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1 ABSTRACT 

2 Odor taste association has been successfully applied to enhance taste perception in foods with 

3 low sugar or low salt content. Nevertheless, selecting odor descriptors with a given associated 

4 taste remains a challenge. In the aim to look for odors able to enhance some specific taste, we 

5 tested different multivariate analyses to find links between taste descriptors and odor 

6 descriptors, starting from a set of data previously obtained using gas 

7 chromatography/olfactometry-associated taste: 68 odorant zones described with 41 odor 

8 descriptors and 4 taste associated descriptors (sweetness, saltiness, bitterness, sourness). A 

9 partial least square analysis allowed identifying odors associated with a specific taste. For 

10 instance, odors described as either fruity, sweet, strawberry, candy, floral or orange are 

11 associated to sweetness, while odors described as either toasted, potato, sulfur or mushroom are 

12 associated to saltiness. A network representation allowed visualizing the links between odor 

13 and taste descriptors. As an example a positive association was found between butter odor and 

14 both saltiness and sweetness. Our approach provided a visualization tool of the links between 

15 odor and taste description and could be used to select odor-active molecules with a potential 

16 taste enhancement effect, based on their odor descriptors.

17

18 KEYWORDS : odor-taste association, odor descriptors, multivariate analysis, sweetness, 

19 saltiness, bitterness, sourness, partial least square analysis, multidimensional scaling.

20

21
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22 INTRODUCTION

23 Considering the rising rate of pathologies such as diabetes or obesity, which are related to 

24 unbalanced diets with an excess consumption of sugar, salt and fat, there is an urgent need to 

25 decrease the content of these ingredients in food while maintaining their sensory acceptability 

26 by consumers. Excessive intake of sodium has undesirable effects on health such as 

27 hypertension and may contribute to other diseases such as cancer and osteoporosis.1 Concerning 

28 sugar, a high consumption of foods rich in free sugar increases the risk of tooth decay. High 

29 intake of sugar-sweetened beverages is highly linked with an unhealthy diet, weight gain and 

30 increased risk of health diseases. The food industry has to integrate these nutritional criteria in 

31 the formulation of food products. 

32 Different strategies have been used for salt and sugar reduction in foods as reviewed.2, 3 One of 

33 the most proposed reduction strategy is the substitution of sodium chloride or sugars by other 

34 molecules. In the case of salt reduction, the substitution of sodium chloride by potassium 

35 chloride often induced the perception of undesired tastes such as bitterness and metallic.4, 5 

36 Simple sugars, such as fructose or sucrose, could be replaced by new molecules, which confer 

37 a sweet taste to the product without the added calories, such as intensive sweeteners. However, 

38 such molecules with an intense sweetness are used in very small amount resulting in losses of 

39 bulk and modification of the final texture. Alternatively, a part of simple sugars can be replaced 

40 by soluble fibres or carbohydrates, as bulking agent, in order to restore the texture. 

41 Other strategies are based on modifications of food texture and structure, which impact on the 

42 dynamic of salt/sugar release in the mouth and as a consequence on taste perception.3, 6 

43 However, in the case of sugar, the effect on sweetness perception was dependent on both the 

44 nature of the texturing agent and of the taste compound.7 

45 Another strategy is to increase the heterogeneity of the food matrix, which was able to increase 

46 both salty and sweet taste without compromising consumer acceptability.8 It was thus observed 
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47 that hard gels were perceived sweeter when sugar distribution was heterogeneous due to a long-

48 lasting in-mouth sucrose concentration, the hard matrix being able to maintain the taste contrast 

49 due to different sucrose concentrations, for a longer time in the mouth during chewing.9 The 

50 authors concluded that the fracture properties of food can be modulated to enhance sweetness 

51 perception, in association with heterogeneous distribution.10 

52 Another innovative strategy relies on the use of aroma-taste interactions and multimodal 

53 integration. This strategy is based on the observation that an odor may evoke a taste 11, 12 while 

54 it does not activate taste receptors.13 This phenomenon results from the co-occurrence of odors 

55 and tastes during food tasting, which, through associative learning, contributes to the 

56 acquisition of taste qualities by odors.13 It has been reported that mentally imagined odor-taste 

57 mixtures showed the same patterns of interaction that actually perceived odor-taste mixtures, 

58 thus demonstrating that taste and odor perception interact at a cognitive level during holistic 

59 flavor processing in the brain.14 This strategy has been applied with success to develop low-salt 

60 foods while maintaining saltiness and consumer acceptability,15 to enhance fat perception in 

61 real foods varying in structure-texture properties16 and to enhance sweet taste perception in 

62 foods 17 especially in sugar-reduced fruit juices.18 

63 Using such an approach needs an adequate selection of odors. As food odors can evoke a 

64 specific taste through mental imagery, it has been possible to select promising odors for 

65 saltiness enhancement based on the expectation taste profiles of food products being evoked by 

66 their names.19 In different volatile compounds databases, such as Flavor-Base20 or Volatile 

67 Compounds in Foods.21 the word “sweet” is often used as odorant descriptor. Considering this 

68 observation that some odors are described with a “smelled taste”, Stevenson et al22 calculated 

69 the correlation between odor sweetness and taste sweetness for 10 odorant molecules and found 

70 that the degree to which an odor smelled sweet was a good predictor for taste tasting. This 

71 association was also used to select odorants able to enhance sweetness in fruit juices, using gas 
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72 chromatography/olfactometry-associated taste (GC/O-AT),18 showing that many molecules 

73 described with a “smelled sweet taste” were able to enhance the perceived sweetness odor of a 

74 fruit juice. However some molecules, such as phenyl methanol, described with a sweet odor, 

75 were not able to enhance a perceived sweetness. Moreover, looking at the data gathered in the 

76 Flavor base,20 most of the molecules described with a sweet taste are also described with a 

77 sweet odor, but some molecules such as bornyl formate, linalyl formate, methyl crotonate or 

78 hydroxyl methyl furfural possess a sweet taste without being described with a sweet odor. There 

79 is thus a need to look for the impact of other odor descriptors than sweet in the odor-taste 

80 associations. We thus propose to apply different complementary multivariate statistical tools to 

81 explore more deeply the links between odor descriptors and taste associated descriptors.    

