically be discussed, as a com-
plementary viewpoint to detailed up-to-date or topic-oriented reviews
(Ding, Shi, & Zhong, 2019; Zhong, Finglas, Wang, & Wang, 2019).

2. Principle and parts of the atomic force microscope

Unlike optical or electron microscopes that use a beam to make
observation possible, the AFM uses a cantilever, terminated by a tip, to
feel the surface of a sample, exactly like a finger can read a surface in
Braille (Fig. 1).

Commercial cantilevers are generally made of silicon or silicon ni-
tride electronic chips and protrude from a piece of substrate attachable
to the AFM head (Fig. 1 A-D). They come in a wide range of geometries,
stiffness values k and reflective coatings. Tips also vary in aspect ratio
from whisker nanotubes to colloidal probes, and in radius of curvature
for pyramidal tips with sharp to blunted extremities. A laser beam
pointed at the free end of the cantilever, reflected to and captured by a
quadrant of photodiodes, tracks the spatial position of the cantilever.
Ceramic piezos allow accurate measurement of the relative displace-
ments of the AFM probe and/or the sample stage in the XYZ directions
with minimal mechanical noise (Fig. 1 E). The AFM technique can be
seen as a combination of profilometry and indentation, which accounts
for the two main routes of development: imaging and force spectro-
scopy, developed separately or in combination. As the tip pushes
against the sample, the cantilever (with stiffness k) bends and a de-
flection (d) is measured on the photodiodes. During raster-scan imaging
of the sample, the respective positions of the cantilever and samples are
constantly adjusted to keep the loading force F = kd constant (Fig. 1 F).
Corrections of the AFM tip in the Z direction during scanning yield the
reconstruction image of the sample's topography, as does a profil-
ometer. Alternatively, the AFM tip can be operated to push against the
sample up to a trigger force F, then to retract itself a set distance m.
Height differences between the retracted positions of the AFM canti-
lever on each pixel of the explored area XY also yield a reconstructed
image of the sample's topography. The major imaging approaches and
their application to food systems are introduced in section 3.

Meanwhile, changes in the deflection of the cantilever during the Z
approach-retract cycle are obtained for each designated XY point of the
sample, yielding force-volume information. The measurement and in-
terpretation of individual force curves are known as force spectroscopy
and can be compared to the action of a nano-indenter. Mechanical in-
formation such as the Young's modulus or stiffness, or interaction forces
such as electrostatic or steric repulsion, can be retrieved from the ap-
proach (or loading) curve. Meanwhile, adhesion forces or stretching
behavior can be retrieved from the retract curve. The main applications
to food systems are presented in section 4 along with the description of
force curves' segments, while section 5 develops the specific approach
of single molecule force spectroscopy. Since AFM implies physical
contact between the sample and the moving tip, it is essential that the
sample is correctly immobilized onto a substrate. Immobilization
methods that keep the native structure of the sample are an important
issue in properly using the AFM technique. Furthermore, miniaturiza-
tion of the XYZ fast raster-scanning movement of the tip imposes di-
mensional limits to the sample. Better resolution is generally obtained
with flat samples that do not require excessive corrections by the
feedback loop.

3. Imaging structures and dynamics at surfaces

Imaging by raster-scanning of the sample at a constant force is
called the “contact mode”. Most applications use either direction of the
cantilever's main axis or the lateral direction, the latter giving access to
friction by simultaneously measuring torsion. The “AC mode” (or in-
termittent contact mode) requires oscillating the cantilever near its
resonant frequency. The loading force is controlled through setting the
constant damping of the oscillation when the tip comes in contact with
the sample. As for friction in the contact mode, some insight of the
mechanical contrast may be measured, as the phase shift will depend on
the materials present at the surface of the sample. Detailed discussion of
these AFM imaging modes can be found in previous work (Ding et al.,
2019; Yang et al., 2007). To decrease the necessary force to finely track
samples, “peak force” imaging has been developed from the force-vo-
lume approach and reaches frequencies of thousands of force curves/
sec. Recent AFM instruments have significantly increased in speed and
spatial resolution (Jones, 2016).

Fig. 2 shows examples of AFM images of ingredient building blocks
that could make up a chocolate-chip cake: fat globule and casein mi-
celle from milk (Fig. 2 A and B), chocolate (Fig. 2 C), saccharose (Fig. 2
G), egg yolk (Fig. 2 H), yeast (Fig. 2 D), and starch granules and gluten
from wheat (Fig. 2 E and F). These images illustrate how AFM con-
tributes to the multiscale investigation of food structures by giving
access to micron and sub-micron dimensions. AFM imaging was suc-
cessfully used to observe structural interactions between glutens'
gliadin and glutenin fractions extracted from eggless cakes (Lin, Tay,
Yang, Yang, & Li, 2017).

Among food proteins, gelatin has been studied using AFM as a major
texturing agent and a versatile self-organizing protein with heat or
hydrolysis (Liu & Wang, 2011). Many details of collagen fibers are ac-
cessible using AFM imaging (Shi et al., 2019a). Globular proteins, such
as whey, pea or soy proteins, are typically objects of a few nm diameter.
Upon heating, they denature and aggregate into a large range of
structures, which can be imaged by simple deposition onto freshly
cleaved mica and AFM observation in air or in liquid (Demanèche,
Chapel, Monrozier, & Quiquampoix, 2009; Farrokhi, Badii, Ehsani, &
Hashemi, 2019; Hu et al., 2019; Ikeda & Morris, 2002; Liu & Wang,
2011; Touhami & Dutcher, 2009; Wei, Cheng, & Huang, 2019; Wei &
Huang, 2020). In binary mixtures, single aggregated units may even be
recognized (Adal et al., 2017). Co-aggregates of food protein and
polysaccharide, e.g., β-lactoglobulin with pectin or κ-carrageenan, or
milk with κ-carrageenan, were also observed with the same approach
(Jones, Adamcik, Handschin, Bolisetty, & Mezzenga, 2010; Olivares,
Passeggi, Ferrón, Zorrilla, & Rubiolo, 2010; Roesch, Cox, Compton,
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Happek, & Corredig, 2004). Whey protein superstructures, such as
micrometric coacervates of α-lactalbumin and lysozyme (Nigen,
Gaillard, Croguennec, Madec, & Bouhallab, 2010) or microbeads of
denatured whey protein (Doherty et al., 2010) were also imaged in air,
as was fouling of hydrophobic surfaces by bovine serum albumin, β-
lactoglobulin or β-casein (Pérez-Fuentes, Drummond, Faraudo, &
Bastos-González, 2017). In milk, 80% of the weight of the proteins are
found in the casein micelles, which are 150–200 nm hydrogel particles
of the κ-, αs1-, αs2-and β-caseins bound by hydrophobic interactions and
calcium phosphate nanogranules. AFM was used to follow the structure
resulting from the layer-by-layer deposition of individual caseins onto
polyelectrolyte surfaces, to cast light on the possible pathways for the
casein micelle assembly (Nagy, Váró, & Szalontai, 2012). The casein
micelles may also be spread onto freshly cleaved mica but only close-
packing will prevent dissociation at the interface (Ouanezar, un-
published observation). With this approach, the effect of pressure,
fouling or enzymatic coagulation on the morphology of casein micelles

layers could be visualized on dessicated concentrated samples spread
onto mica, glass or silicon nitride (Freitas et al., 2019; Gebhardt, Doster,
Friedrich, & Kulozik, 2006, 2011; Regnault, Thiebaud, Dumay, &
Cheftel, 2004). To identify individual casein micelles, they need more
specialized immobilization, e.g., on freshly cleaved graphite (Helstad,
Rayner, van Vliet, Paulsson, & Dejmek, 2007), glass (Freitas et al.,
2019), self-assembled monolayers (Christensen, Rasmussen, &
Simonsen, 2015; Ouanezar et al., 2012; Silva, Bahri, Guyomarc’h,
Beaucher, & Gaucheron, 2015; Uricanu, Duits, & Mellema, 2004, Fig. 2
B) or substrates coated with casein-specific monoclonal antibody (Bahri
et al., 2017, 2018). AFM imaging then provides details on their di-
mensions and roughness (Christensen et al., 2015; Ouanezar et al.,
2012). Finally, the casein micelles may be parted into ~20 nm particles
called caseinates, which can be used as a carrier for curcumin or
thymol, and observed using AFM after deposition onto cleaved mica
(Pan, Chen, Davidson, & Zhong, 2014). Additional advanced uses of
AFM imaging exist that unravel structural features of food-related

