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Up-scaling of crop productivity estimations using
the AquaCrop model and GIS-based operations

I. Alaya1,2 & M. M. Masmoudi1 & F. Jacob2
& N. Ben Mechlia1

Abstract

Crop models are useful in evaluating management strategies and exploration of new practices, particularly in studies related to

climate change and productivity assessment of agricultural systems. At field level, biophysical crop models are generally suitable

in homogeneous environments when accurate input data and calibration parameters are available. However, their use at water-

shed level is limited, especially in hilly areas with great variability of soils, slope, and land use. Systematic method considering all

terrain variabilities is time consuming since it requires high-resolution data and parameterization effort while geospatial models

like SWAT, using simplified crop modules do not reflect the complexity of the simulated processes. In this work, an alternative

methodology is proposed and tested in the hilly Mediterranean watershed of Kamech located in the Cap Bon Peninsula, Tunisia

(N 36.88°, E 10.88°); it uses the FAO AquaCrop biophysical model to estimate production in selected fields and scale up the

results to the watershed level. Maps of soil, slope, and land use are combined by a GIS tool to obtain a database of averaged field

properties and occupations. Three categories of texture, depths, and slopes were considered to classify the 313 fields of the

watershed into 27 soil classes and determine their respective area-weighting factor. The systematic method considering all fields

and the proposed method considering the 27 representative fields were used to estimate the watershed production for dominant

crops: wheat, barley, and faba bean. Results show a good correlation between both methods with values of relative RMSD in the

range of 0.5–2% for biomass and 2–5% for grain yield. Decile-decile analysis showed that the proposed methodology simulated

almost all the observed spatial variability of yield within the watershed suggesting its suitability for productivity assessment and

prediction in hilly fragmented agricultural landscape.
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Introduction

Global warming will probably affect all aspects of human

activities, but its effects on food security are the most impor-

tant and are a subject of intensive scientific research activities

(Ewert et al. 2015a, b; Fischer et al. 2005; Kang et al. 2009;

Parry et al. 2005; Rosenzweig and Parry 1994). Several

studies are carried out to predict the climate change impact

on agricultural systems in order to identify adaptation and

mitigation options (White et al. 2011; Yin 2013; Tubiello

et al. 2000; Webber et al. 2014; Rosenzweig and Wilbanks

2010). Crop yields and productivity are forecasts which are

usually estimated by means of statistical and empirical

models. But the use of biophysical models in climate change

studies is more adequate as they take into account environ-

mental and management variables.Many lumped cropmodels

have been developed and used during last few decades, e.g.,

EPIC (Williams et al. 1984; Brown and Rosenberg 1997;

Farina et al. 2011; Mitter et al. 2015), CropSyst (Stöckle

et al. 1994; Bocchiola et al. 2013; Giannakopoulos et al.

2009; Tubiello et al. 2000), DSSAT (Hoogenboom et al.

1995), STICS (Brisson et al. 2003; Butterworth et al. 2010;

Leclere et al. 2013), and more recently the FAO AquaCrop

model (Steduto et al. 2009; Voloudakis et al. 2015;

Vanuytrecht et al. 2014). These models use different concepts
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and have different structures, scales, and levels of complexity.

Their precision and accuracy vary widely across crops and

sites (Tubiello and Ewert 2002; Campbell et al. 2016). As a

general rule, good modelling practice consists in keeping

models as simple as possible, but with enough incorporated

details to capture the major processes that determine the sys-

tem’s behavior (Adam et al. 2011). The FAO crop model

“AquaCrop”which requires a relatively small number of input

parameters seems to respond to these criteria. Based on a

water-driven growth engine, The FAO model is more suitable

for water-limited environments. AquaCrop was calibrated and

tested at field scale for many crops (Fereres et al. 2012) and

used for different purposes including assessment of water pro-

ductivity, yield gap, and irrigation scheduling (Heng et al.

2009; Araya et al. 2010; Andarzian et al. 2011) and in climate

change impact studies (Mainuddin et al. 2011).