82 In the aim to look for odors able to enhance some specific taste, we tried to find links between 

83 taste descriptors and odor descriptors, starting from the whole set of data previously obtained 

84 using gas chromatography/olfactometry-associated taste (GC/O-AT).18 The aim of the present 

85 work was to perform multivariate analyses to search for the links between odor descriptors and 

86 taste associated descriptors, starting from a total of 68 odorant zones detected by gas-

87 chromatography/olfactometry of a fruit juice extract, which have been described first with odor 

88 descriptors and second with taste associated descriptors (sweetness, sourness, saltiness, 

89 bitterness). Using natural extracts, we expect to identify new targets and unravel unknown odor 

90 taste associations. These links could then be used for a first selection of odors susceptible to 

91 enhance taste perception. These odor descriptors could then be used to select either single 

92 molecules, mixture of molecules or aromas to be tested for their potential impact on taste 

93 perception. 

94

95 MATERIALS AND METHODS

96 Sample preparation
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97 We used the raw data previously obtained after the extraction of volatile compounds from a 

98 commercial multi-fruit juice provided by Eckes Granini (France), following the vacuum 

99 distillation procedure and dichloromethane extraction described by Barba et al.23 

100

101 Chemicals

102 Standards for identification purposes were obtained from Sigma-Aldrich (Saint-Quentin 

103 Falavier, France): 2-pentanone, methyl-2-methyl-butanoate, ethyl butanoate, ethyl-2-methyl-

104 butanoate, butyl acetate, hexanal, isobutyl alcohol, 3-methyl-1-butylacetate, n-butanol, -

105 myrcene, limonene, 2-methyl-1-butanol, -terpinene, 3-hydroxy-2-butanone, octanal, n-

106 hexanol, 3-hexanol, 2-hexen-1-ol, furfural, decanal, propyl octanoate,  linalool, fenchol, 

107 pentanoic acid, -terpineol, 3-methylthioptopanol, valencene, carvone, -damascenone, 

108 geraniol, hexanoic acid, phenyl methanol, 2-phenylethanol, -ionone, furaneol, -decalactone.

109

110 Gas chromatography analysis

111 The extract was then concentrated with a Kuderna-Danish apparatus and 1 μL (splitless mode 

112 for 0.5 min) was submitted to gas-chromatography/mass-spectrometry (GC/MS) for 

113 compounds identification and to GC/O-AT for odor description18 using the same column (30 m 

114 x 0.32 mm i.d. fused silica capillary column coated with a 0.5 µm layer of polyethylene glycol, 

115 DB-Wax, Agilent, Agilent Technologies, Santa Clara, CA). GC/O-AT was done with 12 

116 panelists used to GC/O experiments. In a first run (first injection of the extract), panelists were 

117 asked to indicate the detection of an odor using a buzzer and to give an odor descriptor. In a 

118 second run (second injection of the same extract), panelists were asked to attribute for each 

119 odor, one of the four associated taste descriptors: sweetness, saltiness, sourness or bitterness. 

120 Detection times, odor descriptors and taste associated descriptors were recorded using 

121 AcquiSniff software (Saint Genès Champanelle, France). The detection frequency (DF) was 
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122 calculated for each odorant zone, for both odor descriptors and taste associated descriptors, as 

123 the percentage of panelists having detected an odor. Only the odorant zones with a DF higher 

124 than 30% were selected, to limit the false detection risk.24 For each selected odorant zone, we 

125 took into account all the odor descriptors given by the 12 panelists. For taste associated 

126 descriptors, we also calculated the DF for each specific taste: sweetness (%), sourness (%), 

127 saltiness (%), bitterness (%), these values are used in the multivariate analyses. 

128

129 Data preparations

130 From the whole set of data previously published, we selected 68 odorant zones (Table 1). A 

131 total of 48 compounds have been identified by their mass spectra and injection of standard 

132 compounds18 and the 20 remaining zones correspond to unknown compounds or compounds 

133 present in trace amount.  Even if the molecules present in some of the odorant zones have not 

134 all been identified, in the present paper, we used the odor descriptors given by the panelist for 

135 each odorant zone, to find links between these odor descriptors and the taste associated 

136 descriptors. From the odor descriptors given by the 12 panelists in the 68 odorant zones, a list 

137 of 70 odor descriptors was extracted, of which 7 were present only in the description of one 

138 odorant zone and 12 in only 2 odorant zones. Odor descriptors only present in one or two 

139 odorant zones were not considered for further analyses. The multivariate analyses were done 

140 with 45 variables, the number of occurrences of each of the 41 remaining odorant descriptors 

141 and the DF of each of the 4 associated taste descriptors (sweetness, saltiness, bitterness, 

142 sourness).

143 This first matrix (Supplementary Table S1) was transformed into a binary matrix (1 when the 

144 odor descriptor or the taste associated descriptors appeared in the odor description and a 0 

145 otherwise). This binary matrix was used to build a co-occurrence matrix (Supplementary Table 

146 S2). 
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147

148 Computational analysis and statistical methods

149 A Partial Least Square (PLS) analysis was performed on the 68 odorant zones, to explain the 

150 taste association descriptors (Y variables: DF for each associated taste) by the odor descriptors 

151 (X variables: number of occurrence of the 41 odor descriptors) (Supplementary Table S1). 

152 A multidimensional scaling (MDS) was performed to determine the level of similarity of the 

153 odorant zones based on their odor descriptors. The calculation involves a dissimilarity matrix 

154 obtained using the Euclidian distances between the odorant zones and based on the frequency 

155 of odor descriptors. We used the coordinates of the first three dimensions of the MDS to display 

156 the odorant zones in a three‐dimensional scatterplot. The 3D graphical visualization was 

157 obtained using Miner3D Enterprise (version 7.3.3). In addition, the DF for each of the four taste 

158 descriptors were used for graph depictions.

