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Abstract

We are interested in modeling the impact of media investments on automobile manu-
facturer’s market shares. Regression models have been developed for the case where the
dependent variable is a vector of shares. Some of them, from the marketing literature, are
easy to interpret but quite simple (Model A). Alternative models, from the compositional
data analysis literature, allow a large complexity but their interpretation is not straight-
forward (Model B). This paper combines both approaches in order to obtain a performing
market share model and develop relevant interpretations for practical use.

We prove that Model A is a particular case of Model B, and that an intermediate
specification is possible (Model AB). A model selection procedure is proposed. Several
impact measures are presented and we show that elasticities are particularly useful: they
can be computed from the transformed or from the original model, and they are linked to
the simplicial derivatives.

Keywords: elasticity, model selection, odds ratio, marginal effect, compositional model, com-
positional differential calculus, market-shares, media investments impact.

1. Introduction

We are interested in modeling the impact of media investments on the distribution of au-
tomobile manufacturer sales. We consider that the sales volume in a particular segment of
the automobile market is mainly determined by the demand through the socio-economic and
regulatory context. Thus, each brand tries to have “the largest share of the cake” using mar-
keting tools, like price and media investments. The impact of media investments of brand j
on its own sales cannot be assessed without taking into account the competition. Thus, we
want to model the impact of media investments on market-shares, taking into account the
marketing actions of competitors, directly (cross-effects) or indirectly.

In the existing literature, we found different types of models to model shares (see Morais,
Thomas-Agnan, and Simioni (2016) for a comparison). Some of them, from the marketing or
econometric literature, are perfectly adapted to model market-shares and to interpret direct
and cross impacts of media investments, but the proposed models are quite simple and do not
allow the specification of cross effects between brands. Actually, a “fully extended attraction
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model” is proposed by Cooper and Nakanishi Cooper and Nakanishi (1988) to do so. However
it does not succeed in identifying the parameters themselves but only their centered version
(see Morais, Thomas-Agnan, and Simioni (2017) for details). Other models adapted to share
data are proposed, which are called compositional regression models and are based on the
simplicial geometry, a geometry initially developed in Aitchison (1986). These mathematical
models are very flexible in terms of explanatory variables and complexity (alternative-specific
and cross-effect parameters), but their interpretation is not straightforward. This paper
combines both approaches in order to obtain a performing market-share model allowing to
get relevant and appropriate interpretations, which can be used for example to help decision
making of automobile manufacturers concerning their media investments.

Here we focus on compositional models which are coming from the so called Compositional
Data Analysis (CODA) literature (see Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado
(2015)). A vector of D shares is a composition of D positive components for which only the
relative information is of interest. It can be represented in a space called the simplex which
is characterized by the scale invariance property. Compositional models are “transformation”
models in the sense that they assume a distribution (generally Gaussian) for a log-ratio
transformation of shares. Transformation models have several advantages compared to other
share models: they are easy to estimate (usually by OLS on coordinates) and flexible in
terms of explanatory variables (they can be compositional or non-compositional variables,
with or without component-specific parameters). More specifically, we focus on models where
a compositional dependent variable is explained by some compositional explanatory variables.
We distinguish two specifications of this model: in Model A, a unique coefficient is associated
to each compositional explanatory variable (see Wang, Shangguan, Wu, and Guan (2013)),
whereas in Model B a compositional explanatory variable is associated to component-specific
and cross-effect coefficients (see Chen, Zhang, and Li (2017)). We prove that Model A is
a particular case of Model B, and that the two specifications can be mixed (Model AB) in
order to attribute more or less complexity to some explanatory variable impacts. A model
selection procedure is proposed using an adapted Fisher test, considering that Model B is the
unconstrained model to be compared to the constrained models, Model A or Model AB.

In the CODA literature, the interpretation of parameters is not well developed. They are
usually interpreted in terms of marginal effects on the transformed shares (see Muller, Hron,
Fiserova, Smahaj, Cakirpaloglu, and Vancakova (2015) and Chen et al. (2017)). In this paper
we propose several interpretations directly linked to the shares, in terms of marginal effects,
elasticities and odds ratios, in order to enhance the interpretability of these models. We show
that marginal effects on shares may not be well adapted to interpret these models because
they depend a lot on the considered observation. Elasticities are useful to isolate the impact
of an explanatory variable on a particular share as they correspond to the relative variation of
a component with respect to the relative variation of an explanatory variable, ceteris paribus
(in a simplex sense). We show that they can be computed from the transformed model or
equivalently from the model in the simplex. Other types of elasticities and odds ratios can be
computed for ratios of shares, which are observation independent but they can be complicated
to use in practice.

Model A, Model B and an intermediate Model AB are applied to an automobile market data
set, where the aim is to explain the brands market-shares in a segment with brands media
investments. The models are interpreted using marginal effects, elasticities and odds ratios,
and they are compared using the Fisher test and in terms of (out-of-sample) goodness-of-fit
using quality measures adapted for share data.

This paper is organized as follows: the second section presents the two types of compositional
models, their intermediate specification, along with the adapted Fisher test for model selec-
tion; the third section explains how to interpret them; the fourth section presents the results
of the estimation of the models for the French automobile market along with interpretations,
Fisher tests and quality measures. Finally, the last section concludes on the findings and on
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further directions to be investigated.

2. Compositional regression models

2.1. Definition and notations

By definition shares are “compositional data”: a composition is a vector of D parts of some
whole which carries relative information. Compositions data are equivalence classes defined by
the scale invariance propriety (Barcelo-Vidal and Mart́ın-Fernández (2016)). AD-composition
can be represented in a space called the simplex SD.

SD =

s = (s1, s2, . . . , sD)′ : sj > 0, j = 1, . . . , D;
D∑
j=1

sj = 1


Therefore one needs to use distributions on the simplex in order to model compositional data,
and classical regression models are not adapted to that case.

The following operations are used in the simplex (see van den Boogaart and Tolosana-Delgado
(2013) for example):

• C() denotes the closure operation which represents the original volumes as shares (with-
out loss of information from the CODA perspective):

C(x̌1, . . . , x̌D)′ =

(
x̌1∑D
j=1 x̌j

, . . . ,
x̌D∑D
j=1 x̌j

)′
= (x1, . . . , xD)′

where x̌ denotes the volume and x denotes the share of a variable.