Fig. 1. Equipment and principle of the
atomic force microscope (AFM). (A)
MFP-3D AFM head; the blue circle in-
dicates the cantilever holder (B), with
an AFM probe mounted in front of the
quartz optical window. (C) Example of
a HQ-300-Au AFM probe (Asylum
Research, Oxford Instruments, Santa
Barbara, CA, USA) and (D) focus on a
triangular MSNL cantilever (Bruker
NanoSurfaces, Santa Barbara, CA,
USA). (E) Principle of AFM. (For inter-
pretation of the references to color in
this figure legend, the reader is referred
to the Web version of this article.)

Fig. 2. Possible building blocks of a baked
cake as imaged using AFM. (A) Native milk
fat globules of unprocessed milk
(Guyomarc'h, unpublished); (B) casein mi-
celles from skim milk (Ouanezar et al.,
2012); (C) freshly tempered chocolate
(Rousseau & Sonwai, 2008); (D) Sacchar-
omyces cerevisae entrapped in a pore of a
polycarbonate porous membrane, with bud
scars (BS) on its surface (Pillet et al., 2014);
(E) gluten and (F) starch from wheat
(Chichti, George, Delenne, Radjai, &
Lullien-Pellerin, 2013); (G) saccharose
crystals (Middendorf, Bindrich, Mischnick,
Franke, & Heinz, 2018) and (H) lipoprotein
from egg yolk spread onto a mica surface
(Dauphas et al., 2007a).
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proteins, e.g., periodicity, lysis or connectivity (Shi, He, Ding, Wang, &
Zhong, 2019c, 2019b; Yang et al., 2007).

The milk fat globule is an even more complex milk colloidal as-
sembly, consisting of an oil droplet enveloped by a trilayer polar lipid
membrane decorated with embedded and peripheral membrane pro-
teins and a glycocalyx (Lopez, 2011). AFM images nevertheless suc-
ceeded in showing the damage of the native milk fat globules with
processing (Balasuriya, Ong, Gras, & Dagastine, 2012) or change in
rugosity upon homogenization (Obeid et al., 2019a). For egg yolk's low
density lipoprotein (LDL), AFM imaging of Langmuir-Blodgett films was
used to investigate structural interactions between polar lipids and
apoproteins (Dauphas et al., 2007b, 2007a; Martinet, Saulnier,
Beaumal, Courthaudon, & Anton, 2003). In microbiology, the surface of
food-grade or of food-poisoning microorganisms offers a large field of
applications for AFM investigation, as previously reviewed (Dorobantu,
Goss, & Burrell, 2012; Liu & Wang, 2011; Liu & Yang, 2019). The re-
solution of AFM imaging and the absence of fixation pretreatment al-
lows access to stress-induced changes or lysis of the cell wall (Derde
et al., 2014; Dorobantu et al., 2012; Formosa & Dague, 2015; Liu &
Wang, 2011). More particularly, fine structures such as the S-layer are
also visible using AFM imaging (Dupres, Alsteens, Pauwels, & Dufrene,
2009). Images can be further completed by the nanoscale mapping of
the dielectrical constants of bacteria using electrostatic AFM (Esteban-
Ferrer, Edwards, Fumagalli, Juárez, & Gomila, 2014). Applications of
AFM for food packaging are out of the scope of this review and can be
found elsewhere (Marinello, La Storia, Mauriello, & Passeri, 2019).

AFM imaging has also been used to image polysaccharide structures,
alone or in mixtures. Applications to immobilized fractured starch
granules or spherulites with crystalline structures, amylose, amylo-
pectin fibers or gelatinized starch deposited on mica then dessicated,
have been reviewed (Murrieta-Pazos et al., 2012; Wang & Nie, 2019;
Zhu, 2017). Carrageenans, locust bean gum, guar gum, gellan gum,
gum arabic, xanthan or pectin fibrous structures were also investigated
(Funami, 2010; Gunning & Morris, 2018; Ikeda, Funami, & Zhang,
2005; Liu & Wang, 2011; Wang & Somasundaran, 2007). Crystalline
structures of lactose (Dincer, Ogden, & Parkinson, 2014; Gao et al.,
2017; Perkins et al., 2007), of saccharose (Masterson & Cao, 2008;
Middendorf et al., 2016, 2018) or of calcium phosphate assemblies (Li,
Wang, & Putnis, 2018; Wang, Lu, Xu, & Zhang, 2011; Čadež et al.,
2018) are also accessible using AFM imaging.

Since it does not need fixed samples, AFM imaging is especially
suited to monitor crystal growth and to measure changes in periodic
dimensions, stack height or growth directions at the nanoscale (Gao
et al., 2017, Fig. 3 A). A major application of AFM to follow crystal
development in foodstuff was that of the formation fat bloom in cho-
colate (Hodge & Rousseau, 2002; Rousseau & Sonwai, 2008; Smith &
Dahlman, 2005, Fig. 3 B). Dynamics of food interfaces of emulsion and
foams were obtained using AFM imaging of Langmuir films of milk
proteins, transferred and immobilized onto freshly cleaved mica at
various stages of their disorganization by a competing detergent
(Mackie, Gunning, Wilde, & Morris, 2000, 1999; Morris, 2004;
Woodward, Gunning, Mackie, Wilde, & Morris, 2009). Using these
observations, the IFR group was able to propose a generic pathway for
the displacement of an initial protein network at the air/water or oil/
water interfaces by a more surface-active molecule (Fig. 3 D). Recent
technical advances such as the immersion of AFM probes directly in
contact with oil/water interfaces (Costa, Li-Destri, Thomson,
Konovalov, & Pontoni, 2016, 2017) or possibly with the air/water in-
terface of a Langmuir trough (Frédéric Dubreuil, personal commu-
nication) open new approaches for the direct AFM observation of dy-
namic interface events relevant to food emulsion or foams.

In microbiology or cell biology, applications of time-resolved AFM
imaging of the formation of thin protein films on surfaces, sometimes
showing complex two-dimensional paracrystalline organizations (Toca-
Herrera, Moreno-Flores, Friedmann, Pum, & Sleytr, 2004) and/or high-
speed dynamics (Uchihashi & Scheuring, 2018) can be measured. AFM

has thus allowed detailed observation of protein organization on bac-
terial surfaces (Dufrene, 2004; Dupres, Alsteens, Andre, & Dufrene,
2010) and in membranes (Fotiadis, 2012). Organization and dynamics
of myosin displacement along actin filaments is another achievement of
high-speed AFM (Ando, Uchihashi, & Kodera, 2013), which could be of
interest for meat/muscle studies. In food systems, the fibrillation dy-
namics of, e.g., soy or whey proteins have been monitored using AFM
(Bolisetty, Adamcik, & Mezzenga, 2011; Gosal, Clark, & Ross-Murphy,
2004; Tang, Wang, & Huang, 2012).