159 PLS was performed with XLStat (Addinsoft, Paris, France) and MDS with R version 3.0.1.25

160

161 Network visualization

162 The associations between odor descriptors and taste descriptors were visualized using a network 

163 of odorant and taste descriptors. For that purpose, we first calculated the co‐occurrence matrix 

164 (R 3.0.1 25) of the odorant and taste descriptors using the binary matrix made of the 68 odorant 

165 zones and the 45 descriptors (41 odor descriptors and 4 taste descriptors). The co‐occurrence 

166 matrix is a square 45x45 matrix in which the off‐diagonal terms are the number of odor-taste 

167 pairs in the description of an odorant zone, while the diagonal terms are the number of all 

168 occurrences of each odor and taste descriptors (Supplementary Table S2). Cytoscape26 was used 

169 to build a network of the links between odor descriptors and taste-associated descriptors. To do 

170 so, the square matrix was transformed into a two-way table using Statistica (TIBCO Software 

171 Inc. 2017).
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172

173 RESULTS 

174 The 68 selected odorant zones with DF odor values higher than 30% are listed in Table 1 with 

175 their retention indices, the name of the corresponding volatile compounds, if identified, or the 

176 number of the unknown compound. For each odorant zone, all the odor descriptors given by 

177 the 12 panelists are listed with the number of occurrence when higher than the unity. We have 

178 removed from the list the descriptor “unknown”, which was given by panelists who were not 

179 able to describe the perceived odor. This list of descriptor was used to build the Euclidian 

180 matrix. For each odorant zone, two values are given for DF. First, the detection frequency for 

181 the odor (DF odor %), which is the percentage of panelists having smelled the odor during the 

182 first run of GO/O and the detection frequency for the associated taste descriptor (DF taste %) 

183 during the second GC/O-AT run. Second, we calculated the DF for each of the four taste 

184 attributes, sweetness (%), sourness (%), saltiness (%), bitterness (%) and used these values for 

185 the statistical analyses. The values in bold refer to the main associated taste. A total number of 

186 33 odorant zones were mostly associated with sweetness (13 with a value higher than 40%), 16 

187 with sourness (5 with a value higher than 40%), 10 with saltiness (3 with a value higher than 

188 40%) and 21 with bitterness (3 with a value higher than 40%).

189

190 Evaluation of taste association by odor descriptors using PLS 

191 The PLS analysis was done on the 68 odorant zones, using the occurrences of each of the 41 

192 odor descriptors as X variables and the DF for each associated taste as Y variables. We verified 

193 that the representation of the remaining 41 odor descriptors was the same as on the PLS 

194 performed with the 63 odor descriptors present in at least 2 odorant zones (supplementary 

195 Figure S1). Figure 1A shows the projection of the variables on the two first components. Even 

196 if the model does not account for a high level of variation, the 4 associated tastes are well 
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197 discriminated in the first plane of the PLS map represented by the two first components, 

198 sweetness on the positive part of component 1, bitterness on the negative part of component 1, 

199 sourness and saltiness on the positive part of component 2 and also on the  negative part of 

200 component 1. Sweetness is better represented on this first plane than the other tastes. This can 

201 be explained by the fact that the odorant zones are separated from a fruit juice extract and that 

202 most of them are described as fruity. The odor descriptors fruity, sweet, strawberry, candy, 

203 floral, orange are positively correlated with component 1 and thus associated to sweet taste 

204 perception. The odor descriptors toasted, potato, mushroom and sulfur are negatively correlated 

205 with component 2 and thus associated to saltiness. The odor descriptors sour, unpleasant, cheese 

206 and acid are positively correlated with component 2 and thus associated to sourness. The odor 

207 descriptors hot plastic, plastic and spicy are negatively correlated with component 1 and thus 

208 associated to bitterness. A PLS model was built to predict the taste association by a linear 

209 combination of the odor descriptors. Table 2 presents the coefficients affected to each odor 

210 descriptor to explain one taste descriptor. The odor descriptors are ranked according to the 

211 decreasing number of their total occurrences. The odors with the highest association with 

212 sweetness are strawberry, red fruits, sweet, citrus, leather, butter, orange, foot, chemical, candy, 

213 fruity and floral; the odors with the highest negative association with sweetness are sour, sulfur, 

214 hot plastic, land, plastic, wood, metallic, toasted, potato and smoky. The odors with the highest 

215 association with  saltiness are sulfur, potato, toasted, smoky, land, butter and mushroom: the 

216 odors with the highest negative association with saltiness are citrus, animal, peanut, strawberry, 

217 dust, metallic, grass, vegetal, unpleasant, plastic, red fruits, foot, sweet and chemical. The odors 

218 with the highest association with sourness are sour, sweaty, hot plastic, metallic, lemon, land 

219 and solvent; the odors with the highest negative association with sourness are peanut, 

220 strawberry, toasted, leather, foot, chemical and butter. The odors with the highest association 

221 with bitterness are animal, metallic, peanut, plastic, wood, grass, hot plastic, vegetal and dust; 
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222 the odors with the highest association with bitterness are butter, strawberry, orange, cake, acid, 

223 red fruits, leather and lemon. These associations are only indicative but can be used to predict 

224 a potential effect on taste modulation. Most of the odors positively associated with sweetness 

225 are negatively associated with saltiness, except butter, spicy and leather which are positively 

226 associated to both sweetness and saltiness. These associations were verified on the plane 

227 represented by component 1 and 3 (Supplementary Figure S2).