• ⊕ is the perturbation operation, corresponding to the addition operation in the simplex:

x⊕ y = C(x1y1, . . . , xDyD)′

with x,y ∈ SD

• � is the power transformation, corresponding to the multiplication operation in the
simplex:

λ� x = C(xλ1 , . . . , xλD)′

with λ ∈ R,x ∈ SD

• � is the compositional matrix product, corresponding to the matrix product in the
simplex:

B � x = C
( DX∏
j=1

x
b1j
j , . . . ,

DX∏
j=1

x
bDSj
j

)′
with B ∈ RDS ,DX ,x ∈ SD

2.2. Log-ratio transformation approach

Compositional data analysis is based on using log-ratio transformations that result in real
coordinates in the Euclidean space RD−11. Then, classical methods suited for data in the
Euclidean space, like linear regression models, can be used on coordinates. Below, terms
with a “∗” refer to transformed elements (in coordinates), whereas terms without “∗” refer to
elements in the simplex (compositions).

1Or in RD in the case of the CLR transformation.
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Several transformations are developed in the CODA literature (see Egozcue, Pawlowsky-
Glahn, Mateu-Figueras, and Barcelo-Vidal (2003) for example). The ILR (isometric log-
ratio) transformation is preferred for compositional regression models, against the ALR (ad-
ditive log-ratio) and the CLR (centered log-ratio) transformation (see van den Boogaart and
Tolosana-Delgado (2013)). It consists in a projection of components on an orthonormal basis
of SD in order to obtain D − 1 orthonormal coordinates. Considering the transformation
matrix VD×(D−1) with columns vl = clr(el) where e1, . . . , eD−1 is an orthonormal basis of

SD such that V′V = ID−1, ILR coordinates are defined as:

ilr(s) = V′ log(s) = s∗ = (s∗1, . . . , s
∗
D−1)′

Its inverse transformation is given by: S = ilr−1(S∗) = C(exp(VS∗))′.

After inverse transformation, results of a compositional analysis are the same regardless of
the chosen transformation.

2.3. Two types of compositional models

In this section, we consider two types of models adapted to a compositional dependent vari-
able explained by compositional explanatory variable (and potentially non-compositional vari-
ables). The difference between the two models is about the specification of the relationship
between compositional explanatory and dependent variables: in contrast with Model B, Model
A does not allow for component-specific and cross effect parameters associated to a compo-
sitional explanatory variable X. In this paper, we add the possibility to use classical (non-
compositional) variables Z as explanatory variables. There is no difference between Models
A and B with regard to classical variables: component-specific parameters are specified.

For simplicity, models are presented with a single explanatory variable of each type (com-
positional X and non-compositional Z), but of course several ones can be used like in the
examples presented in Section 4.

Model A: Compositional dependent and explanatory variables without component-specific
and cross-effect parameters

Model A is presented by Wang et al. (2013). In Model A, a compositional explanatory variable
is associated to a unique parameter b ∈ R (see Table 1, equation (1)). Thus, cross-effects2 are
not modeled directly, but indirectly through the shares closure. Indeed, we show in Morais
et al. (2017) that Model A in equation (1) can be written in attraction form like in equation
(3). This equation contains a closure, and we can see that a change of Xl will have an indirect
impact on Sj through the denominator. Moreover, the attraction form of Model A enables to
see that Model A respects the IIA (independence from irrelevant alternative) property. This
property means that the ratio of shares of two alternatives j and l, Sj/Sl, does not depend on
characteristics of other alternatives m 6= j, l. Note that equation (3) can be expressed either
in terms of shares Xj or in terms of volumes X̌j thanks to the scale invariance property. If a
non-compositional explanatory variable Z is used in Model A, it is associated to a composition
of parameters c3.

The ILR coordinates are used in order to estimate Model A (see equation (5)). Assuming that
the transformed error terms are normal (implying that the non-transformed compositional
error terms follow the normal distribution on the simplex; see Mateu-Figueras and Pawlowsky-
Glahn (2008) for more details on this distribution), we can use OLS to estimate the model.

An important feature of Model A is that compositional explanatory variables X have to be
of the same dimension that the compositional dependent variable S, such that S,X ∈ SD.

2We denote by cross-effect the effect of a variation of Xl on Sj , where l 6= j.
3It can be surprising to see that in the attraction form of Model A, the variable Z is powering the intercept

cj , but this corresponds to the term Zt � c.
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This model is adapted when compositions X and S refer to two variables associated to the
same components in the same order, for example S can be the composition of brands market-
shares and X the composition of brand media investments (where brands are in the same
order in S and X) (see Section 4), or S can be the composition of GDP from three sectors
and X the composition of labor force of these three sectors. Otherwise, this model makes no
sense. Then, equation (5) is estimated using (D − 1) × T observations (the number of ILR
coordinates D − 1 times the number of observations T ). Actually, this model specification is
close to the specification of multinomial or market-share models (see Morais et al. (2016) for
a comparison).

Model B: Compositional dependent and explanatory variables with component-specific
and cross-effect parameters

Model B is used by van den Boogaart and Tolosana-Delgado (2013) and Chen et al. (2017)
for example. Using exactly the same dependent and explanatory variables as Model A (see
equation (2)), it allows each component Xl of X to have a specific impact on each component
Sj of S. This is particularly visible in the attraction form of Model B (equation (4)): instead
of having a unique parameter b ∈ R associated to X, we have a matrix of parameters B ∈
RDS ,DX . If DS = DX and S and X refer to the same components in the same order, then B
is a square matrix with direct effect on the diagonal and cross-effects outside of the diagonal.
There is no difference between Model A and Model B for the specification of the intercept
and non-compositional explanatory variables. The same remark as for Model A can be done
concerning the attraction form of Model B: equation (4) can be expressed either in terms of
shares Xj or in terms of volumes X̌j thanks to the scale invariance property.

As in Model A, in order to estimate Model B, we transform it using the ILR transformation
(see equation (6)). But here, DS − 1 equations are estimated separately (one for each co-
ordinate of S) with T observations each. The complexity of Model B is reflected by a large
number of parameters. This can be an issue if the number of observations T is too small.

Note that in Model B, X ∈ SDX and S ∈ SDS can have different dimensions. For example,
S can be the composition of GDP from three sectors and X the composition of labor force
for six occupation categories. In our application, DS = DX : S is the composition of brands
market-shares and X is the composition of brand media investments (see Section 4).