AFM imaging in biology has allowed significant insight into the
structure and dynamics of lipid membranes. Langmuir-Blodgett sup-
ported lipid monolayers are generally prepared on mica then imaged in
air. Closer to natural membranes, supported lipid bilayers are deposited
on mica either using the Langmuir-Schaeffer technique or vesicle fu-
sion, then imaged in buffer. The morphology of binary membranes with
ordered and disordered phases, ionic or temperature effects, as well as
protein interaction with lipid membranes can all be explored dynami-
cally on supported bilayers using AFM time-resolved imaging
(Alessandrini & Facci, 2011, 2014; Giocondi et al., 2010; Morandat,
Azouzi, Beauvais, Mastouri, & El Kirat, 2013). In food systems, lipid
membranes are found in plant or animal tissues, bacterial wall, extra-
cellular vesicles including exosomes and the milk fat globules. The often
complex polar lipid compositions of natural extracts such as milk
(Gallier, Gragson, Jiménez-Flores, & Everett, 2010; Guyomarc'h et al.,
2014, 2017), rapeseed or salmon fat (Jacquot et al., 2014) makes AFM a
preferred technique to better understand membrane structures at the
nanoscale. The formation or melting of the milk sphingomyelin-rich
domains in bilayer models of the milk fat globule membrane have been
imaged using AFM upon cooling or heating (Et-Thakafy, Guyomarc’h, &
Lopez, 2019; Guyomarc'h et al., 2014; Murthy et al., 2016a). The ad-
sorption of caseins onto membranes of milk polar lipids is visible on
dessicated monolayers (Gallier et al., 2010) and is dynamically fol-
lowed on hydrated bilayers where casein micelles could only adsorb on
disordered and electrically neutral polar lipid phases (Crespo-
Villanueva et al., 2018; Obeid et al., 2019b, Fig. 3 E). Langmuir-Blod-
gett monolayers of mixed milk polar lipids and proteins were imaged
with AFM to investigate organizations at the surface of food oil/water
emulsions (Berton-Carabin, Genot, Gaillard, Guibert, & Ropers, 2013;
Lucero Caro, Rodríguez Niño, & Rodríguez Patino, 2009). Time-re-
solved AFM images are helpful to observe the insertion of proteases or
lipases into thin food protein films or lipid monolayers, respectively, as
well as the effects of digestion on the structure of the films (Bourlieu
et al., 2016; Maldonado-Valderrama, Gunning, Wilde, & Morris, 2010,
Fig. 3 C).

4. Nanomechanics of individual building blocks to cast light on
texture of complex food systems

In addition to acting as a profilometer, the AFM can also operate as
a nanoscale indenter and therefore combine structural with mechanical
information on every pixel of a force map. Fig. 4 shows two examples of
force curves obtained by indenting a supported lipid bilayer or a bac-
terium and shows typical information that can be obtained from them.

At the start of the force spectroscopy cycle, the AFM tip is at rest,
away from the sample. Deflection, hence the force, is therefore zero. As
the tip moves towards the sample, the zero force baseline ① is recorded
up to the contact point ② where the force starts to rise. When soft
samples are investigated, the force curve deviates from a linear hard-
contact response (Butt, Cappella, & Kappl, 2005; Heinz & Hoh, 1999).
The segment ③ is then showing indentation of the tip into the soft
sample and can be fitted with appropriate models to obtain elastic
properties such as the Young's modulus. However if repulsion occurs
between tip and a soft sample upon approach, e.g., in air or in a low
ionic strength liquid, determination of the contact point may be
somewhat tricky. However, repulsion is negligible in liquid environ-
ments especially with saline conditions, typically physiological buffers.
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In some research, repulsion is measured between the hard tip and hard
substrate by varying the liquid environment and observing deviation
from the hard-contact response (see section 4.3). Upon increasing the
loading force, the AFM tip sometimes breaks through the sample, which
is shown on the approach curve as a sharp move at constant force ④.
When the AFM tip pulls away from sample, negative peaks ⑤ sometimes
occur that are evidence of tip-sample adhesion. The shape of the peak(s)
indicates the nature of adhesion, either capillary (in air), mechanical
adhesion, polymer extension or multiple binding events (Heinz & Hoh,
1999). A combination of these is possible. The AFM tip can be set to pull
away so as to fully detach from the sample and go back to rest ⑥. The
approach-retract cycle can then start again.

4.1. Elasticity and stiffness

In food systems, AFM has been used to investigate the mechanical
properties of small objects or to show mechanical heterogeneities at the
nanoscale that are otherwise impossible to measure with conventional
nano-indenters. With minimal syneresis, evaluation of the Young's
modulus of gelatin gels using AFM at the μm scale were in good
agreement with measurement of the elastic moduli by macroscale
rheometry (Uricanu, Duits, Nelissen, Bennink, & Mellema, 2003). In
this pioneer study, the measurement of local structural features, such as
fibrils, was linked with the bulk mechanics of the heterogeneous
sample. AFM has also been used to evaluate the Young's modulus of
small objects such as the milk's casein micelles (Bahri et al., 2017, 2018;
Helstad et al., 2007; Uricanu et al., 2004). When the tip is properly
positioned at the apex of the micelles, values of hundreds of kPa order

Fig. 3. Monitoring dynamic processes using AFM imaging. (A1-4) Formation of calcium phosphate hydroxyapatite crystals and supra-assemblies (Li, Wang, Zhang,
Putnis, & Putnis, 2016, 2018). (B1-2) Formation of fat crystals in tempered chocolate after 4 wk of storage at 25 °C (scan size: 5 × 5 μm2 (Rousseau & Sonwai, 2008)).
(C1-2) Insertion of recombinant dog gastric lipase onto a Langmuir film of milk polar lipid extract (scan size: 2.5 × 2.5 μm2 (Bourlieu et al., 2016)). (D1-4)
Displacement of a spread β-lactoglobulin protein film formed at an air/water interface (light color network) by the surfactant Tween 20 (dark areas; scan size:
1 × 1 μm2; 1.6 × 1.6 μm2; 3.2 × 3.2 μm2 and 10 × 10 μm2 from left to right (Morris, 2004)). (E1-4) Adsorption of casein micelles onto binary supported lipid
bilayers of dioleoylphosphatidylcholine (DOPC) in the disordered (fluid) phase and milk sphingomyelin (MSM) in the gel phase (scan size: 5 × 5 μm2 (Obeid et al.,
2019b). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

S. Obeid and F. Guyomarc'h Food Bioscience 36 (2020) 100654

5



of magnitude were reported, coherent with protein hydrogels (Fig. 5).
For comparison, alginate hydrogel beads are about 10 times softer
(Lekka, Sainz-Serp, Kulik, & Wandrey, 2004).