228 Looking at the odorant zones (Figure 1B), the molecules, when identified, with a high positive 

229 correlation with component 1 are the most associated with sweetness, ethyl 2-methylbutanoate 

230 (E2MB) is described with fruity, apple, strawberry, candy and sweet odor descriptors (Table 

231 1); methyl 2-methylbutanoate (M2MB) is  described with fruity and sweet notes; linalool is 

232 described with floral, fruity, sweet and candy notes; (E)-β-ocimene (-Oci) is described with 

233 fruity, floral and strawberry notes; phenylmethanol (PhM) is described with floral, fruity, sweet 

234 and candy notes; β-damascenone (-Dam) is described with fruity, floral and sweet notes; -

235 decalactone (-Dec) is described with floral, fruity and sweet notes; ethyl butanoate (EB) is 

236 described with fruity, floral and sweet notes. The compounds the most associated with sourness 

237 (positive correlation with component 2) are pentanoic acid (PA), described as acid, sharp, 

238 cheese and unpleasant; allo-ocimene (allo-O), described as green, metallic and sour; hexanal 

239 (HEXA) described as green, herb and floral. The compounds the most associated with bitterness 

240 (negative correlation with component 1) are tricosane, described as plastic and petrol; isobutyl 

241 alcohol (IBA), described as plastic, hot plastic, spicy and wood. The compounds the most 

242 associated with saltiness (negative correlation with component 2) are furfural, described as 

243 potato, toasted and sulfur; 2-hexen-1-ol (2Hexe), described as mushroom, toasted and sulfur; 

244 1-octen-3-one (1o3o), described as mushroom and n-butanol (Buta), described as toasted and 

245 peanut. 

246
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247 Visualization of the relationships between odor descriptors and associated tastes

248 In order to better understand the associations between odor descriptors and tastes, we build a 

249 network characterized in terms of nodes and edges or links, following a previous approach on 

250 odor notes.27 In our case, the nodes are odor and taste descriptors and the edges are the odorant 

251 zones. We used a total of 45 descriptors (41 odorant descriptors and 4 taste descriptors) to 

252 produce a list of 2025 pairs of descriptors by stacking the 45x45 co-occurrence matrix. After 

253 excluding the diagonal elements and the pairs zero without links, 1098 pairs remained. We 

254 considered only the pairs between odor and taste descriptors, and after removing the duplicate 

255 pairs below the main diagonal (for any X and Y odor descriptors, the pairs XY and YX are 

256 equivalent), the network displayed 143 odor-taste pairs. The network is illustrated in Figure 2, 

257 which represents the relationships between the odor and the taste descriptors. This 

258 representation allows a rapid visualization of the odor taste associations.

259 Many odor descriptors are linked to all tastes, some are linked to several but not all tastes, but 

260 some are linked to only one taste dimension. In Figure 2 the size of each odor descriptor depends 

261 on the number of odorant zones in which it was present. The color used to fill the circle of each 

262 odor descriptor reflects the main associated taste and the color used for the border reflects the 

263 second most associated taste. In those cases in which the odor is equally associated with every 

264 taste, the color is grey. Different types of lines are used to illustrate the number of occurrences 

265 of the odor-taste associations.

266 Only the strawberry odor descriptor is linked to one single taste (sweetness), which explains its 

267 high positive value in the regression to sweetness perception. Three odor descriptors are only 

268 linked to two tastes: orange, candy and red fruits, which are linked mainly to sweetness and to 

269 a lesser extent to sourness. The descriptors linked to three tastes can be discriminated by the 

270 taste to which they are not linked to. Caramel is not linked to bitterness. Butter, mushroom and 
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271 peanut are not linked to sourness. Hot plastic, potato and sour are not linked to sweetness. Grass, 

272 citrus, lemon, metallic and dust are not linked to saltiness. 

273 The other odor descriptors are linked to all the tastes. Fruity and floral are the most cited 

274 descriptors with respectively 79 and 70 total number of occurrence and present in respectively 

275 35 and 37 odorant zones. They are mainly linked to sweetness, then to the three other tastes 

276 without any distinction. Cake and rose are mainly associated to sweetness but with only few 

277 occurrences. Among the other odor descriptors mainly associated to sweetness, the second 

278 associated taste is sourness for sweet and solvent, bitterness for vegetal, chemical and foot and 

279 saltiness for leather. Only sweaty is associated to sourness in the first place. The odors green, 

280 plastic, herb, wood and animal are associated to bitterness, while they are also associated to 

281 saltiness for wood, sourness for animal and both sourness and sweetness for green and herb. 

282 Toasted, cheese, sulphur, smoky and land odors are mainly associated to saltiness and toasted, 

283 sulphur and land are also associated to bitterness. Unpleasant, sharp, spicy and acid do not 

284 present any specificity towards a given taste. 

285

286 Allocation of odorant zones according to their odor descriptors and associated taste

287 The multidimensional scaling (MDS) approach allows the visualization of the similarity 

288 between elements of a dataset dispatched in an N‐dimensional space. MDS is one of the 

289 methods that allows dimensionality reduction and producing meaningful representations of 

290 high‐dimensional data into a lower‐dimensional space (usually two or three dimensions). MDS 

291 carried out on the dissimilarity matrix obtained using the Euclidian distance between the 

292 odorant zones, allowed to determine the level of similarity of the odorant zones based on their 

293 odor descriptors. The distances and coordinates calculations were performed using the 

294 frequency of odor descriptors; in addition, the DF for each of the four taste descriptors were 

295 used for graph depictions.
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296 Figure 3A and 3B present the projection of the MDS 3D space of odorant zones. We decided 

297 to focus only on the links between sweetness and two odorant descriptors, fruity and floral 

298 which have the greater total number of occurrences. The size of the plots depends on the 

299 percentage of sweetness DF. The fruity odors are represented on Figure 3A by a color gradient 

300 depending on their occurrence in the odorant zone. They are more perceived in the odorant 

301 zones present on the negative part of axis 1. The floral odors (3B) are represented by a color 

302 gradient depending on their occurrence in the odorant zone, they are more perceived in the 

303 odorant zones present on the positive part of axis 3 and negative part of axis 2. The odorant 

304 zones with a high DF for sweetness are mainly located on negative part of V1, due to a greater 

305 number of occurrence for fruity and some on the positive part of axis 2, due to the presence of 

306 floral odors, but some are in the middle of the space due to links between sweetness and other 

307 odor descriptors as was highlighted by Cytoscape Network. 