Intermediate specification (Model AB) and model selection

One can show that Model A is a particular case of Model B where DS = DX and where B∗

is a diagonal matrix with b∗ = b on the diagonal and 0 otherwise, that is where only the jth

ILR coordinates of compositional explanatory variables are relevant to explain the jth ILR
coordinates of the dependent variable (see the appendix A.1 for a proof in the case of D = 3).
Then, in a given model it is possible to mix the two specifications if and only if DS = DX

for the explanatory variable with the Model A specification. This model called Model AB is
defined as follows in the simplex:

St = a⊕ β �Xt ⊕B � Yt ⊕ Zt � c⊕ ε (7)

Model AB can be estimated using its expression in ILR coordinates:

S∗jt =
D−1∑
d=1

1d=ja
∗
d + βX∗jt +

D−1∑
l=1

D−1∑
d=1

1d=jb
∗
dlY
∗
lt +

D−1∑
d=1

1d=jc
∗
dZt + ε∗jt (8)

with 1d=j = 1 if d = j and 0 otherwise, and ε∗jt ∼ N (0, σ2) ∀j = 1, . . . , D− 1, ∀t = 1, . . . , T .
However, the induced constant variance of transformed error terms across coordinates, as in
Model A, is questionable. Note that Model B can also be estimated using dummy variables
as in equation (8) leading to the same estimated coefficients but not to the same standard
errors than in equation (6) because of the assumption on error terms.
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Table 1: Two kinds of models for compositional dependent and explanatory variables
Model A Model B

In compositions
St = a⊕ b�Xt ⊕ Zt � c⊕ ε (1) St = a⊕B � Xt ⊕ Zt � c⊕ ε (2)

In attraction form
Sjt =

ajX
b
jtc

Zt
j εjt∑D

m=1 amX
b
mtc

Zt
m εmt

(3) Sjt =
aj
∏D

l=1X
bjl
lt c

Zt
j εjt∑D

m=1 am
∏D

l=1X
bml

lt cZt
m εmt

(4)

In coordinates S∗t = a∗ + X∗t b+ c∗Zt + ε∗t (5)

with ε∗jt ∼ N (0, σ2) ∀j,∀t

S∗t = a∗ + X∗tB
∗
k + c∗Zt + ε∗t (6)

with ε∗jt ∼ N (0, σ2
j ) ∀t

Component-specific
parameters for X

No Yes

Cross-effects for X No Yes
Dimension D for S and X DS for S ; DX for X

Nb. parameters (D − 1)(1 +KZ) +KX (DS − 1)(1 +KZ +
∑KX

k=1(Dk − 1))
Xt: compositional explanatory variable; Zt: classical explanatory variable.

DS : number of components of S; DX or Dk: number of components of Xk.

S,a,b,X, ε ∈ SD; b,X ∈ R; B ∈ RDS×DX ; S∗,a∗,b∗,B∗k,X
∗, ε∗: ILR coordinates.

ε: normal in the simplex distributed error terms ; ε∗: normal distributed error terms.

KX and KZ : number of compositional and classical explanatory variables (KX = KZ = 1 in the table).

As Model A and Model AB are constrained versions of Model B, a model selection can be
done using a Fisher test. This requires that the distributions of the error terms of these
models are supposed to be Gaussian.
We consider testing the following null hypothesis : H0 : b∗j,j = b∗ ∀j and b∗j,l = 0 ∀j 6=
l. The associate test statistic is:

F =
SSE0 − SSE1

SSE1
× N −K

p
∼ F(p,N −K) under H0

=
SSE0 − SSE1

SSE1
× (D − 1)[T −K(D − 1)−KZ − 1]

p

with SSE0 and SSE1 the sum of squared errors of the constraint and non-constraint models,
T the number of observations, N = (D−1)T the number of observed coordinates, K the num-
ber of compositional explanatory variables, KZ the number of non-compositional explanatory
variables, and p the number of constraints.

3. Interpretation of compositional models

As the estimation of compositional models is performed in the coordinate space, the inter-
pretation of the fitted parameters is difficult because parameters are linked to the log-ratio
transformation of shares, not directly to the shares. It is possible to derive the coefficients in
the simplex associated to shares using the inverse transformation, but their interpretation is
not straightforward either.

We are going to show that relative impacts, like elasticities or odds ratios, are more natural
(as is the case of the classical logistic model) than marginal effects, to interpret impacts on
shares.

Table 2 compares the different measures of impact assessment of explanatory variables (com-
positional and non-compositional) in Model A and Model B, which are detailed below. Note
that it is not possible to measure the impact of the share of Xlt, but only of the corresponding
volume of X̌lt. Indeed, a share cannot increase ceteris paribus because it implies a change in
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other shares. However, we can consider a change in the volume of X̌lt, with all other volumes
X̌mt,m 6= l fixed.

3.1. Marginal effect of a component

In classical linear models, coefficients are usually interpreted in terms of marginal effects:
if the explanatory variable increases by one, then the dependent variable increases by the
value of the coefficient. In the case of compositional models, we prove in this paper that it
is possible to compute marginal effects, but it is not straightforward. The marginal effect of
the component X̌lt (in volume) on the dependent share Sjt is defined as:

me(E⊕Sjt, X̌lt) =
∂E⊕Sjt
∂X̌lt

(9)

where E⊕Sjt is the “expected value in the simplex” of Sjt (see Morais et al. (2017)), such that

E⊕Sjt =
ajX

b
jtc

Zt
j∑D

m=1 amX
b
jtc

Zt
m

for Model A and E⊕Sjt =
aj

∏D
l=1 X

bjl
lt c

Zt
j∑D

m=1 am
∏D
l=1 X

bml
lt c

Zt
m

for Model B.