The Young's modulus of casein micelles increases with covalent

reticulation (Bahri, Martin, Gergely, Marchesseau, & Chevalier-Lucia,
2018) and with temperature (Uricanu et al., 2004), as expected.
However, it does not significantly change with acidification, in spite of
the sol/gel transition of milk. This indicates that the bulk elasticity of

Fig. 4. General view of the mechanical information resulting from AFM force spectroscopy measurements. The figure shows two examples of force curves resulting
from approach (blue curves) and retract (orange curves) cycles. The blue dashed segments show the hard contact reference of the approach curves. The upper curves
are from indentation and breakthrough of a supported lipid bilayer (Murthy et al., 2016a) and the lower curves are from indentation of dairy propionibacteria and
pulling of capsular exopolysaccharides (Guyomarc'h et al., in preparation). Numbers ①, ②, ③, ④, ⑤ and ⑥ refer to the corresponding relative positions of the sample
and cantilever during the force spectroscopy cycle. The black dashed line on the approach curve indicates the segment ③ where elastic behavior is measured. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Typical ranges of Young's modulus
values reported for biological samples, in-
cluding food-related samples (in blue). The
figure is adapted from an application note
by JPK Instruments (www.jpk.com) with
data added from work by Arfsten et al.
(2010), Bahri et al. (2017, 2018),
Balasuriya et al. (2012), Burgain et al.
(2016), Cárdenas-Pérez et al. (2019), Costa
et al. (2012)*, Et-Thakafy et al. (2017),
Fang, Kang, Hong, and Wu (2012), Galus
and Kadzińska (2016)*, Helstad et al.
(2007), Kasas, Stupar, and Dietler (2018),
Kloek, Van Vliet, and Walstra (2005)*,
Kurland, Drira, and Yadavalli (2012), Lam
and Ikeda (2017)*, Masterson and Cao
(2008), Nowak, Markowski, and
Daszkiewicz (2015)*, Perkins et al. (2007),
Uricanu et al. (2004), Vithanage, Grimson,
and Smith (2009)* and Xu et al. (1996).
References with a star * did not use AFM.
(For interpretation of the references to color
in this figure legend, the reader is referred
to the Web version of this article.)
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acid milk gels is determined by the stiffness of the inter-micelle links
rather than by the intra-micelle links (Uricanu et al., 2004). Instead of
force measurements, AFM imaging may help predict the Young's
modulus of polymer particles using their deformation upon adsorption
onto a surface (Evangelopoulos, Glynos, Madani-Grasset, & Koutsos,
2012). Similarly, the calculation of a “contact” angle is used to evaluate
stiffness changes of casein micelles as a consequence of chemical cross-
linking, demineralization, acidification (Helstad et al., 2007; Silva
et al., 2015) or heating in the presence of whey proteins (Micleusanu
et al., unpublished results; Fig. 6). Upon heating, the stiffness of egg-
white ovalbumin films measured using AFM force spectroscopy de-
creased while adhesion increased as a result of denaturation and gela-
tion (Najbar, Considine, & Drummond, 2003).

The use of AFM indentation at liquid/liquid or liquid/air interfaces
to measure the stiffness of sessile liquid droplets has been explored but
is still difficult to implement (Costa, Li-Destri, Pontoni, Konovalov, &
Thomson, 2017; Munz & Mills, 2014; Wang et al., 2016). Similarly,
calculation of the stiffness or the Young's modulus of filled micro-
capsules (Berry, Mettu, & Dagastine, 2017; Sarrazin et al., 2016; Tan
et al., 2016) or phospholipid-shelled microbubbles (Buchner Santos,
Morris, Glynos, Sboros, & Koutsos, 2012; Grant et al., 2012) requires
further mathematical developments. These approaches have only been
used limitedly with food systems, e.g., edible ~1 MPa microcapsules of
pea proteins (Ye et al., 2016) or emulsion droplets (Wackerbarth et al.,
2009). As a macrovesicle enveloped with a plasmatic membrane, the
Young's modulus of milk fat globules was found to increase from tens to
hundreds of kPa when the milk was homogenized, because of adsorbed
casein micelles (Balasuriya et al., 2012).

Indentation of ~100 nm diameter liposomes by an AFM tip is sen-
sitive enough to show that polar lipids in the fluid phase yield softer
liposomes than those made with polar lipids in the gel phase (Et-
Thakafy et al., 2017). Liposomes in the liquid-ordered phase, i.e., polar
lipids with cholesterol, were in between these two extremes (Liang,
Mao, & Ng, 2004; Takechi-Haraya et al., 2016). In general, slightly
higher moduli values were obtained from measurements taken on
supported lipid bilayers than on liposomes, probably because of

compression against the underlying substrate (Das, Sheikh, Olmsted, &
Connell, 2010; Et-Thakafy et al., 2017; Picas, Rico, & Scheuring, 2012).
Liposomes of milk sphingomyelin, involving a naturally complex
composition of saturated and unsaturated molecules of varying chain
lengths, show lower Young’ modulus values than liposomes of single or
binary composition (Et-Thakafy, Delorme, Guyomarc’h, & Lopez,
2018). Higher order polar lipid organization of simple liposomes may
account for their relatively high Young's modulus values compared to
those of complex biological samples (respectively tens of MPa vs hun-
dreds of kPa – Fig. 5). Spherulites of hydrogenated canola oil/sunflower
oil triacylglycerides showed Young's modulus values of a few MPa
(Yoshikawa et al., 2017). Dry food powders, such as lactose, saccharose
or milk casein micelles powders, showed higher modulus values in the
range of 0.1–10 GPa (Burgain, Scher, Petit, Francius, & Gaiani, 2016;
Masterson & Cao, 2008; Perkins et al., 2007).

Readers interested in the applications of AFM to measure nano-
mechanical properties of vegetable, fruit or meat tissues are encouraged
to peruse recent reviews (Cárdenas-Pérez et al., 2019; Posé et al., 2019).
Bacteria and yeasts, including food-grade lactic acid bacteria or baker's
yeast Saccharomyces cerevisiae, have also been the subject of many
mechanical evaluations using AFM indentation (Arfsten, Leupold,
Bradtmöller, Kampen, & Kwade, 2010; Bui, Kim, & Choi, 2008; Schaer-
Zammaretti & Ubbink, 2003; Touhami, Nysten, & Dufrene, 2003). The
Young's modulus value of thin-layered recrystallized S-layer proteins of
Propionibacterium freudenreichii, a starter for Swiss-type cheeses, was
found to decrease with heating or acidification, both relevant in chee-
semaking and digestion (de sa Peixoto et al., 2015).