308

309 DISCUSSION 

310 The different data analysis approaches followed in this study allowed finding consistent 

311 relationships between odor descriptors and taste descriptors. As the data used come from an 

312 extraction of volatile compounds from a fruit juice, the odor descriptors cover a specific 

313 domain. Most of the odors are associated with sweetness, which explains that sweetness is more 

314 explained in the PLS regression than the other taste descriptors. However, we were also able to 

315 find links with sourness, saltiness and bitterness, but starting from another type of extract than 

316 fruit juice described with another set of descriptors, we could find other associations, which 

317 could lead to other links between odor descriptors and tastes.

318 A lot of the literature on odor-taste interactions relies on sweetness perception. A review by 

319 Valentin et al28 presents the different studies reporting an effect of odor on sweet perception. 

320 The most studied aroma is strawberry which has been reported to enhance sweetness perception 
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321 for example in model systems,29, 30 in whip cream31 and in fruit juice.18 Our results show that 

322 the strawberry descriptor is only associated with sweetness and has a high positive value in the 

323 regression to sweetness perception. Such a strong association between strawberry odor and 

324 sweet taste can be explained by associative learning,22 due to simultaneous exposition of 

325 strawberry odor and sweet taste in a great variety of food products such as jams, jellies, 

326 marmalades, yogurts, ice creams or candies. Other odor descriptors are mainly associated with 

327 sweetness, such as caramel, which was already found to increase sweetness perception in model 

328 solutions22 or ciders,32 but the link between caramel and sourness is not surprising as caramel 

329 odor was previously found to increase both sweetness and sourness perception.22 Fruity odors, 

330 such as orange, red.fruits and lemon are potential candidates for sweetness enhancement. They 

331 have a high positive value in the regression to sweetness perception and a negative value for 

332 saltiness and bitterness. Indeed, a sweetness enhancement has been observed for orange and 

333 raspberry.28 The odor descriptor sweet is, as expected, associated with sweetness but also with 

334 sourness, which can be explained by the fact that fruit products are often perceived both sweet 

335 and sour. 

336 Concerning lemon odor, Schifferstein and Verlegh30 observed that the sweetness enhancing 

337 effect was lower than with strawberry odor. Our results show that lemon odor was mainly 

338 associated with sweetness but also with sourness. In water solution, a significant enhancement 

339 of both sweetness and sourness was observed by addition of lemon flavor ,33 whereas in acidic 

340 solutions, other authors did not found any effect of the addition of lemon odor on sourness 

341 perception.34 These different results are in agreement with other observations, that the effect of 

342 odor on sweetness/saltiness enhancement is higher at low to medium intensities of the tastes.16, 

343 32, 35 It can be noticed that even if lemon and citrus are both associated with sweetness, as 

344 illustrated by the positive contribution in the regression, lemon is secondly associated with 

345 sourness with a positive contribution to sourness and a negative contribution to bitterness in the 
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346 regression, whereas citrus is secondly associated with bitterness, with a positive contribution to 

347 bitterness in the regression. These results can be explained by the fact that lemon extract are 

348 perceived as sour and sweet36 and that some citrus fruit drinks such as grapefruit are perceived 

349 sweet and bitter.37

350 Only few odors were found to be mainly associated with sourness. As expected, the odor 

351 descriptor sour is mainly associated with sourness, but not with sweetness. Metallic and sweaty 

352 odor descriptor are associated with sour taste, metallic is also associated with bitterness and 

353 sweaty also associated with sweetness. To the best of our knowledge, there is no information 

354 in the literature on the effect of addition of such odors on sourness perception. The links 

355 observed in the present study could then be used to test the effect of molecules described with 

356 strong metallic odor on sourness enhancement.

357 Even if the odorant zones, which served as a basis for this study, were isolated from a fruit 

358 extract, some odorant zones were described with odor descriptors mainly associated with 

359 saltiness, such as toasted, smoky, sulfur, cheese, potato, butter, leather and mushroom. This 

360 association was already mentioned for similar odors such as bacon, cheese or peanuts and was 

361 used to enhance saltiness intensity in water solution by orthonasal and retronasal perception 19. 

362 Another study on odor induced saltiness enhancement showed that at least 15% salt reduction 

363 can be compensated by addition of either beef or chicken bouillon aroma and that the odor 

364 descriptors mainly contributing to this enhancement were broth, meaty and roasted 38. Soy sauce 

365 odor was also able to induce salty taste in water solution with a very low amount of sodium 

366 chloride, below the detection threshold.39 It can be noticed that some odor descriptors such as 

367 smoky, sulfur, potato could also be associated to umami. This taste has not been described by 

368 our panel due to a lack of familiarity for this specific taste. The associations evidenced in the 

369 present paper could be used to select molecules or mixtures of molecules with smoky, potato 
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370 or sulfur odors and test their potential enhancement effect on both saltiness and umami 

371 perception. 

372 The positive association of the butter odor with both sweetness and saltiness can be explained 

373 by the consumption of both fat-sweet and fat-salty foods. Actually, addition of a butter aroma 

374 was found to enhance fat perception in model cheeses with an additional small effect on 

375 saltiness enhancement.16 In a similar way, spicy descriptor is linked to sweetness and saltiness 

376 likely because of the consumption of both spicy-sweet and spicy-salty foods. 

377 The links we observed between some odors (green, grass, vegetal) and bitterness have already 

378 been reported through the increase in bitterness perception in a model olive oil after addition of 

379 cis-3-hexenol, a compound with a grass odor.40 Considering our results, other odor descriptors 

380 could be good candidates for bitterness enhancement, such as plastic, wood, herb and animal. 

381 The impact of odors on bitterness has not been the subject of many studies.41s In the case of 

382 bitterness reduction in food products, such odors have to be discarded from the product. In the 

383 aim to reduce bitterness in foods, our network representation can allow to select odors which 

384 have no link or only few links with bitterness and then test the effect of the corresponding odor-

385 active compounds.   