For Model B, we show that marginal effects can be computed as follows:

me(E⊕Sjt, X̌lt) =
∂E⊕Sjt

∂ logE⊕Sjt
∂ logE⊕Sjt
∂ log X̌lt

∂ log X̌lt

∂X̌lt

=

(
bjl −

D∑
m=1

Smtbml

)
E⊕Sjt
X̌lt

(10)

If MEDS ,DX is the matrix containing all marginal effects, we then have:

ME(E⊕St, X̌t) = [Sjt] � WtB �
[

1

X̌lt

]
= [Sjt] � WtVB∗V′�

[
1

X̌lt

]
(11)

where � denotes here the Hadamard product (term by term product)4, [Sjt] is a DS × DS

matrix with Sjt on the jth row,
[

1
X̌lt

]
is a DX × DX matrix with X̌lt on the lth column,

B∗ and B denote the parameters in the transformed space and in the simplex, and Wt is a
DS × DS matrix composed of diagonal terms equal to 1 − E⊕Sj and non-diagonal terms in
column j equal to −E⊕Sj . Similar results can be found for Model A in Table 2, where B is
replaced by b.

This marginal effect matrix can also be computed using ILR coordinates and Jacobian ma-
trices instead of using the attraction form of the model (see Appendix A.2 for details).

3.2. Elasticity of a dependent share relative to a component

The marginal effect me(E⊕Sjt, X̌lt) depends on all shares Smt and on volumes X̌lt. We can
see in our application that it can vary a lot across observations, and therefore it is not a good
measure to summarize the impact of a component X̌lt on a share Sjt. We are going to show
that elasticities are more natural to interpret compositional models.

The first elasticity we may want to compute is the elasticity of the share Sjt relative to the
volume of X̌lt. It corresponds to the relative variation of Sjt induced by a relative variation of
1% of the volume X̌lt (keeping all other volumes constant) or alternatively a relative variation
of 1% of the share Xlt (holding constant the ratios Xit

Xjt
of the remaining components).

ejlt = e(E⊕Sjt, X̌lt) =

∂E⊕Sjt
E⊕Sjt
∂X̌lt
X̌lt

=
∂ logE⊕Sjt
∂ log X̌lt

(12)

Since both variables (dependent and independent) are compositions, we should consider the
notion of derivative of a simplex valued function with respect to a compositional variable.

4Note that � in bold denotes the Hadamard product whereas � denotes the power transformation.
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Egozcue et al. (in Pawlowsky-Glahn and Buccianti (2011), chapter 12) treat the case of
the derivative of a simplex-valued function of a real variable and Barcelo-Vidal et al. (in
Pawlowsky-Glahn and Buccianti (2011), chapter 13) the case of the derivative of a vector
valued function of a compositional variable. Combining the two notions, let us denote by
∂⊕h
∂⊕Xl

the directional C derivatives of a function h from the simplex SDX to the simplex

SDS . Using a result (see appendix A.3) linking the directional C derivatives of the function
h of shares with the semi-log derivatives of the corresponding function of volumes, we can
then derive the relationship between the directional C-derivatives of the share vector St with
respect to the shares Xlt and the above elasticities as follows:

e⊕lt =
∂⊕E⊕St
∂⊕Xlt

= C
(

exp

(
∂ logE⊕St

∂ log X̌lt

))′
= C (exp(e1lt), . . . , exp(eDlt))

′ (13)

The elasticities ejlt from (12) are easy to compute from the attraction form of E⊕Sjt, in a
similar way than marginal effects (see equation (10)). They can also be expressed in matrix
form E(E⊕St, X̌t) (results are in Table 2). The relationship between marginal effects and
elasticities is as follows:

ME(E⊕St, X̌t) = [Sjt] � E(E⊕St, X̌t) �
[
1/X̌lt

]
where � denotes the Hadamard product.

These elasticities allow to isolate the impact of one X̌’s component on one S’s component
which is very useful. This impact is understood as the impact of a relative variation of the
volume (resp: the share) keeping all other volumes constant (resp: holding constant the ratios
of the remaining components). Compared to marginal effects, the e(E⊕Sjt, X̌lt) still depend
on observations through the shares Smt, but do not depend any more on the volumes X̌lt.
Then, if shares are not varying too much, as it is the case in our example (see Section 4),
they can be a good measure of impact.

As for marginal effects, the elasticity matrix can also be computed from ILR coordinates (see
Appendix A.2 for details).

Let us now consider making a first order Taylor approximation of the vector of shares for

a small relative change in component l. For a small δ = ∆X̌lt
X̌lt

, we could write this first

approximation of the share:
S′jt = Sjt(1 + δejlt) (14)

and it is easy to see that S′t = (S′1t, . . . , S
′
Dt)
′ does belong to the simplex (they are summing

up to one because
∑D

m=1 E⊕Smtejlt = 0 and
∑D

m=1 E⊕Smt = 1, see proof in the appendix
A.4). Another first order Taylor approximation of the vector of shares denoted S′′t is5:

S′′t = St ⊕ δ � e⊕lt = C (S1t exp(δe1lt), . . . , SDt exp(δeDlt))
′ (15)

Note that when δ → 0, since exp(δejlt) ' 1 + δejlt these two approximations are equivalent
at first order, although the first one is simpler as it uses the Euclidean geometry instead of
the Aitchison geometry:

S′′t ' C (S1t(1 + δe1lt), . . . , SDt(1 + δeDlt))
′ = C

(
S′1t, . . . , S

′
Dt

)′
=
(
S′1t, . . . , S

′
Dt

)′
(16)

3.3. Elasticity and odds ratio of a ratio of dependent shares relative to a
component

In order to avoid being observation dependent, other measures can be computed for inter-
preting Models A and B. However, they are concerning ratios of shares, not directly a single
share. Then, they can be complicated to interpret in practical cases.

5See equation (12.13), p.168, in Pawlowsky-Glahn and Buccianti (2011).
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Elasticity of a ratio of dependent shares As compositional data analysis is based on
a log-ratio approach, elasticities of ratios are easy to compute. We can be interested in the
elasticity of a ratio of shares (or volumes) E⊕Sjt/E⊕Sj′t relative to an infinitesimal change in
the volume of X̌lt.

e(E⊕Sjt/E⊕Sj′t, X̌lt) =
∂ log(E⊕Sjt/E⊕Sj′t)

∂ log X̌lt

(17)

We see in Table 2 that the result is constant across observations because it only depends
on parameters. Note here that Model A respects the IIA (Independence from Irrelevant
Alternatives) property, meaning that the ratio of two shares E⊕Sjt/E⊕Sj′t only depends on
the corresponding components j and j′ of X̌. Then, e(E⊕Sjt/E⊕Sj′t, X̌lt) = 0 if l 6= j, j′.
Moreover, the elasticity of the ratio between the share j and the share j′ relative to a change
in X̌jt is the same for all considered shares j′. This is a lack of flexibility of Model A, because
it implies that an increase of X̌jt will reduce proportionally all other shares. Model B does not
satisfy the IIA property, and then this model is able to take into account possible synergies
between brands.