4.2. Micro-rheology, drying kinetics, and interfacial tension

The resonant AFM cantilever or tip can be used as a micro- or nano-
scale geometry for mechanical evaluation of samples. Cantilevers or
nanowire tips can be immersed in different liquids, including sugar or
salt solutions or milk, and be used as viscosity sensors in low viscosity
media (Ahmed, Nino, & Moy, 2001; Lemaire, Heinisch, Caillard,
Jakoby, & Dufour, 2013; Papi, Arcovito, De Spirito, Vassalli, & Tiribilli,

Fig. 6. AFM topographical images of casein
micelles, immobilized onto gold substrate using
carbodiimide chemistry and imaged in air. Left:
untreated skim milk; right: heat-treated (80 °C/
20 min) skim milk. The “contact” angle was
calculated using AFM measurements of the basal
width and maximum height of individual mi-
celles (Helstad et al., 2007). The scale bars are
200 nm. (For interpretation of the references to
color in this figure legend, the reader is referred
to the Web version of this article.)
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2006). Using a similar approach, AFM cantilevers can monitor clotting
of blood (Feller, Kellermayer, & Kiss, 2014), which suggests it might
also be applied to milk clotting. The extremity of the oscillating AFM
tip, when put in contact with a nL sessile droplet, can stress the me-
niscus laterally to monitor viscoelastic properties (Lee et al., 2016; Li,
Chiu, Ortiz-Young, & Riedo, 2014). Combined quartz crystal micro-
balance (QCM-D) measurements and AFM can be used to calculate
thickness, density, viscosity and elasticity changes of a thin serum al-
bumin film with dehydration-rehydration cycles (Lubarsky, Davidson,
& Bradley, 2007). The tip-less AFM cantilever was coated with the
protein film and oscillated in nitrogen atmospheres with varying hu-
midity. Kinetics and thermic effects of the evaporation of water droplets
may be monitored using AFM (Bonaccurso & Butt, 2005; Golovko et al.,
2008; Haschke, Lautenschlager, Wiechert, Bonaccurso, & Butt, 2005).
In this approach, a droplet is placed at the top of an AFM cantilever that
will consequently bend due to the surface tension of the liquid, the
Laplace pressure inside the droplet, interfacial stress at the solid–liquid
boundary and evaporative cooling. Changes in the deflection of the
cantilever show different evaporation behaviors depending on the
cantilever's surface.

The use of AFM to measure interfacial tension of droplets or bubbles
has also been reported. Using the theory by Attard and Miklavcic

(2001), Filip, Uricanu, Duits, Agterof, and Mellema (2005) used force
curves measured on droplets of a water-in-oil emulsion using 5 μm
colloidal tips to calculate stiffness values that matched well with in-
terfacial tensions measured by other techniques. Needle tips could al-
ternatively be used to measure the interfacial tensions of oil droplets
immersed in an aqueous phase or of bubbles produced in water by
cavitation (McGuiggan & Wallace, 2006; Uddin, Tan, & Dagastine,
2011). The use of standard pyramidal AFM tips introduces geometrical
complications in the deformation of the interface but interfacial tension
may be able to be determined with standard AFM set-ups in the future
(Costa et al., 2016, 2017).

4.3. Interactions between hard surfaces

Analogous to a surface force apparatus (SFA), the AFM colloidal
probe technique has been developed to measure interaction forces be-
tween a plane and the near-plane cap of a micrometer-large particle
attached at the end of a tip-less cantilever. Measurements can be made
in liquid and the retrieved force curves obey Derjaguin-Landau-Verwey-
Overbeek (DLVO) predictions (Butt, 1991; Ducker, Senden, & Pashley,
1991, 1992). Experiments generally involve careful positioning of the
AFM probe at a constant altitude with respect to the surface, established

Fig. 7. Experimental set-up to investigate col-
loidal interaction between deformable particles.
(A) 3-Dimensional reconstruction obtained
using laser scanning confocal microscopy, taken
in situ in the AFM, just prior to a colloid-colloid
interaction measurement imaged in (B) (Tabor
et al., 2011, 2012). The inset shows a vertical
plane through (A). (C) Example of a droplet-
droplet interaction force curve as measured
using AFM (Gunning & Morris, 2018). Upon
approach, as the droplets are far away they do
not interact ①, but start to deform at closer dis-
tance to form a thin liquid film ② up to the point
when interfaces may jump into contact ③. Upon
retraction, the droplets keep in contact ④ until
the pulling force counter-balances the suction
effect of the thin film and detach ⑤ to return
their initial shape.
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using conditions of minimal repulsion, i.e., when identification of the
contact point is clear, followed by modification of the ionic strength
(Butt, 1991; Meagher & Griesser, 2002). Others align the hard-contact
segment of the different force curves obtained with varied environ-
mental conditions with the same tip/substrate couple (Finessi et al.,
2011). Interaction forces were measured this way between facing layers
of biological materials attached to the colloidal probe and the surface,
such as two lactoferrin, apoferritin or bovine serum albumin (BSA)
layers with different conditions of pH or ionic strength (Meagher &
Griesser, 2002; Valle-Delgado et al., 2004, 2005, 2006). More recently,
a new set-up was proposed where interaction forces were measured
between two coated spheres for symmetrical geometries and lesser
contamination (Finessi et al., 2011; Sinha et al., 2012). This system has
been successfully developed to measure interaction forces between
monolayers of oppositely charged albumin and lysozyme with various
conditions of pH and ionic strength (Singh, Bremmell, Griesser, &
Kingshott, 2015). The interaction forces between individual carboxy-
lated colloidal particles, measured using AFM and interpreted with the
DLVO theory, predicted well their aggregation rate in bulk (Ruiz-
Cabello et al., 2013), which could find applications with other ag-
gregating food colloids such as the casein micelles. Application on soft
samples also exist, e.g., to measure electrostatic repulsion at different
pH between a silicon nitride tip and bacteria with distinct capsule
compositions (Camesano & Logan, 2000).

4.4. Interactions between pairs of bubble/bubble, droplet/droplet or
droplet/bubble

Pioneer development of both mathematical models (Dagastine,
Stevens, Chan, & Grieser, 2004; Tabor, Grieser, Dagastine, & Chan,
2012, 2011; Wang et al., 2015) and technical set-ups (Dagastine, 2006;
Gunning, Mackie, Wilde, & Morris, 2004, Fig. 7A and B) by the IFR
Norwich and the University of Melbourne groups have opened a field of
research for the AFM investigation of interactions between deformable
bodies such as droplets or bubbles. This is of prime interest for food
applications like emulsions or foams.

Forces acting at the surface of droplets or bubbles are better eval-
uated between pairs of objects, one attached to the end of a (tipless)
cantilever and the other adsorbed onto a flat surface, rather than on a
single object indented using an AFM probe (Gunning & Morris, 2018,
Fig. 7 C). Upon approach of the facing objects, positive deflection of the
cantilever is observed because of resultant long range repulsion, e.g.,
electrostatic repulsion, and hydrodynamic forces exerted by the
squeezed material/solvent between the two objects, e.g., disjoining
pressure of solvent or steric repulsion of surfactants (Fig. 7 C②). As load
increases, the Laplace pressure of the bubble or droplet, defining non-
penetrable thickness, causes their deformation normal to the applied
force, with possible wavy features forming at the contact area (Gunning
et al., 2004; Wang et al., 2015). Depending on the bulk composition and
the fluxes of the thin film between the two objects, local depletion in,
e.g., bulk material sometimes induces a strong attraction, visible as a
jump-in event (Gunning & Morris, 2018; Tabor et al., 2012, Fig. 7 C③).
As they are pulled apart, capillary-like adhesion is visible due to the
suction effect exerted by the deformed objects (Wang et al., 2015, Fig. 7
C④). Deformability of objects requires complex mathematical treatment
of the force curve information but yields highly sensitive measurements
as a consequence of the increased contact area (Tabor et al., 2012).
AFM force spectroscopy between bubbles and/or droplets gives access
to the investigation of DLVO forces responsible for colloidal stability,
i.e., van der Waals and coulombic (or electrostatic) forces, as well as
non-DLVO forces such as hydrophobic attraction and hydrophilic
(steric) repulsion, depending on the composition of the interface. Hy-
drodynamic thinning of the interfacial film (drainage) and/or coales-
cence can also be investigated using AFM colloidal force spectroscopy
experiments (Gunning et al., 2013). In food systems, the technique has
helped determine local forces and fluxes upon approach of oil-in-water

or water-in-oil emulsion droplets coated with whey proteins, sugar beet
pectin or food-grade polyglycerol polyricinoleate (Gromer, Penfold,
Gunning, Kirby, & Morris, 2010; Gunning et al., 2004; Mettu, Wu, &
Dagastine, 2018). A dwell time can be introduced to keep the two ob-
jects in contact at constant load and to positively correlate drainage of
the interfacial thin film with the mobility of the surfactant molecule,
including milk proteins (Gunning et al., 2013). Comparatively less re-
search has been reported on bubble/bubble interactions. Interaction
forces between foam bubbles stabilized with pH-switchable peptides
were measured using AFM upon pH change or introduction of ions in
the system (Balasuriya & Dagastine, 2012).