When used to assess climate change impact over large

areas, lumped crop models are applied at higher aggregation

levels which might reduce their efficiency. The resultant inac-

curacy is namely related to inappropriate spatial resolution,

low precision of input data, and misrepresentation of the sys-

tem processes at large scale (Hoffmann et al. 2016; Scholten

2008; Van Bussel 2011). Extending from field scale to water-

shed is associated with an increase of weather, topography,

and soil spatial variabilities. When input data are aggregated,

this spatial heterogeneity is lost, which will affect the model’s

accuracy (Ewert et al. 2015a, b; Hansen and Jones 2000;

Largani 2013). Uncertainty becomes highly significant for

areas with large terrain heterogeneity and important farmland

fragmentation.

The up-scal ing is par t icular ly problemat ic in

Mediterranean hilly ecosystems, dominated by agricultural

lands, evergreen woodlands, and maquis habitats, and charac-

terized by high heterogeneity of soils, land fragmentation, and

profound changes in vegetation cover due to the anthropogen-

ic activities (Demetriou 2014; Geri et al. 2010; Sala et al.

2000).

Relief and soil heterogeneity are properly represented in

distributed hydrological models (DHMs) which allowed

the adequate representation of hydrological processes.

Some DHMs integrated vegetation modules to simulate

evapotranspiration for use in productivity assessment or

irrigation management. With a simplified module of the

crop model, SWAT DHM was used for optimal irrigation

scheduling (Faramarzi et al. 2010) and for exploring the

impact of irrigation on stream flow (Dechmi et al. 2012). It

was also used to estimate water productivity and yield gap

of some field crops (Huang and Li 2010; Schierhorn et al.

2014). However, its use in assessing climate change impact

on production is limited although its crop module allows

the increase of CO2 concentration which affects the radia-

tion use efficiency and crop transpiration parameters

(Butcher et al. 2014; White et al. 2011).

In productivity assessment and prediction studies, the

choice between using complex and time-consuming DHMs,

based on simplified crop models, or up-scaling results of ded-

icated biophysical crop models, depends on the available data

and the level of precision needed, but remains problematic for

highly heterogeneous watersheds.

In this work, we propose a simplified approach based on

the use of AquaCrop and straightforward up-scaling method

combining terrain variables and land use. All fields of the

watershed are classified into a limited number of classes ac-

cording to slope, soil texture, and soil depth. The weight of

each class within the cropped area is determined for dominant

crops using land use maps and a GIS tool. Crop productivity is

estimated by the AquaCrop model for all fields and in one

representative field of each soil class. Watershed productivity

is calculated by 2 methods: the reference method using results

of all fields and the proposed method using only results of the

representative fields affected by their corresponding

weighting factor values.

The proposed method is tested in a hilly agricultural water-

shed, characterized by a strong fragmentation and significant

terrain variability. Results of the simplified approach are com-

pared with those obtained by the systematic approach that

considers all fields.

Materials and methods

Study area

A small hilly agricultural watershed, Kamech (2.63 km2), lo-

cated in the Cap Bon Peninsula in north-east of Tunisia (N

36.88°, E 10.88°) is considered in this study. Its climate is

Mediterranean sub-humid characterized by warm and dry

summers and mild and relatively rainy winters (Ben Mechlia

et al. 2008; Inoubli et al. 2017). Average annual rainfall in the

region is about 620 mmwith a coefficient of variation of 27%,

and the mean annual reference crop evapotranspiration (ETo)

during the period (2004–2013) is around 1200 mm (OMERE

2017).

The area is marked by contrasted landscape characteristics

and strong fragmentation. More than 70% of the watershed

land use is agricultural covering 331 fields. The watershed is

characterized by intensive agricultural activity with the dom-

inance of annual crops: cereals and pulses. The main cultivat-

ed cereals are wheat, barley, and oats whereas for pulses, the

major cultivated species are faba bean and chickpea. The re-

maining 30% of the catchment’s area is pasture composed of

grassland and low Mediterranean scrublands that cover gen-

erally the steepest parts of the watershed (Ben Mechlia et al.

2008; Mekki et al. 2018).