Odds ratio of a ratio of dependent shares Another type of interpretation which can
be used for shares is the odds ratio. The advantage of this measure is that it is a measure
of impact of a discrete change, as opposed to infinitesimal change, of X̌l (X̌l is increased by
∆ × 100% between situations t = t1 and t = t2) on the ratio E⊕Sjt/E⊕Sj′t. The odds ratio
for a couple of shares E⊕Sjt/E⊕Sj′t relative to X̌lt is given by:

OR(E⊕Sjt/E⊕Sj′t, X̌lt,∆) =
(E⊕Sj,t2/E⊕Sj′,t2)|X̌l,t2

(E⊕Sj,t1/E⊕Sj′,t1)|X̌l,t1

(18)

where X̌l,t2 = (1 + ∆)X̌l,t1 and ∆ ≥ 0.

Remark: e(E⊕Sjt/E⊕Sj′t, X̌lt) and OR(E⊕Sjt/E⊕Sj′t, X̌lt,∆) are more or less measuring the
same thing differently, if ∆ is small:

e(E⊕Sjt/E⊕Sj′t, X̌lt) '
(E⊕Sjt2/E⊕Sj′t2)− (E⊕Sjt1/E⊕Sj′t1)

(E⊕Sjt1/E⊕Sj′t1)
/
X̌lt2 − X̌lt1

X̌lt1

'
OR(E⊕Sjt/E⊕Sj′t, X̌lt,∆)− 1

(X̌lt2 − X̌lt1)/(X̌lt1)

3.4. Elasticity of a particular ratio of dependent shares relative to a partic-
ular ratio of components

Usually, compositional models are interpreted directly on coordinates. Thus, it is advised
to choose an appropriate ILR transformation in order to have ILR coordinates which make
sense for the considered application, using sequential binary partition e.g. pivot coordinates
(Fǐserová and Hron (2011)) as a special case of balances (see Hron, Filzmoser, and Thompson
(2012)). But, previously the interpretation was made in terms of marginal effects on ILR
coordinates, that is marginal effects on a particular log-ratio of shares. We show here that we
can go a step further and make an interpretation in terms of elasticity for the ratio of shares
directly.

Chen et al. (2017) interpret in the case of Model B the impact of the ratio Xl/g(X−l) =
X̌l/g(X̌−l) on the ratio E⊕Sj/g(E⊕S−j) = E⊕Šj/g(E⊕Š−j) (ratios on shares or volumes are
equivalent), which is the ratio of a particular share (or volume) Sj over the geometric average
of other shares (or volumes). The adapted pivot coordinates are the following:

ilr(X)i =

√
D − i

D − i+ 1
log

xi

(
∏D
j=1+i xj)

1/(D−i)
, i = 1, . . . , D − 1
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which is equivalent to the following balance matrix in the case of D = 4:

VILR,4 =


√

3/4 0 0

−
√

1/12
√

2/3 0

−
√

1/12 −
√

1/6
√

1/2

−
√

1/12 −
√

1/6 −
√

1/2

 (19)

With this transformation, the first expected coordinate of S in Model A, is equal to:

Eilr(S)1 =

√
D − 1

D
log

E⊕S1t

g(E⊕S−1t)
= a∗1 + b∗

√
D − 1

D
log

X̌1t

g(X̌−1t)
+ c∗1Zt

In Model B, the first expected coordinate of S is equal to:

Eilr(S)1 =

√
DS − 1

DS
log

E⊕S1t

g(E⊕S−1t)
= a∗1 + b

∗(j,l)
11

√
DX − 1

DX
log

X̌1t

g(X̌−1t)

+ b
∗(j,l)
12

√
DX − 2

DX − 1
log

X̌2t

g(X̌−1−2t)
+ . . .

In order to interpret their model, Chen et al. (2017) compute the marginal effect of ilr(X)
(l)
1

on ilr(S)
(j)
1 :

me(Eilr(S)
(j)
1 , ilr(X̌)

(l)
1 ) =

∂
√

DS−1
DS

log(E⊕Sjt/g(E⊕S−jt))

∂
√

DX−1
DX

log(X̌lt/g(X̌−lt))
= b
∗(j,l)
11

such that an increase of one unit of ilr(X̌)
(l)
1 implies an increase of b

∗(j,l)
11 units of Eilr(S)

(j)
1

6.

Note that this is only true if
√

DX−1
DX

log(Xlt/g(X−lt)) moves because X̌1t moves while other

X̌jt remain constant. Otherwise, other ILR coordinates in the right part of the equation are
moving and the marginal effect should take it into account. However, for Model A, we do not
have this problem because other ILR coordinates of X are not used.

We show that this is equivalent to compute the following elasticity (multiplying by a factor
if DS 6= DX):

e

(
E⊕Sjt

g(E⊕S−jt)
, X̌lt

)
=
∂ log(E⊕Sjt/g(E⊕S−jt))

∂ log X̌lt

=

√
(DX − 1)/DX

(DS − 1)/DS
b
∗(j,l)
11

Thus, instead of saying that when ilr(X̌)
(l)
1 increases by 1 unit, Eilr(S)

(j)
1 increases by b

∗(j,l)
11

units, one can say that when X̌lt increases by 1%, E⊕Sjt/g(E⊕S−jt) increases by b
∗(j,l)
11 %

(in the case where DS = DX). Note that this b
∗(j,l)
11 will be different for each permutation

(i.e. each couple j, l). Chen et al. (2017) show how one can determine in one step the first

coefficient of B∗(j,l), the b
∗(j,l)
11 which is used to compute the above elasticity, for all possible

permutations without fitting several times the model.

3.5. Elasticities and odds ratios relative to a non-compositional variable

The same kind of interpretations can be done for non-compositional variables Z, as presented
in Table 2, except for the elasticity including the geometrical mean.

Indeed, this would allow to measure the marginal effect (not the elasticity) of Zt over√
DS − 1

DS
log

S1t

g(S−1t)
.