4.5. Steric repulsion by a polymer brush

Among repulsion forces exerted between colloids, that of steric
hindrance by polymer brushes has raised interest in the field of AFM
force spectroscopy. Mathematical models were developed for the in-
dentation of a polymer brush by a conical or a colloidal AFM tip
(Cuellar, Llarena, Moya, & Donath, 2013). A reference force curve is
measured onto a bare spot of the sample, made by locally scratching
and clearing the polymer brush with the AFM tip, to get to the contact
point. Repulsion exerted by polymer brushes with various pH and ionic
strengths was measured using AFM force spectroscopy to design anti-
fouling surfaces for biological applications, including food (Monchaux
& Vermette, 2007). Others have investigated the ion-pair interaction of
facing brushes of oppositely charged polyelectrolytes (Spruijt, Cohen
Stuart, & van der Gucht, 2010) that are implicated in coacervation
(Gucht, Spruijt, Lemmers, & Cohen Stuart, 2011) as can occur in
foodstuff (Moschakis & Biliaderis, 2017). As an application of the dro-
plet/droplet set-up described in section 4.4, Manor et al. (2012) have
measured the steric effect of a brush of propylene oxide/ethylene oxide
polymers at the surface of mineral oil droplets. Such experiment could
find application in food systems, where large colloids such as the milk
fat globule or ropy lactic bacteria are enveloped with a thick glyco-
calyx.

4.6. Breakthrough force

In addition to depletion flocculation (Fig. 7 C③), the rupture of thin
films using an AFM tip has been used for the investigation of polar lipid
membranes (Alessandrini & Facci, 2012; Garcia-Manyes & Sanz, 2010;
Redondo-Morata, Giannotti, & Sanz, 2014). In these experiments, the
applied load is increased to the point when the membrane yields, re-
sulting in the occurrence of a “break-through” or “jump-in” event in the
approach force curve (Fig. 4④). Due to fast lateral diffusion and local
fluctuations of the intermolecular distances in the membrane, the for-
mation of a hole under the tip has a given relaxation time and energy
barrier that decrease with increasing gradients of lateral (spreading)
pressure and intermolecular distance that push the molecules outward
(Butt & Franz, 2002; Franz, Loi, Müller, Bamberg, & Butt, 2002; Garcia-
Manyes & Sanz, 2010). From this, the retrieved breakthrough force FB is
indicative of the local mechanical stability of the membrane, with na-
noscale lateral resolution. This value increases with the tip's radius,
thermodynamically increases with the loading rate and increases in the
presence of ions that may bridge polar lipids together (Alessandrini,
Seeger, Di Cerbo, Caramaschi, & Facci, 2011; Redondo-Morata et al.,
2014; Sullan, Li, Hao, Walker, & Zou, 2010). Furthermore, the jump-in
distance may be used to evaluate the membrane's thickness locally,
owing that the breakthrough occurs prior to significant deformation
(Alessandrini & Facci, 2012, Fig. 8). This technique has allowed in-
vestigation of the nanomechanical properties of bilayer membranes
incorporating milk polar lipid extracts (Murthy et al., 2016a; 2016b),
milk or egg sphingomyelin or ceramides, with or without cholesterol
(Bhojoo, Chen, & Zou, 2018; García-Arribas, Busto, Alonso, & Goñi,
2015; Guyomarc'h et al., 2014; Sullan, Li, & Zou, 2009), fish or plant
polar lipid extracts (Jacquot et al., 2014). The local breakthrough force
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and thickness values of the bilayer membrane depend on the phase state
of the polar lipids. Ordered phases, such as the gel or liquid-ordered
phases, are 0.7–1 nm thicker and rupture at 2–4 times higher forces
than liquid-disordered phases at a given temperature. Values usually
range in the nN to tens of nN depending on lipid composition, tem-
perature and ionic environment. Furthermore, one phase tends to
rupture at slightly lower forces with increasing temperature, due to
molecular agitation (Garcia-Manyes, Oncins, & Sanz, 2005). The gel-to-
fluid phase transition can be monitored using force spectroscopy
(Alessandrini & Facci, 2014). To date, the use of breakthrough force
measurement on other food systems is limited. Balasuriya et al. (2012)
or Luo et al. (2015, personal communication) have used it with entire
milk fat globules. A milk fat globule membrane thickness of about
20 nm was reported, with extremely low breakthrough forces values
of< 0.5 nN. Recent AFM developments allowed FB measurement
through a polymer thin film at a water/heptane interface (Costa et al.,
2017), opening the possibility of studying, e.g., protein or polar lipid
interfaces in emulsions. Alternatively, breakthrough can be monitored
with AFM as a function of time, rather than force, to investigate in
detail failure dynamics of biological thin films. This “force-clamp” ap-
proach was used to calculate kinetic parameters and the energy barrier
of puncturing supported dipalmitoylphosphatidylcholine bilayers
(Redondo-Morata, Giannotti, & Sanz, 2012).

4.7. Adhesion

The retraction section of the force curve can also provide informa-
tion about physical adhesion between the tip and substrate (this sec-
tion) or with the extension of targeted single molecules (section 5).
Adhesion may be characterized by the adhesion force (absolute max-
imum of the peaks) and/or the adhesion work (area between the re-
traction curve and the zero-deflection baseline – Chen, Busscher, van
der Mei, & Norde, 2011; Obeid et al., 2019a; Xu & Logan, 2005). With
this approach, the colloidal probe technique (section 4.3) was used to
measure the adhesion between a BSA-coated probe and lysozyme or
dextran deposited on a substrate (Singh et al., 2015; Xu & Logan, 2005)
or between a BSA-coated probe and different ultrafiltration membranes
(Richard Bowen, Hilal, Lovitt, & Wright, 1999). Colloidal probes coated
with milk proteins, milk fat globule membrane fragments or mucin
have allowed significant advances in quantifying their adhesion onto
probiotic bacteria surfaces (Burgain et al., 2015, 2014a; Gomand et al.,

2019; Guerin et al., 2016) or on cell surfaces (Guerin et al., 2018).
These various studies by the LIBio (Nancy, France) has gone into the
detail of evaluating adhesion between milk protein or milk fat globule
membrane and various motifs of the bacterial surface such as pili or
exopolysaccharide. Using the same approach, adhesion between milk
fat globules and milk proteins was found to increase with acidification,
homogenization and/or forewarming, in agreement with variations of
the system (Obeid et al., 2019a, 2020). This confirmed that the adhe-
sion measured between individual structures could account for the
macro-rheology of bulk suspensions (Bhosale & Berg, 2012). Issues of
food safety and biofouling may also be investigated using the mea-
surement of adhesion forces between surfaces and bacteria (BinAhmed,
Hasane, Wang, Mansurov, & Romero-Vargas Castrillón, 2018; Shim
et al., 2017).