According to the FAO classification (2006), the soil classes

present in the watershed are calcic Cambisols, Regosols,
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eutric Regosols, and Vertisols (Ben Slimane 2013; Inoubli

2017). The soil depth varies between very shallow (few

centimeters) covering the sandstone bars and very deep

(2 m) for soils developed on the marly substrate (Mekki

2003; Morschel 2010). The presence of alternating sand-

stones and marls induces a variability of soil texture

that ranges from clay to sandy loam. Slopes range be-

tween 0 and 30% but more than the half of the area is

characterized by a low or moderate slope (< 10%). The

watershed is marked by irregular slopes especially on

the southern edge (Ben Mechlia et al. 2008; Zitouna-

Chebbi et al. 2018).

Datasets and used maps

The available data on soil are the soil map of Zante et al.

(2005) which contains descriptive soil units and some quanti-

tative data about soil profiles realized locally (IAO 2002;

Mekki 2003; Alaya et al. 2017). Quantitative information on

texture, wilting point, field capacity, and hydraulic conductiv-

ity at saturation needed by AquaCrop are available for only a

limited number of fields. We used the pedotransfer functions

to derive these properties for all soil units from the soil de-

scription in the soil map and the available quantitative data.

The Saxton and Rawls’ (2006) pedotransfer functions were

adopted for this task as they were evaluated in a previous work

for the soils of the region and showed a good performance in

estimating field capacity and permanent wilting (Alaya et al.

2017). Soil class depth is derived from soil map. The infor-

mation concerning texture, bulk density, hydraulic properties,

and depth are then added to each unit of the soil map. The

resulting shapefile was combined with the fields’ ownership

map to determine mean values for each field. A 10-m digital

elevation model is used with the QGIS software to map the

watershed slopes and to calculate the average slope of each

field.

Land use maps are available for 13 seasons between

1996 and 2012 (Mekki 2003; OMERE 2017) with hetero-

geneous field limits and legend. Those corresponding to

the period 1996–2001 contain only general information

about fields’ occupation, namely cereals, pulses, arboricul-

ture, grassland, and scrublands while the survey for the

period 2004–2012 delineates the cultivated species and

their area limits when more than one species are cultivated

on a field.

Land use maps were used to identify the dominant cultivated

crops, the change of their areas, and the crop rotations practiced

in each field. Then, they were homogenized and combined into

a single shapefile with information on field limits and legend,

used in a representative field selection procedure.

Daily climatic data observed at the watershed by the

Mediterranean environmental and water resources observato-

ry (OMERE) during the period 2004–2013 were used to

determine reference evapotranspiration by the Penman-

Monteith method and used in the simulations.

Field observations carried out in 2009–2010 and 2012–

2013 on wheat barley were used for AquaCrop model evalu-

ation (Aloui et al. 2012; Boudhina et al. 2019).

The proposed up-scaling methodology

Two methods were applied to estimate watershed crop pro-

duction using the site-based model “AquaCrop.” The first,

considered as reference, is a systematic method consisting in

simulating crop growth and production of all fields assuming

homogeneous soil type, depth, and slope within each field.

The watershed production is taken as the sum of production

of all fields.

In the second method, a sample of small number of fields

representative of all soil situations in terms of slope, depth,

and texture is considered. Three levels of slope, texture, and

depth were used to classify all fields in the watershed resulting

potentially in 27 soil classes (Table 1).

The soil classification method is adapted from Sys et al.

(1991) and Ben Mechlia et al. (2009) using quantitative

thresholds for depth and slope and descriptive levels for tex-

ture (Table 1). Texture is determined according to the USDA

soil textural classification (Soil Survey Staff 1951) that con-

tains 12 classes. In order to facilitate the classification task in

this study, we divided those classes into three groups (fine,

medium, and coarse).We considered that fine textures are clay

(C), sandy clay (SaC), silty clay (SiC), clay loam (CL), and

silty clay loam (SiCL). The medium texture group includes

sandy clay loam (SaCL), loam (L), silty loam (SiL), silt, and

sandy loam (SaL) classes. The coarse texture covers loamy

sand (LSa) and sand (Sa) classes.

