K. J. Shingfield, Y. Chilliard, V. Toivonen, P. Kairenius, and D. I. Givens, Trans fatty acids and bioactive lipids in ruminant milk, Adv Exp Med Biol, vol.606, pp.3-65, 2008.

Y. Chilliard and A. Ferlay, Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties, Reprod Nutr Dev, vol.44, pp.467-492, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00900496

L. Bernard, C. Leroux, and Y. Chilliard, Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland, Adv Exp Med Biol, pp.67-108, 2008.

S. Ollier, C. Robert-granié, L. Bernard, Y. Chilliard, and C. Leroux, Mammary trancriptome analysis of food deprived lactating goats highlights genes involved in milk secretion and programmed cell death, J Nutr, vol.3, pp.560-567, 2007.

S. Ollier, C. Leroux, A. De-la-foye, L. Bernard, J. Rouel et al., Whole intact rapeseeds or sunflower oil in high-forage or high-concentrate diets affects milk yield, milk composition, and mammary gene expression profile in goats, J Dairy Sci, vol.92, pp.5544-5560, 2009.

N. Mach, J. Van-baal, L. Kruijt, A. Jacobs, and M. Smits, Dietary unsaturated fatty acids affect the mammary gland integrity and health in lactating dairy cows, BMC Proc, vol.3, pp.1753-6561, 2011.

P. Piantoni, K. M. Daniels, R. E. Everts, S. L. Rodriguez-zas, H. A. Lewin et al., Level of nutrient intake affects mammary gland gene expression profiles in preweaned Holstein heifers, J Dairy Sci, vol.95, pp.2550-2561, 2012.

A. V. , The functions of animal microRNAs, Nature, vol.431, pp.350-355, 2004.

N. Bushati and S. M. Cohen, microRNA functions, Annu Rev Cell Dev Biol, vol.23, pp.175-205, 2007.

S. L. Ameres and P. D. Zamore, Diversifying microRNA sequence and function, Nat Rev Mol Cell Biol, vol.14, pp.475-488, 2013.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

T. A. Farazi, H. M. Horlings, T. Hoeve, J. J. Mihailovic, A. Halfwerk et al., MicroRNA sequence and expression analysis in breast tumors by deep sequencing, Cancer Res, vol.71, pp.4443-4453, 2011.

L. Guillou, S. Marthey, S. Laloe, D. Laubier, J. Mobuchon et al., Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193894

C. Zhang, Y. Zhao, Y. Wang, H. Wu, X. Fang et al., Deep RNA sequencing reveals that microRNAs play a key role in lactation in rats, J Nutr, vol.144, pp.1142-1149, 2014.

J. Peng, J. S. Zhao, Y. F. Shen, H. G. Mao, and N. Y. Xu, MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds, Int J Mol Sci, vol.16, pp.1448-1465, 2015.

Z. Li, H. Liu, J. X. Lo, L. Liu, and J. , Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation, BMC Genomics, vol.13, p.731, 2012.

R. Li, C. L. Zhang, X. X. Liao, D. Chen, W. Q. Wang et al., Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus, Int J Mol Sci, vol.16, pp.4997-5013, 2015.

Z. Ji, G. Wang, Z. Xie, J. Wang, C. Zhang et al., Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics, PLoS One, vol.7, p.14, 2012.

Z. Ji, G. Wang, Z. Xie, C. Zhang, and J. Wang, Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by solexa deep-sequencing technology, Mol Biol Rep, vol.39, p.22763736, 2012.

Z. Li, X. Lan, W. Guo, J. Sun, Y. Huang et al., Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues, PLoS One, vol.7, 2012.

L. Mobuchon, S. Marthey, M. Boussaha, L. Guillou, S. Leroux et al., Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches, BMC Genomics, vol.16, p.25888052, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194123

T. Tanaka, S. Haneda, K. Imakawa, S. Sakai, and K. Nagaoka, A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression, Differentiation, vol.77, pp.181-187, 2009.

W. Cui, Q. Li, L. Feng, and W. Ding, MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland, Mol Cell Biochem, vol.355, p.21526342, 2011.

L. Guillou, S. Sdassi, N. Laubier, J. Passet, B. Vilotte et al., Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000363

S. A. Ross and C. D. Davis, MicroRNA, nutrition and cancer prevention, Adv Nutr, vol.2, pp.472-485, 2011.

A. Izzotti, C. Cartiglia, V. E. Steele, D. Flora, and S. , MicroRNAs as targets for dietary and pharmacological inhibitors of mutagenesis and carcinogenesis, Mutation Research, vol.751, pp.287-203, 2012.

M. S. Shah, L. A. Davidson, and R. S. Chapkin, Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk, Frontiers in genetics, vol.3, pp.1-14, 2012.

L. Garcia-segura, M. Perez-andrade, and J. Miranda-rios, The Emerging Role of MicroRNAs in the Regulation of Gene Expression by Nutrients, J Nutrigenet Nutrigenomics, vol.6, pp.16-31, 2013.

D. Milenkovic, B. Jude, and C. Morand, MiRNA as molecular target of polyphenols underlying their biological effects, Free Radic Biol Med, vol.64, pp.40-51, 2013.

P. Parra, F. Serra, and A. Palou, Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice, PLoS One, vol.5, p.13005, 2010.

J. M. Romao, J. W. He, M. Mcallister, T. Guan, and L. L. , Altered microRNA expression in bovine subcutaneous and visceral adipose tissue from cattle under different diet, PLoS One, vol.7, 2012.