Measurements of single protein-protein adhesion are limited. With
this approach, proteins are immobilized both at the tip and onto the
surface; sharp tips making it likely that one protein at the extremity of
the tip enters in contact with only one counterpart protein on the
substrate. In general, the energy required for parting the proteins is less
than that of the protein's unfolding energy and ideal constant-velocity
experiments yield a single adhesion (or unbinding) peak (Liu et al.,
2016). If unfolding occurs prior to unbinding, only the last or “jump-
off” peak is considered (Burgain et al., 2014b; Jin, Lafer, Peng, Smith, &
Nossal, 2013). Among food proteins, the interaction between two cru-
ciferin or napin plant proteins was measured this way (Fahs & Louarn,
2013). Protein-protein unbinding kinetics can alternatively be mea-
sured as a function of time using a constant pulling force (or force
clamp). This approach has not been used on food systems (Manibog,
Yen, & Sivasankar, 2017). In other cases, the AFM tip was functiona-
lized with methyls, hydroxyls or other groups to measure the adhesion
of proteins (Fahs & Louarn, 2013), bacteria (Dorobantu, Bhattacharjee,
Foght, & Gray, 2008) or Saccharomyces cerevisiae yeast (Ahimou, Denis,
Touhami, & Dufrene, 2002) to hydrophilic or hydrophobic surfaces. The
grafting of bacteria or cells onto AFM tips to measure their adhesion to
surfaces (Beaussart et al., 2014; Friedrichs et al., 2013) or to other
bacteria (Formosa-Dague et al., 2016) has also been done. Food-related
examples are the measurement of the adhesion of Lactococcus lactis to
mucins (Le, Guerardel, Loubiere, Mercier-Bonin, & Dague, 2011), of
Lactobacillus rhamnosus to milk proteins (Burgain et al., 2013) or of S.
cerevisiae to filtration membranes (Richard Bowen et al., 1999).

Fig. 8. AFM measurement of the break-
through force FB on supported lipid bilayers
in liquid environment: example of bilayers
of polar lipid extract of the milk fat globule
membrane (Murthy, Guyomarc’h, & Lopez,
2016b). (A) Examples of approach force
curves taken either on the gel phase do-
mains, mainly composed of milk sphingo-
myelin (light grey curves and yellow circle)
or on the continuous phase, mainly com-
posed of polar lipids in the fluid state (dark
grey curves and brown circle). The two
phases are visible on the topography image
(insert). Sketches show the position of the
tip relative to the bilayer at each stage of
the force curve and d is the bilayer's thick-
ness evaluated with this method. (B)
Breakthrough force map (insert) and
breakthrough force histogram measured on
the same area as the topography image,
evidencing a correspondence between
structural features of the biphasic bilayer
and mechanical contrast of the gel vs fluid
phases. (For interpretation of the references
to color in this figure legend, the reader is
referred to the Web version of this article.)
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5. Probing specific interactions: single molecule force
spectroscopy

The retraction curve can also provide specific information on the
molecules involved in the interaction. Tips decorated with ligands di-
rected to one target on the sample will allow its localization upon force
mapping of the sample (Dufrene, 2004; Francius et al., 2009; Müller,
Krieg, Alsteens, & Dufrêne, 2009; Senapati & Lindsay, 2016). If adhe-
sion between the molecules is strong, the pulling force exerted by the
retracting AFM probe induces their extension or unfolding (Fig. 9 A).

Force spectra then show multiple peaks that correspond to the un-
folding of individual monomers or secondary structures in the poly-
mers, from which structural information can be inferred (Marszalek &
Dufrêne, 2012; Rico, Rigato, Picas, & Scheuring, 2013), up to the point
where tip and sample part. Following are some examples of these ap-
proaches for food-related systems.

5.1. Molecular recognition

In some applications, a chosen lectin is grafted onto AFM tips to
localize target-containing polysaccharides on the bacterial wall or pili
of L. rhamnosus bacteria (Francius et al., 2009, 2008; Tytgat et al.,
2016). Force spectroscopy measurements between a microorganism (on
the tip) and a dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin receptor (DC-SIGN; on the surface) is also pos-
sible to determine pathways to pathogenicity (te Riet, Reinieren-
Beeren, Figdor, & Cambi, 2015) or probiotic activity (Tytgat et al.,
2016). However, no attempt has been reported where a single DC-SIGN
receptors would be grafted onto the tip to track signaling sugars at the
surface of food bacteria. A grafted immunoglobulin G tip has been
successfully used to detect Protein A on the surface of live Staphylo-
coccus aureus (Touhami, Jericho, & Beveridge, 2007). Carbox-
ymethylamylose was used as a linker between the IgG and the tip to
allow orientation freedom. The recognition of sphingomyelin in milk
polar lipid membranes or possibly onto milk fat globules might be done
using the lysenin toxin grafted onto AFM tips, as illustrated on model
systems (Wang, Shogomori, Hara, Yamada, & Kobayashi, 2012). Fi-
nally, the use of AFM single molecule force spectroscopy to detect
toxins on food sample surfaces has been described (Alexander Reese &
Xu, 2019). Retraction curves for ligand-receptor interactions usually
show one single rupture peak, at a distance dependent on the maximal
extension of the linker(s) (Fig. 9 B).

5.2. Protein unfolding

The unfolding of single proteins is a difficult experiment to imple-
ment and interpret, because of the small dimensions of proteins or of
their secondary or ternary structures. After immobilization onto mica
(Touhami & Dutcher, 2009) or onto gold (Fahs & Louarn, 2013), it is
possible to unfold a single β-lactoglobulin, napin or cruciferin with a
silicon nitride AFM tip pressed against the protein for 0.5–5 s, then
retracted. It is also possible to graft the protein onto the AFM tip, to
press it against gold and pull it (Fahs & Louarn, 2013). Retraction
curves then show a sawtooth pattern (Fig. 9 C) where the last peak
indicates rupture between the tip and the protein (detachment at
maximal length Lmax) and intermediate peaks represent unfolding of the
protein's weakest structural elements, e.g., domains, loops or segments
in contact with the substrate. The distance between two consecutive
peaks indicates the length of the unfolded element, and not all domains
may be extended if detachment occurs first (Fahs & Louarn, 2013).
When β-lactoglobulin is immobilized at the surface of an oil droplet, it
partially denatures to fit at the oil/water interface. Stretching β-lacto-
globulin with an AFM tip then requires lower force and unfolds shorter
(residual) domains (Touhami et al., 2011).