The share of each soil class within the cropped area,

representing its weight, is determined for cereal-dominant

and pulse-dominant rotations using the homogenized average

land use map. This weighting factor is defined for each crop

and soil class as the ratio of the total area of the soil class over

Table 1 Criteria used for classification of soils in the watershed

Properties Categories Criteria

Slope Low 0-5%

Moderate 5-10%

Strong >10%

Depth Shallow <60 cm

Moderately deep 60-100 cm

Deep >100 cm

Texture Fine C, SaC, SiC, CL, SiCL

Medium SaCL, L, SiL, Si, SaL

Coarse Sa, LSa
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the total area cultivated by the crop. One representative field

of each soil class is then selected and used to run the

AquaCrop simulation model for wheat, barley, and faba bean.

Results obtained in representative fields are therefore affected

by their weighting factors and used to up-scale field produc-

tivities to the watershed level.

Both the exhaustive and the simplified methods are applied

to estimate the watershed production of wheat, barley, and

faba bean during the period 2004–2013.

Crop growth model “AquaCrop”

Being developed as a water-driven crop model, AquaCrop is

considered an operational simulation model for areas where

water is the main production limiting factor, especially in arid

and semi-arid regions (Steduto et al. 2009; Yuan et al. 2013).

AquaCrop input data and parameters are classified into four

categories: weather, crop, soil, and management practices.

The input data for these four components are used to simulate

soil water balance and the green canopy expansion change

over time. One of the main features of AquaCrop is the sepa-

ration of evapotranspiration into soil evaporation and crop

transpiration processes (Vanuytrecht et al. 2014).

The canopy growth is simulated using the green canopy

cover concept (CC) instead of leaf area index (LAI). The ad-

vantage of using CC is that it can be strongly correlated with

data derived from remote sensing such as vegetation indices,

mainly NDVI. Such indices simplify the calibration and vali-

dation task over large areas (Kim and Kaluarachchi 2015;

Foster et al. 2017). The above ground biomass is simulated

as the product of the normalizedwater productivity (WP*) and

cumulative transpiration during the biomass production peri-

od. Water productivity is a conservative, crop-specific param-

eter. Its values are standardized for evaporative demand of the

atmosphere (ETo) and CO2 concentrations, which give the

model the ability to be used in climate change studies consid-

ering different scenarios and locations. The yield production is

linked to the total biomass via a harvest index adjusted to the

timing and extent of water or temperature stress during the

crop cycle (Hsiao et al. 2009; Steduto et al. 2009; Raes et al.

2009). In addition to water stress, AquaCrop considers other

environmental factors including heat stress, soil salinity stress,

and soil fertility stress. Water stress effects are simulated for

three main processes namely leaf expansion, stomatal closure,

and early canopy senescence that determine the amount of

water transpired and thus the amount of biomass produced

(Van Gaelen 2016; Vanuytrecht et al. 2014).

Statistical evaluation

The statistical indicators used in performance evaluation

are the coefficient of determination (R2), the root mean

squared difference (RMSD), the relative root mean squared

deviation (rRMSD), and the Willmott trend index (d) given

in Eqs. 1 to 4.

R2 ¼
∑n

i¼1 Pi−O
� �2

∑n
i¼1 Oi−O

� �2
ð1Þ
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1

n
� ∑n
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ð2Þ
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where Pi represent the watershed production during year “i”

determined by the proposed up-scaling methodology consid-

ering the extrapolated results of the 17 sample fields of cereals

and 14 fields of pulses;Oi is the watershed production obtain-

ed during year i by the systematic method considering the

production of all fields.

The coefficient of determination (R2) is a measure of the

variability explained by the model. The root mean square dif-

ference is a measure of the average deviation between the

proposed and the systematic methods. The rRMSD is a di-

mensionless criterion that expresses error as a fraction of av-

erage value, which is more convenient for comparing errors

based on different datasets with different average responses.

Model performance can be classified according to rRMSD

values as excellent (< 10%), good (10–20%), fair (20–30%),

and poor (> 30%) (Van Gaelen 2016).