386 A focus was done in the present paper on two odor descriptors with the greatest number of 

387 occurrence in our odorant zones, fruity and floral, due to the nature of the extract, from a 

388 multifruit juice. Sweetness perception can be linked either with fruity or with floral, depending 

389 on the odorant zone. 

390 Our results also point out other negative associations. Orange, candy and red fruits are not 

391 linked with saltiness and bitterness, which explains their negative value in the regression for 

392 saltiness and bitterness. Some descriptors are not linked with one specific taste. Caramel is not 

393 linked with bitterness, which explains its negative impact on bitterness. Butter, mushroom and 

394 peanut are not linked to sourness and have all a negative impact on sourness. Hot plastic, potato 
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395 and sour are not linked to sweetness and have all a high significant negative impact on 

396 sweetness. Grass, citrus, lemon, metallic and dust are not linked to saltiness and have all a high 

397 significant negative impact on saltiness, except lemon, which has a moderate negative impact 

398 on saltiness. These odors could be then tested for an eventual masking effect of undesirable 

399 tastes such as an excess of bitterness or sourness.

400

401 In the present paper the odor descriptors analyzed for their taste association have been generated 

402 from a multifruit juice extract. The use of different multivariate analyses allowed us to highlight 

403 some general trends on odor-taste associations, some of which have already been used in 

404 experiments to enhance taste perception. The PLS model was used to find the odor descriptors 

405 which explain one specific taste descriptor, in a multidimensional space. The network 

406 representation using Cytoscape allowed visualizing all the links between odor descriptors and 

407 taste associated descriptors, with their occurrences and thus facilitated the interpretation of the 

408 PLS representation. The MDS representation, focused on the distances between the odorant 

409 zones, allowed a better visualization of the impact of specific odor descriptors on sweetness 

410 perception. A generalization of this approach to other extracts obtained from different products 

411 (fruits, vegetables) could increase the number of odor descriptors and their links with taste 

412 descriptors. The proposed approach is simple to handle and could be a good way for the 

413 selection of odor-active molecules with an impact, either positive or negative, on taste 

414 perception. The relationships thus formalized between odor and taste descriptors could then be 

415 used to predict a potential odor-induced taste enhancement or odor-induced taste masking in 

416 model system or real foods. These predictions could then be validated in model systems using 

417 pure molecules, mixture of molecules or natural extracts. 

418
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424 SUPPORTING INFORMATION

425 Supplementary Figure S1: Partial least square (PLS) regression with 67 variables and 68 

426 individuals. 1A: projection of the 4 taste descriptors (Y variables) and the 63 odor descriptors 

427 (X variables) on components 1-2. 1B: projection of the 68 odorant zones (individuals) on 

428 components 1-2.

429 Supplementary Figure S2: Partial least square (PLS) regression with 45 variables and 68 

430 individuals. A: projection of the 4 taste descriptors (Y variables) and the 41 odor descriptors 

431 (X variables) on components 1-2. B: projection of the 68 odorant zones (individuals) on 

432 components 1-2.

433 Supplementary Table S1: matrix used for partial least square (PLS) analysis and 

434 multidimensional scaling (MDS), 68 odorant zones as lines and 41 odor descriptors and 4 

435 associated taste descriptors as columns.

436 Supplementary Table S2: co-occurrence matrix build from Table SI and used for Cytoscape 

437 network.
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Figure caption

Figure 1: Partial least square (PLS) regression with 45 variables and 68 individuals. 1A: 
projection of the 4 taste descriptors (Y variables) and the 41 odor descriptors (X variables) on 
components 1 and 2. 1B: projection of the 68 odorant zones (individuals) on components 1-2.

Figure 2: Network representation of the links between odor descriptors (circle) and taste 
associated descriptors (octagon). The nature of the line varies as a function of the number of 
occurrences. The size of each odor descriptor depends on the number of odorant zones in which 
it is present. The file color of the odor descriptors varies as a function of the number of 
occurrences with each taste: blue if the odor is mainly associated with sweetness, green for 
saltiness, violet for sourness, light brown for bitterness. The border color is that of the second 
associated taste, it is grey if the odor is equally associated to the three other tastes and dark blue 
if the second associated taste is equally sourness and sweetness.

Figure 3: Allocation of odorant zones according to their odor descriptors and associated 
sweetness: Multidimensional scanning (MDS) representation in a 3 dimensional space. The 
color represents the occurrence of fruity (3A) floral (3B), the size of the plots depends on the 
percentage of sweetness detection frequency in the odorant zone.
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Table 1: Odorant zones detected by gas chromatography/olfactometry (GC/O) and gas chromatography/olfactometry-associated taste (GC/O-AT), 
with the list of odour descriptors, the detection frequency (DF) (percentage of panellists having given an odorant descriptor) during the GC/O run, 
the detection frequency (percentage of panellists having given a taste associated descriptor) during the GC/O-AT run and the detection frequency 
for each associated taste. Values in bold refer to the main associated taste. 

RIa Abbrev. Compoundb Odor descriptorsc DF odor 
(%)

DF 
taste 
(%)

sweetness 
(%)

sourness 
(%)

saltiness 
(%)

989 uk1 unknown
fruity (3), apple, grenadine, peach, caramel, sweet, strawberry (2), 
butter, floral 83 67 67 0 0

993 2PE 2-pentanone (St) fruity, cheese (3), caramel, green (3), butter (2)  92 67 25 8 33
1001 uk4 unknown plastic (3), solvent, unpleasant, almond, toasted 75 67 0 8 8

1015 M2MB methyl-2-methyl 
butanoate (St)

fruity (8), banana, sweet, candy, acid, floral (2) 
92 75 58 17 0

1043 EB Ethyl butanoate (St)
fruity (4), orange, floral (2) sweet, cheese, red fruits, ripe fruit, sweaty, 
foot 100 75 50 17 0

1058 E2MB ethyl-2-methyl 
butanoate (St)

fruity (6), apple (3), strawberry, candy (2), sweet (2), lemon, fusil
100 75 58 8 0