5.3. Polymer extension

The stretching of polysaccharide or polyprotein polymers are the
most common studies using AFM single molecule force spectroscopy.
When sawtooth events are expected to represent the successive exten-
sions of a series of protein monomers, the worm like chain (or WLC)
model has been successfully applied to yield the contour length (Lc) and
persistence length (lp) at each unfolding step (Rico et al., 2013), Lc
being the length of the linearly extended molecule (Lmax when all
monomers are unfolded). The persistence length lp of the molecule is
the distance over which correlation with the direction of the tangent to

Fig. 9. Single molecule force spectroscopy. (A) General principle of the for-
mation of unfolding or rupture peaks on the retraction curve upon stretching of
a polymer molecule. Numbers ①, ②, ③, ④ and ⑤ refer to the successive events
occurring upon retraction (left) and the corresponding responses on the force
curve (right). (B–D) Examples of single molecule force spectroscopy experi-
ments during (B) detection of butyrophilin on the surface of a milk fat globule
by anti-butyrophilin monoclonal antibody attached to the AFM tip (Obeid,
personal communication), (C) unfolding of lactoferrin attached to flat gold-
coated substrate, after 2′ contact with the AFM tip (Grunberger, personal
communication) and (D) extension of mannose-containing exopolysaccharide
(EPS) present at the surface of Propionibacterium freudenreichii CIRM BIA 2289
and targeted with an AFM tip grafted with concanavalin-A lectin (Guyomarc'h
et al., in preparation). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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the molecule's backbone is lost. It is indicative of the flexibility of a
polymer: the larger the lp, the stiffer the polymer. The “archetypal”
example of this approach is that of titin, a large muscle protein with
multiply repeated immunoglobulin-like domains (Rief, 1997;
Tskhovrebova, Trinick, Sleep, & Simmons, 1997, Fig. 10). AFM exten-
sion of a polyprotein construct of bacteriophage T4 lysozyme (Yang
et al., 2000) is another good example of this application. They show
that detailed protein unfolding behavior could be obtained through
constructing polymeric series of a food protein or of a targeted domain
of a food protein, e.g., to predict their denaturation behavior upon
heating or exposure to an interface.

The extension of polysaccharides is better described by the freely
jointed chain (FJC) model and derivatives (Marszalek & Dufrêne,
2012), where the polymer is modeled as a series of Kuhn segments with
length lk (lk = 2 lp) and stiffness ks, for a contour length Lc as in the WLC
model. When putting AFM colloidal probes grafted with milk proteins
in contact with L. rhamnosus GG, applying the WLC and FJC models
sequentially helps identify cell-wall glycoproteins as the type of mole-
cules responsible for adhesion (Burgain et al., 2014a; Guerin et al.,
2016). When using lectin-grafted AFM probes, targeting sugar units of,
e.g., bacterial polysaccharides, the FJC model is used to infer structural
information (Francius et al., 2008; Guyomarc'h et al., in preparation –
Fig. 9 D). Finally, the approach has proven useful to stretch bacterial
pili. The bacteria may be grafted onto the AFM tip, pushed against mica
and retracted (Touhami, Jericho, Boyd, & Beveridge, 2006) or im-
mobilized onto substrates and challenged with protein-coated AFM
probes to investigate adhesion mechanisms between pili of L. rhamnosus
and whey proteins (Burgain et al., 2015, 2014a; Guerin et al., 2016).

6. Perspectives

Food science has benefited from technological implementations of
AFM methods developed for cell biology, microbiology, colloids or
material physics. In this last section, future possible transfers are
identified.

A major limitation of AFM is that no direct component identification
is possible in complex systems. Therefore, research has focused on
coupling AFM imaging with high spatial resolution spectroscopy tech-
niques for biological objects, mostly cells (Kainz, Oprzeska-Zingrebe, &
Herrera, 2014). In systems closer to food, coupling AFM with confocal
laser scanning microscopy (CLSM) was used to interpret force curves
between facing oil droplets with a complementary measure of inter-
droplet distance (Tabor et al., 2011, Fig. 7) or to correlate oil-gelatin
emulsion network structure with nanomechanical AFM indentation
experiments (Filip et al., 2006). Protein fibers or fibrillation have been

observed, e.g., in cytoskeleton or other structures using coupled AFM
and super-resolution optical microscopies (Chacko, Zanacchi, &
Diaspro, 2013; Cosentino, Canale, Bianchini, & Diaspro, 2019; Janel,
Werkmeister, Bongiovanni, Lafont, & Barois, 2017), coupled AFM and
total internal reflection fluorescence microscopy (TIRFM – Fukuda
et al., 2013) or using coupled AFM and transmission electron micro-
scopy (TEM – Yamada, Konno, & Shimabukuro, 2017). Protein identi-
fication or structures were investigated using coupled AFM and infrared
spectroscopy (Ji et al., 2019; Paluszkiewicz et al., 2017) or using cou-
pled AFM and mass spectroscopy using heated cantilevers (Andrade,
Silva, Azevedo, Cunha, & Sousa, 2006; de Vries, 2015; Somnath, Jesse,
Van Berkel, Kalinin, & Ovchinnikova, 2016). Coupling AFM with epi-
fluorescence or with either surface- or tip-enhanced Raman spectro-
scopy has opened perspectives for the molecular recognition of polar
lipids and inserted molecules such as cholesterol or peptides in sup-
ported bilayers (Bhatia et al., 2014; Opilik, Bauer, Schmid, Stadler, &
Zenobi, 2011; Sweetenham, Larraona-Puy, & Notingher, 2011; Treffer
et al., 2012). The coupling between AFM and grazing incidence X-ray
reflectivity has been undertaken at the European Radiation Synchrotron
Facility (Grenoble, France) and tested on lipid bilayers (Gumí-Audenis
et al., 2015).

Another interesting possibility of AFM for food science is the recent
developments of high-speed imaging, to investigate dynamics in, e.g.,
membrane protein arrangements, protein unfolding, protein docking or
changes in bacterial surfaces (Ando, Uchihashi, & Scheuring, 2014;
Eghiaian, Rico, Colom, Casuso, & Scheuring, 2014). Alternatively, cryo-
AFM reduces the thermal noise and slows the thermal dynamics of
macromolecules using low temperatures, e.g., in liquid nitrogen or
helium vapor, which provides access to highly mobile structures with
higher resolution than that attained at room temperature (Shao &
Zhang, 1996). It has been used on actin or myosin fibers (Shao, Shi, &
Somlyo, 2000; Sheng et al., 2003). These applications could be used to
detail in the interfacial or unfolding behavior of food proteins, to follow
fast lipid and/or protein assemblies at surfaces, or to monitor alteration
of lipid membranes or bacterial surfaces by enzymes, surfactants or
peptides.

7. Conclusions

Since its beginning in the late 1980s, the AFM technique has stea-
dily expanded in various fields. Thanks to its ability to accommodate
the liquid environment and environmental changes, AFM imaging
found applications in biology, where the correlation of imaging with
nanomechanics was used by biophysicists (Parot et al., 2007). However,
life science applications of AFM essentially turned to cellular biology
and microbiology, mostly for medical questions (Pellequer et al., 2019).
As pointed out by Yang et al., in 2007, the technique has comparatively
not yet reached its full potential in food science (Fig. 11).

Hopefully, the present review will show that opportunities of
technical transfers from cell biology, microbiology or biophysical ap-
plications of AFM to food systems are plentiful, with the prospect of
showing more about the architecture of foodstuff down to the na-
noscale. Evidence is accumulating that many structural or textural
qualities of food, appreciated at the macroscale, need to be investigated
at the scale of its building blocks to be understood and controlled. With
enough investment to set up sample immobilization and experimental
conditions, AFM may be a most interesting technique to tackle these
challenges.

Declaration of competing interest

Authors declare no conflict of interest.

Fig. 10. The worm like chain (WLC) model applied to the unfolding of titin
(courtesy of Asylum Research, Oxford Instruments, Santa Barbara, CA, USA).
Each unfolding event is fitted with the WLC model to yield the contour length,
Lc, and the persistence length, lp, at each unfolding step. The final Lc is that of
the fully stretched polymer. ΔLc is the length of the unfolded segment. T is the
absolute temperature and k the Boltzmann constant (as distinguished from the
stiffness k elsewhere in the text).
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