The Willmott trend index developed as a standardized met-

rics is a measure of model precision (Wilmott 1981) and varies

between 0 and 1 (Holzkämper et al. 2015).

These statistical performance indicators, generally used in

modeling tasks, were used by Hsiao et al. (2009), Andarzian

et al. (2011), Voloudakis et al. (2015), and El Mokh et al.

(2017) to evaluate the AquaCrop performance by comparing

observed and simulated results. In the present work, the com-

parison concerns results obtained for the 10 years by the sys-

tematic method considering all fields, used as reference, and

the proposedmethod using a sample of 17 fields of cereals and

14 fields of pulses.

Results

In situ validation of the AquaCrop model

Performance of AquaCrop is tested for wheat and barley using

in situmonitoring data carried out in 2009/2010 byAloui et al.

(2012). During this experiment, agronomic observations were
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carried out in three fields of wheat and a single field of barley.

Data from experimental field monitoring obtained by

Boudhina et al. (2019) in three fields of wheat during 2013

were also considered for model verification. Simulation by

AquaCrop was performed using observed climatic data and

calibrated parameters of Sghaier et al. (2014) for wheat and El

Mokh et al. (2017) for barley given in Table 2.

Figure 1 gives a comparison between observed and simu-

lated values of total biomass. Linear regression between ob-

served and simulated values shows that yields simulated by

the model are overestimated for wheat and underestimated for

barley. Determination coefficient (R2) between simulated and

observed values was 0.82 for wheat and 0.90 for barley.

TheWilmott index values were 0.91 for wheat and 0.86 for

barley indicating a good performance of the model. However,

RMSD and rRMSD were relatively high; rRMSD value ex-

ceeds 50% for both crops, and RMSD value was 2.6 t/ha for

wheat and 1.8 t/ha for barley. The difference is probably due to

the use of crop and productivity parameters calibrated in

Mornag and Medenine which have different climatic condi-

tions from the study area particularly temperature and wind

velocity. The use of different variety and crop management

practices may also be the source of this difference. However,

the use of a simple correction factor for “AquaCrop” output is

possible as there is a good linear correlation between observed

and simulated values.

Selection of representative fields

Analysis of soil and land use maps relative to the period 2004–

2013 showed that cropped area represents 71% of the water-

shed surface with 49% occupation with cereals and 16% with

pulses. The watershed is highly fragmented: 50% of the 331

fields are under 1 ha area with an average field size of 0.6 ha. In

average, cereals are grown on 226 fields and cover 141 hawhile

pulses are present in 87 fields covering a total area of 45 ha

The application of the classification criteria (Table 1) on the

watershed’s slope, depth, texture layers, and land use maps

showed that only 17 classes are present in the watershed for

cereals and 14 classes for pulses (Table 3).