1081 BA butyl acetate (St) lemon, solvent (4), alcohol, sour, sweet, caramel 75 67 8 42 8

1087 HEXA hexanal (ST)
green (7), herb (5), floral (2),  fresh, herbal, solvent , cut grass,  

100 75 8 25 17

1103 IBA Isobutyl alcohol (St)
spicy, vegetal, wood (2), plastic, glue, hot plastic, burnt, glue

100 83 0 17 17

1112 uk6 n.d.
unpleasant, toasted, sulfur, plastic, herb, green, leek, hot plastic, 
asparagus, 75 67 0 25 8

1130 M3BA 3-methyl-1-butyl 
acetate (St)

fruity (4), banana (3), solvent (2), sweet, candy (3) 
75 67 25 33 0

1147 uk7 n.d. green (3), vegetal, herb, grass, leather 42 42 25 0 8
1157 Buta n-butanol (St) toasted, peanut, solvent, chocolate, foot 33 42 17 0 8
1171 -Myr β-myrcene (St) herb (2), green, sour, floral, sweet 50 67 0 42 0

1206 Limone limonene (St)
spicy, green, lemon (2), citrus, metallic, aromatic herbs, sulfur

67 58 17 17 8
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1218 M2B 2-methyl-1-butanol 
(St)

acid, cheese, wool, chocolate, paint, rose, nutty, solvent (2), chemical, 
toasted, sport room, foot, fruity 92 50 17 0 17

1242 -Oci (E)-β-ocimene (MS) fruity (6), strawberry, floral (2), lemon, ripe fruit, solvent 67 75 75 0 0
1248 γ-Ter γ-terpinene (St) green, green tea, potatoe, animal, bread, plastic 50 33 0 8 8

1291 3H2B 3-hydroxy-2-
butanone (St)

fruity, cream (2), cheese, toasted, baked, green, floral, butter, wood
67 50 25 8 17

1295 Octa octanal (St) sharp, green, floral (3), lemon, fruity, citrus, 58 42 25 8 8
1307 1o3o 1-octen-3-one (MS) floral, mushroom (10), plastic 100 83 0 8 50

1332 uk8 unknown
toasted, peanut, mushroom (2), land, sweet, floral, unpleasant

75 58 25 0 17

1361 Cyclop 2-cyclopenten-1-one 
(MS)

fruity, floral, rose
33 33 17 8 0

1367 Hexa n-hexanol (St)
floral (6), green (3), grass, herb (2), solvent, white flower, violet, 
fruity 92 67 33 17 0

1381 allo-O allo-ocimene (MS)
green (3), metallic (2), aldehyde, floral,  animal, plastic, herbal, bitter, 
sour, vegetal 100 83 0 25 8

1388 3Hexe 3-hexenol (St)
green (4), grass, land, herb, unpleasant, gas, rotten, drain, sweet, fruity

83 33 0 8 0

1401 uk9 n.d. floral (3), cork, herb, plastic 50 42 25 8 0

1406 uk10 n.d.
fruity (2), floral, medicine, aspirin, leather, citrus, solvent

75 42 17 8 0

1412 2Hexe 2-hexen-1-ol (St) toasted, mushroom (6), floral, sulfur 75 50 0 8 25
1438 uk3 unknown fruity, mushroom, potatoe (3), mold, sulfur 67 58 0 0 42

1442 Lin-Ox linalool-oxide (MS)
green (2), grass, wood, earth, dust, potatoe, floral, opium poppy, 
butter, earth 75 33 0 8 8

1461 furfural furfural (St)
toasted, fruity, potatoe (5), mash potatoes, exotic fruit, sulfur

83 67 0 0 58

1492 Deca decanal (St) fruity (3), floral, solvent, chemical, burnt meat 50 50 17 8 8

1515 PO Propyl octanoate 
(St)

green (2), land, paper, warm plastic 58 75 8 42 25
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1544 MMTP methyl-3-methylthio 
propionate (MS)

green, wood, paper (2), dust, animal, unpleasant
75 50 0 8 0

1557 linalool linalool (St)
floral (6), pleasant, fruity (2), sweet, pineapple, apricot, cake, candy, 
butter 92 75 67 8 0

1573 EMTP ethyl-3-methylthio 
propionate (MS)

acid, floral (2), medicine, aspirin, candy, fruity (3), orange
58 42 25 17 0

1594 Fenchol fenchol (St) floral, green (2), melon, green vegetable, grass 58 67 8 25 8

1603 4M2-5DF
4-methoxy-2,5-
dimethyl furanone 
(MS)

sharp, green, vegetal, sweet, fruity (3), caramel (2), cereal, muesli, 
cake, hot bread 75 83 25 25 17

1637 4Ter 4-terpineol (MS) mushroom, wood, humid, meat, toasted 42 33 0 8 25

1648 uk5 unknown
unpleasant (2), acid, floral, rose, cheese (4), urine, sour, lemon, dust, 
dry flowers, sweaty 92 58 0 50 8

1654 uk11 n.d. toasted, cheese, fruity 42 42 0 8 17

1688 PA pentanoic acid (St)
acid (4), sharp, cheese (9), animal, unpleasant (3), vomit, sour, spicy, 
plastic warm 100 75 0 42 25

1703 αTerp α -terpineol (St) floral (2), green, hot plastic, peanut, hot bread 50 42 0 8 0

1710 3MTP 3-methylthio 
propanol (St)

wood, aromatic herbs, hot plastic
33 33 8 0 17

1726 Valencene valencene (St) green, anise (3), floral (2), fruity 50 58 17 25 17

1730 uk12 n.d.
green (3), vegetal, fruity (2), cat urine (2), herb, sweaty, unpleasant, 
mustard, urine, leaves cassis, floral, passion fruit 92 58 17 33 0

1740 Carvone carvone (St) green, insect, plastic, red fruit, fruity 33 33 8 8 8
1780 uk13 n.d. floral (4), rose (2), green (2), vegetal (2), lemon 58 75 25 25 8
1821 uk14 n.d. floral (2), vegetal, wood, toasted, fruity, acid 67 58 17 0 17
1829 -Dam β-damascenone (St) fruity (6), sweet, peach, floral, old fruit, cherry, red fruit 75 50 50 0 0
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1852 Geraniol geraniol (St)
green (2), sharp, fruity, rhubarb, animal, bitter, citrus, smoked, 
vegetal, smoke, plastic, bitter, rhubarb, sulfur, unpleasant 92 83 17 33 8