6ilr(S)
(j)
1 denotes the first ILR coordinate of S where Sj is in the first position; ilr(X̌)

(l)
1 denotes the first

ILR coordinate of X̌ where X̌l is in the first position.
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Table 2: Measures of impact assessment for Model A and Model B
Var Measure Effect Model A Model B

X

me(Sjt, X̌lt)
Direct b(1− Sjt)

Sjt

X̌lt (bjl −
∑D

m=1 Smtbml)
Sjt

X̌ltIndirect (−bSlt)
Sjt

X̌lt

ME(St, X̌t) Matrix [Sjt] � Wtb� [1/X̌lt] [Sjt] � WtB � [1/X̌lt]

e(Sjt, X̌lt)
Direct b(1− Sjt)

(bjl −
∑D

m=1 Smtbml)Indirect −bSlt

E(St, X̌t) Matrix Wtb WtB

e
(

Sjt

Sj′t
, X̌lt

) Direct b
(bjl − bj′l)Indirect 0

OR
(

Sjt

Sj′t
, X̌lt,∆

) Direct (1 + ∆)b
(1 + ∆)(bjl−bj′l)

Indirect 0

e
(

Sjt

g(S−jt)
, X̌lt

)
Direct b

b
∗(j,l)
11

√
DX−1
DX

/
√

DS−1
DSIndirect 0

Z

me(Sjt, Zt) (log cj −
∑D

m=1 Smt log cm)Sjt

ME(St, Zt) Vector [Sjt] � Wt log c

e(Sjt, Zt) (log cj −
∑D

m=1 Smt log cm)Zt

E(St, Zt) Vector Wt log cZt

e(
Sjt

Sj′t
, Zt) log(cj/cj′)Zt

OR
(

Sjt

Sj′t
, Zt,∆

)
(cj/cj′)

∆Zt

In this table, E⊕Sjt is denoted by Sjt to shorten notations, and � denotes the Hadamard product.

Moreover, these measures are estimated using observed shares Sjt in practice, not fitted shares.

Direct effect when l = j; indirect effect when l 6= j.

Wt contains 1− Sit on the diagonal and −Sit otherwise.

This marginal effect would be equal to c∗1 for Model A and Model B, but this kind of inter-
pretation is not useful to understand the impact of Z on the final shares. Thus, we do not
show this measure in Table 2.

Note that in practice, elasticities and other measures depending on E⊕Sjt are estimated using

the observed shares Sjt, not the fitted shares Ŝjt.

4. Impact of media investments on brands market-shares

In Europe, the automobile market is usually segmented in 5 segments, from A to E, according
to the size of the vehicle chassis. Within each segment, one can suppose that consumers
intending to buy new cars make their choice between brands7 according to the price and the
“image” of the brand. The image of the brand is supposed to reflect the notion of quality and
reliability of the brand. Car manufacturers spend millions of euros in media investments to
enhance their image, giving rise to the following question: do the media investments have an
impact on brands market-shares8?
In order to answer this question in the present paper, we model brands market-shares of the
B segment of the French automobile market9 as a function of brand media investments (in
TV, radio, press, outdoor, internet and cinema), of brand average catalogue price and of a
scrapping incentive dummy variable. In a further work, we consider modeling other segments,
and differentiate media investments according to channels.

7Inside a segment, a brand generally supplies only one main vehicle. Thus, we can consider that the
alternatives for a consumer inside a particular segment coincide with the available brands in this segment.

8We decide to ask the question in terms of market-shares instead of in terms of sales volumes because one
can suppose that at time t, brands have to share a market for which the size is mainly determined by the
demand.

9The B segment is the most important segment in terms of sales in France (around 40% of new passenger
car sales).
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In this paper, three brands are highlighted (Renault, Peugeot, Citroen, the leaders of the
B segment) while other brands of the B segment are aggregated in a category “Others” (see
Figure 1). The media investments are the sum of TV, radio, press, outdoor, internet and
cinema investments in euros by brands for their vehicles in the B segment (see Figure 1).
They do not include advertising budget for the brand itself. Actually we use the media
investments of one, two and three months before the purchase time (at time t− 1, t− 2, t− 3)
as explanatory variables. The average brand price (average of catalogue prices weighted by
corresponding sales at the vehicle level) is also used as an explanatory variable (see Figure 1).
It does not include potential promotions made in the car dealership at the time of purchase.
Even if they do not vary a lot across time, prices are used to position brands within the
segment. We also control for scrapping incentive periods. The corresponding dummy variable
is a “classical” variable (not compositional) and varies across time only, not across brands.

Model A and Model B can be considered in this framework: Model A considers that the effect
of media investments and price are the same for all brands whereas Model B implies cross-
effects and brand-specific impacts of media investments and price on market-shares. As our
interest is on the impact of media investments, we also consider the Model AB which contains
cross-effects and brand-specific parameters for media investments, but a unique parameter for
all brands for the composition of prices.
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Figure 1: Sales, media and average price of brands, in volume and in share, in the B segment

This section presents the results of this application. We interpret the two models A and B
in terms of elasticities and odds ratios of shares, and we compare them in terms of goodness-
of-fit measures. The Fisher tests comparing the non-constrained Model B to the constrained
Model A and Model AB are also computed. All computations have been done with the R
software.

4.1. Non brand-specific impact of media investments (Model A)

Model In the case where it is assumed that brand media investments and brand prices have
the same effect for all brands, the following equations correspond to the model in the simplex
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and the attraction formulation of the model:

St = a
3⊕

τ=1

bτ �Mt−τ ⊕ bP �Pt ⊕ SIt � c⊕ εt

⇔ Sjt =
aj
∏3
τ=1M

bτ
t−τ,jP

bP
t,j c

SI
j εjt∑4

m=1 am
∏3
τ=1M

bτ
t−τ,mP

bP
t,mc

SI
m εmt

where S,Mt−τ ,P ∈ S4 are the compositions of brand sales, of brand media investments at
time t− 1, t− 2 and t− 3, and of brand prices. bτ , bP ∈ R are the parameters associated to
compositional explanatory variables and c ∈ S4 is a composition of parameters associated to
the dummy variable SI (scrapping incentive).