Cereals are mainly cultivated (46%) on fine-to-medium

textured and moderately deep sloping areas (60–100 cm

Table 2 Conservative and

generally applicable parameters

of the Crop Data file of

AquaCrop, with values used for

the simulation of wheat, barley,

and faba bean productivity in

Kamech watershed, Cap Bon,

Tunisia

Wheat Barley Faba bean

Conservative parameters

Base temperature (°C) 0.0 0.0 5.5

Cutoff temperature (°C) 26.0 28.0 30.0

Canopy cover per seedling at 90% emergence (CCo) (cm2) 1.50 1.50 5.00

Canopy growth coefficient (CGC) (in fraction CC per GDD) 0.0052 0.0048 0.0105

Maximum canopy cover (CCx) in fraction soil cover 0.99 0.99 0.80

Crop coefficient for transpiration at CC = 100% 1.1 1.1 1.1

Decline in crop coefficient after reaching CCx (%/day) 0.15 0.15 0.15

Canopy decline coefficient (CDC) (in fraction per GDD) 0.0040 0.0032 0.0080

Water productivity normalized for ETo and CO2 (WP*) (g/m2) 13.4 13.0 13.0

Leaf growth threshold (Pupper) 0.20 0.20 0.25

Leaf growth threshold (Plower) 0.65 0.65 0.60

Leaf growth stress coefficient curve shape 5.0 3.5 3.0

Stomatal conductance threshold (Pupper) 0.65 0.65 0.60

Stomata stress coefficient curve shape 2.5 3.0 3.0

Senescence stress coefficient (Pupper) 0.70 0.75 0.75

Senescence stress s coefficient curve shape 2.5 3.5 3.0

Non-conservative parameters

GDD from sowing to emergence 140 151 122

GDD from sowing to maximum rooting depth 1670 1467 741

GDD from sowing to start senescence 1861 1820 1286

GDD from sowing to maturity (length of crop cycle) 2777 2549 1411

GDD from sowing to flowering 1543 1488 879

Length of the flowering stage (GDD) 189 680 128

GDD building up of harvest index during yield formation 980 899 495

Reference harvest index (HIo) (%) 45 38 30
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depth, < 10% slope) while 88% of pulses are cultivated in

sloping fields (> 5% slope).

One field was selected for each soil class and for each crop,

and its properties were used as input parameters for the

AquaCrop model. The model was used to simulate crop de-

velopment and production of wheat, barley, and faba bean for

the selected fields during ten seasons, i.e., 2004–2013.

Figure 2 shows the distribution of the different occupations

and the location of the selected fields on the watershed.

Simulation of the watershed production

An R script (R core Team 2016) was written and used to gen-

erate for all fields’ input files required by AquaCrop: crop and

soil parameter files, soil water initial condition files, and simu-

lation projects. Simulation was performed using the AquaCrop

plug-in in continuous run mode for 10 years (2004–2013) to

take into account the soil water content variations in the off-

season. For each simulation project, AquaCrop generates two

output files with daily and seasonal output data. A second R

script was written and used to summarize the results of the

output files and up-scale field results to the watershed.

The model was run for wheat, barley, and faba bean crops

on all fields of the considered occupation category.

Figure 3 shows the patterns of grain yield of wheat simu-

lated in the 226 fields and in the 17 selected sample fields. A

significant inter-annual and spatial variation is observed in the

watershed during the period 2004–2013 (Fig. 3a). Similar

spatial and temporal variations are present in Fig. 3b corre-

sponding to the 17 selected fields, indicating the adequacy of

the selection procedure of representative fields based on slope,

and soil depth and texture. The same behavior is observed for

faba bean and barley.

Spatial variability of yields was analyzed by means of dec-

iles. Among the 226 fields of cereals, the second decile D2,

representing the lowest 20% yields, varied during the period

2004–2013 between 6.6 and 12.5 t/ha for watershed averaged

biomass and between 0 and 3.8 t/ha for watershed averaged

grain yield (Fig. 4a). The decile D9 range was 10.8–15.7 t/ha

for biomass and 3.6–6.3 t/ha for grain yield during the same

period.

Simulation results for barley show more stability in pro-

duction over the 10 cropping seasons. The 9th decile is be-

tween 9.6 and 13.2 t/ha for biomass and between 3.4 and 4.8 t/

ha for yield. For faba bean, the predicted production is also

marked by a significant fluctuation. The median value of faba

bean grain yield varied between 0.2 and 1.6 t/ha during the

period 2004–2013 (Fig. 4b).

Fig. 2 Average watershed occupation map showing dominant crops

during the period 2004–2013 and the selected representative fields of

each soil category (outlined fields)
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Fig. 1 Simulated vs. measured biomass for wheat and barley during

2009–2010 and 2012–2013

Table 3 Share (%) of each soil class in terms of texture, slope and depth

within cereal-dominant and pulses-dominant (in parenthesis) cropped

area in the watershed of Kamech, Cap bon-Tunisia, 2004-2013.