1861 HA hexanoic acid (St) metallic, citrus, unpleasant 33 50 25 17 0

1870 uk15 n.d.
toasted, smoky, burnt, sweet, cotton candy, smoky, floral, 

67 42 0 0 33

1896 PhM Phenyl methanol 
(St)

sweet, candy, floral (4), fruity (3), fresh, green, orange 75 42 42 0 0

1921 PhE 2-phenyl ethanol 
(St)

fruity, floral (2), rose, mushroom (3) 67 67 58 0 8

1951 -Ion (E)-β-ionone (St)
spicy, cinnamon, food, roasted meat, solvent, floral, smoky, plastic, 
leather, fruity 58 92 42 17 33

2014 uk16 n.d. wood, potatoe, humid, metallic (2), bread 67 67 0 33 0
2037 uk2 unknown unpleasant, dust, fruity (2), candy 50 50 42 0 0
2046 furaneol furaneol (St) caramel (6), cotton candy, sweet, sugar, jam 75 42 42 0 0
2143 uk17 n.d. sweet, floral, plastic, toasted, candle, fruity 50 33 17 17 0

2160 -Dec γ-decalactone (St)
floral (3), menthol, fruity (3), unpleasant, sweet (2), citrus

75 58 42 8 0

2174 Eugenol eugenol (MS)
petrol, spicy (2), pepper, clove (2), medicine, chemical, vegetal

50 50 33 8 8

2209 uk18 n.d. mushroom, butter, cake, cinnamon, herb, vegetal 42 50 17 8 8
2234 Elemicin elemicin (MS) floral (3), green, solvent, honey, fruity 58 33 17 8 0

2248 uk19 unknown
mushroom, floral, fruity, chemical, citrus, wet earth, herb, vegetal

58 42 8 8 0

2284 uk20 unknown
plastic, smoky, wood, pepper, sharp, spicy, sweaty, floral, vegetable 
soup, leather, felt pen 67 58 8 0 17

2303 Tricosane tricosane (MS) petrol, animal, plastic, herb 33 50 0 8 8

a: RI  calculated retention index of the compound using a series of n-alkanes injected on a DB-Wax column under identical chromatographic 
conditions.
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b: mode of identification, MS: tentatively identified by retention index (RI) compared to data from VCF 16.1 and mass spectrum (MS) verified by 
comparison with mass spectra database (NIST; INRAMass: CSGA/J. Maratray), St: RI and MS verified with literature data and by injection of 
pure standard in the same condition, (data already published in Barba et al., (16, 21), n.d. means not detected. 
c: in brackets, the number of citations of the odor descriptors by the panelists if  >1
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Table 2: Partial least square (PLS) regression to explain the taste descriptors by odor 
descriptors: for each odor descriptor the number of total occurrences and the number of odorants 
zones in which it has been described are given with the regression coefficients for each 
associated taste.

taste descriptornb 
occurrences

nb odorant 
zones

odor 
descriptor sweetness sourness saltiness bitterness 

  Constant 17,523 11,099 13,413 13,431
79 35 fruity 2,328 -0,353 -0,899 -1,086
70 37 floral 2,082 -0,351 -1,306 -0,579
49 25 green -1,684 1,593 0,083 0,711
25 8 mushroom -1,420 -0,205 2,291 -0,487
20 7 cheese -0,121 0,881 1,386 -1,364
19 17 sweet 4,005 0,899 -2,255 -1,878
17 11 herb -2,097 1,925 -1,110 1,845
17 12 solvent -1,685 2,701 0,299 0,138
15 13 plastic -3,555 -0,975 -2,484 5,228
15 12 unpleasant 0,822 1,093 -2,474 0,649
13 13 toasted -3,708 -3,590 5,726 0,106
12 11 vegetal -1,745 1,378 -2,630 2,911
11 5 caramel 2,015 -0,735 -0,268 -1,182
11 5 potato -3,437 -0,417 6,095 -1,646
10 7 candy 2,387 2,068 -1,905 -1,263
10 9 wood -3,494 -2,012 -1,117 4,541
9 6 acid 0,898 0,991 1,306 -2,257
8 7 lemon 1,543 3,176 -0,644 -2,054
7 6 butter 3,363 -2,329 3,197 -4,319
7 7 citrus 3,873 -1,017 -5,668 1,485
7 6 spicy 1,711 -1,998 0,836 -1,396
6 6 animal -2,074 -0,335 -5,721 6,066
6 6 hot plastic -5,895 2,952 0,767 3,044
6 4 metallic -3,591 2,874 -5,004 5,676
6 5 rose 1,750 1,016 -0,634 -1,411
6 4 smoky -2,498 0,068 4,055 -1,084
6 6 sulfur -6,885 -0,295 7,439 0,087
5 5 chemical 2,402 -2,354 -2,022 0,499
5 5 grass 0,210 -0,819 -3,974 3,195
5 5 sharp -0,005 1,059 1,268 -1,544
5 5 sour -8,975 13,036 0,921 1,486
5 5 sweaty -0,908 3,186 -0,914 0,175
4 4 dust 2,091 -0,487 -5,041 2,215
4 4 leather 3,507 -5,016 1,363 -2,036
4 3 strawberry 11,448 -5,259 -5,237 -3,395
3 3 cake 2,645 1,188 -0,009 -2,593
3 3 foot 3,385 -3,862 -2,208 0,444
3 3 land -4,686 3,251 3,781 -0,274
3 3 orange 5,095 1,502 -2,592 -2,716
3 3 peanut 2,097 -6,944 -5,584 5,267
3 3 red fruits 5,416 -0,960 -2,534 -2,092
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Figure 1
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Figure 2
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Figure 3
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