The model expressed in ILR coordinates is:

S∗t = a∗ +
3∑

τ=1

bτM
∗
t−τ + bPP∗t + c∗SIt + ε∗t

⇔ S∗jt = a∗j +
3∑

τ=1

b∗τM
∗
j,t−τ + b∗PP

∗
jt + c∗jSIt + ε∗jt for j = 1, 2, 3

where ε∗ is generally supposed to be a Gaussian distributed error term. The balance matrix
used for the ILR transformation is the default matrix in the R software with the ’compositions’
package:

VILR,4 =


−
√

1/2 −
√

1/6 −
√

1/12√
1/2 −

√
1/6 −

√
1/12

0
√

2/3 −
√

1/12

0 0
√

3/4

 (20)

Results All explanatory variables are significant at 0.1% according to the analysis of vari-
ance (ANOVA). Figure 2 compares observed and fitted shares. It confirms that the model
succeeds in fitting the main trends of brands market-shares. However, the model underesti-
mates the market-share of “Others” at the beginning of the period, and overestimates it at
the end.

The parameters estimated with the ILR transformed model according to the VILR,4 matrix
are presented in Table 3. The corresponding parameters for the model in the simplex (after

Table 3: Estimated parameters on ILR coordinates - Model A
Estimate Std. Error t value Pr(> |t|)

a∗1 0.3439 0.0151 22.84 0.0000∗∗∗

a∗2 0.3363 0.0159 21.19 0.0000∗∗∗

a∗3 0.6620 0.0263 25.14 0.0000∗∗∗

b1 0.0267 0.0071 3.79 0.0002∗∗∗

b2 0.0241 0.0062 3.90 0.0001∗∗∗

b3 0.0264 0.0062 4.26 0.0000∗∗∗

bP 1.2217 0.2313 5.28 0.0000∗∗∗

c∗1 -0.0241 0.0338 -0.71 0.4758
c∗2 -0.1690 0.0334 -5.05 0.0000∗∗∗

c∗3 0.1292 0.0336 3.84 0.0001∗∗∗

Nb param. 10
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

inverse transformation) are in Table 4. We remark that the coefficient associated to the price
is positive, which can be surprising, but price here is correlated with the image of quality of
the brand, which is very important for the customer who buys a durable and expensive good
like a car.
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Figure 2: Observed (color) and predicted (grey) brands market-shares

4.2. Brand-specific impact of media investments (Model B)

Model Now, let us look at a different specification of the model (dependent and explanatory
variables are the same as in Model A) where brand-specific coefficients are assumed and cross-
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Table 4: Estimated parameters in the simplex - Model A
S1 S2 S3 S4

(Citroen) (Peugeot) (Renault) (Others)
(Intercept) 0.1300 0.2114 0.2502 0.4084
Mt−1 0.0267
Mt−2 0.0241
Mt−3 0.0264
Pt 1.2217
SI 0.2610 0.2523 0.2086 0.2780

effects are directly modeled. It corresponds to the following model:

St = a

3⊕
τ=1

Bτ � Mt−τ ⊕BP � Pt ⊕ SIt � c⊕ εt

⇔ Sjt =
aj
∏3
τ=1

∏4
l=1M

bτ,jl
t−τ,l

∏4
l=1 P

bP,jl
t,l cSIj εjt∑4

m=1 am
∏3
τ=1

∏4
l=1M

bτ,ml
t−τ,l

∏4
l=1 P

bP,ml
t,l cSIm εmt

where Bτ ,BP ∈ RD×D are the matrices of parameters associated to compositional explana-
tory variables.

The corresponding ILR transformed model is:

S∗t = a∗ +
3∑

τ=1

B∗τM
∗
t−τ + B∗PP∗t + c∗SIt + ε∗t

⇔ S∗jt = a∗j +
3∑

τ=1

3∑
l=1

b∗τ,jlM
∗
l,t−τ +

3∑
l=1

b∗P,jlP
∗
lt + c∗jSIt + ε∗jt for j = 1, 2, 3

where ε∗ is supposed to be a Gaussian distributed error term. The same balance matrix
VILR,4 is used.

Results All variables of the model are significant at 0.1% according to the ANOVA, except
the price which is significant at 1%. According to Figure 2, Model B seems to fit better than
Model A (see Section 4.3 for associated quality measures). The estimated parameters of the
models are given in Table 5 and Table 6.

4.3. Interpretation of models A and B

Marginal effect of media investments We calculate the marginal effects of media in-
vestments at time t−1 on market-shares at time t. The average marginal effects are reported
in Table 7. They are quite consistent between Model A and Model B, with positive direct
marginal effects and negative cross marginal effects. However, these measures are not really
adapted to summarize an impact as they fluctuate a lot across time, as we can see in Fig-
ure 3 (marginal effects can be larger than 6e-08 but we voluntarily cropped the graph). The
marginal effects of Citroen media investments are especially very high when these investments
are very low, for example between 2007 and 2009.

Elasticity of the share Sj relative to Xl For Model A, cross elasticities are necessarily
negative and direct elasticities are necessarily positive if the parameter b is positive. Moreover,
cross-elasticities of market-shares Sj with respect to a particular media budget Ml,t−1 are
equal for any brand j 6= l. This is a lack of flexibility of Model A compared to Model B: it
does not allow positive interaction between brands, and it considers that if a brand increases
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Table 5: Estimated parameters on ILR coordinates - Model B
S∗1 S∗2 S∗3

(Peu. vs Cit.) (Reu. vs Cit.,Peu.) (Oth. vs Cit.,Peu.,Reu.)
(Intercept) 0.3686∗∗∗ 0.3637∗∗∗ 0.6940∗∗∗

M∗t−1,1 0.0193. -0.0052 0.0081
M∗t−1,2 0.0162 0.0319∗ -0.0245
M∗t−1,3 -0.0069 0.0009 0.0279

M∗t−2,1 0.0208. -0.0093 0.0205.
M∗t−2,2 0.0151 0.0361∗∗ -0.0259.
M∗t−2,3 -0.0197 -0.0338. 0.0278

M∗t−3,1 0.0289∗∗ -0.0115 0.0278∗

M∗t−3,2 0.0104 0.0206∗ -0.0274.
M∗t−3,3 -0.0114 0.0064 0.0323.