Depth (cm) Texture Slope: < 5% 5-10% > 10% Total

share(%)

Fine 4 (0) 4 (6) 5 (9)

< 60 Medium 3 (3) 7 (13) 6 (5) 31 (37)

coarse 1 (0) 0 (0) 1 (1)

Fine 13 (3) 18 (22) 14 (12)

60-100 Medium 8 (3) 7 (5) 5 (11) 65 (56)

coarse 0 (0) 0 (0) 0 (0)

Fine 0 (0) 0 (0) 0 (0)

> 100 Medium 1 (3) 2 (4) 1 (0) 4 (7)

coarse 0 (0) 0 (0) 0 (0)

Total share(%) 29 (12) 39 (50) 32 (38) 100 (100)
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The average yield of the watershed was estimated by the

systematic method which considers the production of the wa-

tershed as the sum of the productions of all fields and by the

proposed up-scaling method which considers only the results

of the 17 representative fields of cereals and the 14 fields of

pulses to estimate the watershed production using weighting

factor of each soil class.

Figure 5 compares watershed average yield estimated by

both methods during the period 2004–2013 for wheat, barley,

and faba bean. The proposed method, considering only a re-

duced number of representative fields, shows approximately a

similar variations and similar decile distribution (Fig. 6) sug-

gesting that the selected samples capture the spatial variability

for both biomass and grain yield.

The variability of yields between soil classes is related to

rainfall intensity and distribution during the season and soil

depth and texture. The highest-yielding classes are deep soils

with fine texture having large water holding capacity.

Performance of the up-scaling method

Graphical plots and statistical indicators were used for the

comparison of watershed averaged biomass and grain yields

estimated by the twomethods (Fig. 5). A good correlation was

obtained for the three crops.

The coefficient of determination (R2) and the slope of the

linear regression line between estimated values by both

methods are around 1 for the three considered crops. The root

mean square difference (RMSD) for biomass and grain yield,

given in Table 4, shows a good performance of the proposed

methodology with a relative difference between 0.5 and 4.7%.

The variability of yield within the watershed is analyzed

through the decile-decile representation between both up-

scaling methods. Figure 6 shows that the selected fields cap-

tured the variability of soil characteristic within the watershed

that determines productivity.

However, for wheat, a difference is observed for the first

decile D1, which is found to correspond to shallow soils. The

proposed method underestimates the production for this class.

The selected fields representing these soils fail to reproduce all

the variability of yield showing more sensitivity of the model

to water holding capacity and to the rainfall temporal distribu-

tion. Even a minor raise of the soil depth in this group or a

favorable rainfall distribution could have an important effect

on yield. However, since this group has a small area and pro-

portion of the total area, its contribution to the total production

of the watershed is not significant.

0

2

4

6

8

2003 2005 2007 2009 2011 2013

W
h

e
a

t,
 G

Y
 (

t/
h

a
)

Year

D1

D2

D5

D8

D9

(a)

0

1

2

3

4

2003 2005 2007 2009 2011 2013

F
a
b

a
-b

e
a
n

, 
G

Y
  
(t

/h
a
)

Year

D1

D2

D5

D8

D9

(b)

Fig. 4 Time course of grain yield deciles (D1...D9) corresponding to all fields of wheat (a) and faba bean (b) showing a large temporal and spatial

variability of grain yield within the watershed

0.0

2.0

4.0

6.0

8.0

2003 2005 2007 2009 2011 2013
W

h
e
a
t 

G
Y

, 
a
ll
 f

ie
ld

s
 (

t/
h

a
)

W
h

e
a
t 

G
Y

, 
s
a
m

p
le

 f
ie

ld
s
 (

t/
h

a
)

Year

(a)

0.0

2.0

4.0

6.0

8.0

2003 2005 2007 2009 2011 2013

Year

(b)Fig. 3 Patterns of grain yield in

all wheat (226) fields of the wa-

tershed (a) and in the 17 selected

fields (b) during the period 2004–

2013

7



Summary and discussion

Estimation of agricultural productivity by lumped biophysical

crop models is reported to be highly sensitive to the accuracy

of weather, crop, and soil data. Up-scaling to watershed level

can be performed by applying lumped crop model on all fields

of the watershed or using distributed GIS-based models. This

task is time and effort consuming particularly in fragmented

hilly watersheds where high-resolution and accurate data is

lacking. The present work tried to develop an alternative

method where soils of the watershed were classified into 27

typical classes based on texture, slope, and depth and repre-

sentativeness in the watershed is expressed as weighing factor.