S. J. Meale, J. M. Romao, M. L. He, A. V. Chaves, T. A. Mcallister et al., Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues, J Anim Sci, vol.92, pp.3328-3337, 2014.

L. Mobuchon, S. Marthey, L. Guillou, S. Laloe, D. et al., Food deprivation affects the miRNome in the lactating goat mammary gland, PLoS One, vol.10, p.140111, 2015.

R. Li, F. Beaudoin, A. A. Ammah, N. Bissonnette, C. Benchaar et al., Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil, BMC Genomics, vol.16, p.884, 2015.

C. Leroux, L. Bernard, Y. Faulconnier, J. Rouel, A. De-la-foye et al., Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets, J Nutrigenet Nutrigenomics, vol.9, pp.65-82, 2016.

V. C. Farr, K. Stelwagen, L. R. Cate, A. J. Molenaar, T. B. Mcfadden et al., An improved method for the routine biopsy of bovine mammary tissue, J Dairy Sci, vol.79, issue.96, pp.76398-76399, 1996.

B. Zavizion, M. Van-duffelen, W. Schaeffer, and I. Politis, Establishment and characterization of a bovine mammary epithelial cell line with unique properties, In Vitro Cell Dev Biol Anim, vol.32, pp.138-148, 1996.

M. R. Friedlander, S. D. Mackowiak, N. Li, W. Chen, and N. Rajewsky, MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades, Nucleic Acids Res, vol.40, pp.37-52, 2012.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, pp.2010-2011, 2010.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a pratical and powerful approach to multiple testing, J R Statist Soc B, vol.57, pp.289-300, 1995.

M. D. Paraskevopoulou, G. Georgakilas, N. Kostoulas, I. S. Vlachos, T. Vergoulis et al., DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows, Nucleic Acids Res, vol.41, p.16, 2013.

A. Rau, M. Gallopin, G. Celeux, and F. Jaffrezic, Data-based filtering for replicated high-throughput transcriptome sequencing experiments, Bioinformatics, vol.29, pp.2146-2152, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00927025

A. Git, H. Dvinge, M. Salmon-divon, M. Osborne, C. Kutter et al., Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression, RNA, vol.16, pp.991-1006, 2010.

S. Tam, R. De-borja, M. S. Tsao, and J. D. Mcpherson, Robust global microRNA expression profiling using nextgeneration sequencing technologies, Lab Invest, vol.94, pp.350-358, 2014.

G. M. Karere, J. P. Glenn, J. L. Vandeberg, and L. A. Cox, Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons, BMC Genomics, vol.13, pp.1471-2164, 2012.

E. Mogilyansky and I. Rigoutsos, The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease, Cell Death Differ, vol.20, pp.1603-1614, 2013.

D. V. Chartoumpekis, A. Zaravinos, P. G. Ziros, R. P. Iskrenova, A. I. Psyrogiannis et al., Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice, PLoS One, 2012.

J. Phan and K. Reue, Lipin, a lipodystrophy and obesity gene, Cell Metab, vol.1, pp.73-83, 2005.

B. N. Finck, M. C. Gropler, Z. Chen, T. C. Leone, M. A. Croce et al., Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway, Cell Metab, vol.4, pp.199-210, 20106.

G. Medina-gomez, S. Gray, and A. Vidal-puig, Adipogenesis and lipotoxicity: role of peroxisome proliferatoractivated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr, vol.10, pp.1132-1137, 2007.

J. F. Zhang, W. M. Fu, M. L. He, W. D. Xie, Q. Lv et al., MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling, RNA Biol, vol.8, pp.829-838, 2011.

M. Bionaz and J. J. Loor, Gene networks driving bovine milk fat synthesis during the lactation cycle, BMC Genomics, vol.9, pp.1471-2164, 2008.

D. G. Mashek, M. A. Mckenzie, C. G. Van-horn, and R. A. Coleman, Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells, J Biol Chem, vol.281, pp.945-950, 2006.

S. Wang, W. Wu, and F. X. Claret, Mutual regulation of microRNAs and DNA methylation in human cancers, Epigenetics, vol.12, pp.187-197, 2017.

A. Jakobsson, R. Westerberg, and A. Jacobsson, Fatty acid elongases in mammals: their regulation and roles in metabolism, Prog Lipid Res, vol.45, pp.237-249, 2006.

J. H. Moore and W. W. Christie, Lipid metabolism in the mammary gland of ruminants.; Lipid Metabolism in Ruminant Animals W, 1981.

M. Padovani, J. A. Lavigne, G. V. Chandramouli, S. N. Perkins, J. C. Barrett et al., Distinct effects of calorie restriction and exercise on mammary gland gene expression in C57BL/6 mice, Cancer Prev Res, vol.2, pp.1076-1087, 2009.

M. Rodriguez-cruz, R. Sanchez, A. M. Sanchez, S. L. Kelleher, F. Sanchez-munoz et al., Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats, Biochim Biophys Acta, vol.4, pp.284-293, 2011.

M. L. Doria, A. S. Ribeiro, J. Wang, C. Z. Cotrim, P. Domingues et al., Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival, Faseb J, vol.28, p.24970396, 2014.

P. G. Toral, L. Bernard, C. Delavaud, D. Gruffat, C. Leroux et al., Effects of fish oil and additional starch on tissue fatty acid profile and lipogenic gene mRNA abundance in lactating goats fed a diet containing sunflower-seed oil, Animal, vol.7, pp.948-956, 2013.

F. Erhard, J. Haas, D. Lieber, G. Malterer, L. Jaskiewicz et al., Widespread context dependency of microRNA-mediated regulation, Genome Res, vol.24, pp.906-919, 2014.