Analysis of land use of the considered watershed during 13

cropping seasons showed that in average, cropped area covers

71% of the watershed area and that 70% and 22% of the

cropped area are occupied respectively by cereals and pulses.

Cereals are present on only 17 soil classes and pulses on only

14 soil classes among the 27 potential classes. Relative

weights of soil classes were in the range 0.3–18.2% for cereals

and 0.8–22.7% for pulses.

Simulation results of AquaCrop in the typical 17 and 14

fields were up-scaled to the watershed using the weighing

factor of each soil class representing its share in the total

cropped area. Results for the 10 cropping seasons for cereals

and pulses are compared with those obtained by the reference

method considering all fields and their respective soil

properties.

Both methods showed approximately similar variations

and similar decile distribution for biomass and yield suggest-

ing that the adopted soil classification captured almost all the

spatial variability. The estimations of crop production of the

hilly watershed using the representative sites are highly corre-

lated with those estimated by the systematic method consid-

ering all fields individually. Adopting the proposed method-

ology in our case reduced drastically simulation effort and

time since only 17 fields over 226 and 14 over 87 were con-

sidered respectively for cereals and pulses. Relative difference

between the proposed methodology and the systematic meth-

od did not exceed 2% and 5% for grain yield and 0.6% and

2.2% for total biomass respectively for cereals and pulses. The

RMSD values for the watershed averaged yields are less than

0.1 t/ha for both species. The decile-decile plot shows that the

proposed method captures the yield variability in the water-

shed, except for wheat on marginal shallow soil classes.

The obtained results should be compared with those using

other approaches. Many platforms and models used in hydro-

logic studies allow the simulation of watershed hydrologic

processes using distributed mechanistic or semi-empirical

models and GIS tools, but the crop module of such packages
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is always empirical and does not account for CO2 concentra-

tion. The use of more dedicated biophysical models like

AquaCrop requires a lot of efforts to prepare data for all fields

in appropriate file format. Development of tools to automate

the management of data and parameter files and to control the

simulation runs in AquaCrop-GIS package introduces spatial

dimension to the presentation of the model’s results (Lorite

et al. 2013, 2015). AquaCrop-GIS tool has been designed to

facilitate the use of the AquaCrop model when a high number

of simulations are needed, simplifying the task of generating

input and project files and the management of output files. It

prepares the required inputs, executes AquaCrop, elaborates

the results, and shows them in a geographic information

system.

AquaCrop-GIS allows a drastic reduction of processing

time, but preliminary work to build data and parameter files

remains an important and time-consuming task. Also, the

lumped nature of the model remains as the connectivity of

hydrologic variables between polygons is not implemented.

Recent development of an open-source version of the model

AquaCrop-OS (Foster et al. 2017) which will give the possi-

bility of integrating the AquaCrop model with geospatial dis-

tributed hydrologic models and to use remote sensing data (Jin

et al. 2016; Panday 2014), will likely contribute to improve

model’s accuracy (Han et al. 2019).

Conclusion

The proposed methodology, based on the use of AquaCrop

and the classification/aggregation of topographic and soil

properties for estimating productivity of hilly, highly

fragmented watersheds, gave reasonably good results in com-

parison with the systematic method considering all fields and

their actual soil properties. Its use for long-term simulation of

productivity and its performance in climate change studies

should be considered with reference to the more complex

and time-consuming GIS-based models using lumped crop

models like AquaCrop-GIS or the semi-distributed hydrolog-

ical model like SWAT. The recent release of an open-source

version of AquaCrop which can be run on multiple program-

ming languages and operating systems and support parallel

execution will certainly facilitate the model linkage and inte-

gration in distributed hydrological models for a better simula-

tion of both crop and hydrologic processes. Connection with

remotely sensed data could also be considered in watershed

productivity assessment applications as it allows the use of

actual land occupation and crop cover percentage used for

partitioning evaporation/transpiration variables.
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