P ∗1 0.8854. -0.5981 1.9138∗∗∗

P ∗2 0.0151 0.2615 0.6509
P ∗3 -0.6442 -0.3729 2.4717∗∗∗

SI∗ -0.0394 -0.2088∗∗∗ 0.2070∗∗∗

Adjusted R2 0.3353 0.3255 0.3269
Nb param. 42
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 6: Estimated parameters of Mt−1 in the simplex - Model B
S1 S2 S3 S4

(Citroen) (Peugeot) (Renault) (Others)
Mt−1,1 0.0179 -0.0079 -0.0067 -0.0032
Mt−1,2 -0.0016 0.0111 -0.0161 0.0066
Mt−1,3 -0.0132 0.0084 0.0292 -0.0243
Mt−1,4 -0.0030 -0.0115 -0.0064 0.0209

Table 7: Average marginal effects of media investments M̌t−1 on market-shares
me(Sjt, M̌l,t−1) Model A Model B

M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

SCitroen,t 1.93e-05 -1.65e-09 -2.13e-09 -3.01e-10 1.68e-05 -7.20e-10 -2.82e-09 -2.00e-10
SPeugeot,t -4.58e-06 1.14e-08 -3.09e-09 -5.30e-10 -7.67e-06 5.51e-09 7.72e-09 -7.52e-10
SRenault,t -4.88e-06 -3.64e-09 1.35e-08 -5.96e-10 -6.43e-06 -1.14e-08 2.23e-08 -5.71e-10
SOthers,t -9.89e-06 -6.10e-09 -8.24e-09 1.43e-09 -2.66e-06 6.60e-09 -2.72e-08 1.52e-09

C: Citroen; P: Peugeot; R: Renault; Z: Others.

Figures in bold: direct elasticities.
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Figure 3: Direct marginal effects of Mj,t−1 on Sjt across time

its media investments of 1% it will affect in the same way all competitors market-shares Sj
(they will all decrease by b%).
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Let us consider a situation where the market shares of Citroen, Peugeot, Renault and Others
in the B segment are respectively 10%, 25%, 25% and 40%. According to Table 8, if Renault
increases its media investments Mt−1 about 1%, the average elasticity of Model A on the
studied period suggests that its market-share should increase by 0.0204% to reach 25.005%
and that competitors market-shares should decrease by 0.0204% to reach respectively 9.998%,
24.995% and 39.992%10.

In Model B, when brand-specific effects and cross-effects are taken into account, the direct
elasticity of Renault market-share in the B segment relative to its corresponding media in-
vestments (0.0327) is much higher than for other brands, see for example Peugeot which
has the lowest (0.0099). Note that positive cross-effects (synergies) are possible in Model
B: for example when Renault invests more in media, it tends to help its own market-share
a lot, but also to raise a little bit the share of Peugeot, and to have a negative impact on
Citroen and Others. Then, after closure and depending on the considered values of Sj , an
increase in Renault media investments in the B segment can increase or decrease the Peugeot
market-share.

Taking the same example as previously, according to Model B, if Renault increases its media
investments Mt−1 of about 1%, the average elasticity on the studied period suggests that
its market-share should increase by 0.0327% to reach 25.008% and that competitors market-
shares should respectively decrease by 0.0097%, increase by 0.0119% and decrease by 0.0208%
to reach respectively 9.999%, 25.003% and 39.992.

As shown in Figure 4, the estimated direct elasticities are quite stable across time. However,
as elasticities in Model A are computed using the same parameter b for all brands, they are
closer to each other than in Model B where they are computed using different parameters bjl.
The direct elasticity of Renault is larger than those of other brands during the whole studied
period.
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Figure 4: Direct elasticity of Sjt relative to Mj,t−1 across time

Elasticity of the ratio
Sj
Sj′

relative to X̌l (see Table 9)

In Model A, the elasticity of a ratio Sj/Sj′ relative to X̌j is equal to 0.0267, whereas in Model
B it can be smaller or larger according to the considered brands: the largest elasticity is for
SR/SZ relative to X̌R which is equal to 0.0535. In general, ratios between the market-share
of Renault and another brand are quite positively sensitive to media investments of Renault.
For example, if the ratio SR/SZ is equal to 25/40 = 0.6250 and Renault increases by 1% its

10NB: here we take an example for an arbitrary share of 25% using the average elasticity. However, the
only way to ensure that the sum of the modified shares

∑D
m=1 S

′
mt is equal to 1 is to use the corresponding

elasticities calculated at the same time t, not the average elasticities.
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Table 8: Average elasticity of market-shares relative to media investments M̌t−1

e(Sjt, M̌l,t−1) Model A Model B
M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

SCitroen,t 0.0235 -0.0056 -0.0063 -0.0116 0.0204 -0.0028 -0.0097 -0.0078
SPeugeot,t -0.0032 0.0211 -0.0063 -0.0116 -0.0054 0.0099 0.0119 -0.0163
SRenault,t -0.0032 -0.0056 0.0204 -0.0116 -0.0043 -0.0173 0.0327 -0.0111
SOthers,t -0.0032 -0.0056 -0.0063 0.0151 -0.0008 0.0054 -0.0208 0.0161
C: Citroen; P: Peugeot; R: Renault; Z: Others.

Figures in bold: direct elasticities.

media investments, then the ratio will increase to 0.6253. Let us remind that this measure
does not depend on the considered period. This evolution is consistent with the fact that the
market-share of Renault is very positively elastic and the market-share of “Others” is very
negatively elastic to Renault media investments, as seen in Table 8.

Table 9: Elasticity of ratios of market-shares
Sjt
Sj′t

relative to media investments M̌l,t−1

Model A Model B
M̌t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

e
(

Sjt

Sj′t
, M̌j,t−1

)
0.0267 SC/P 0.0258 SP/C 0.0127 SR/C 0.0424 SZ/C 0.0239

e
(

Sjt

Sj′t
, M̌j′,t−1

)
-0.0267 SC/R 0.0246 SP/R 0.0272 SR/P 0.0208 SZ/P 0.0325

e
(

Sjt

Sj′t
, M̌l,t−1

)∗
0 SC/Z 0.0211 SP/Z 0.0044 SR/Z 0.0535 SZ/R 0.0273

∗where l 6= j, j′ and SC/Z means SCitroen,t/SOthers,t for example.

Odds ratio of
Sj
Sj′

to a change of X̌l (see Table 10)

As expected, this measure is consistent with the previous one. In Model A, the odds ratio
of any couple of brand market-shares Sj/Sj′ to a change of 10% of M̌j,t−1 is equal to 1.0025,
whereas it can reach 1.0054 in Model B for the ratio SR/SZ for a change of 10% in M̌R,t−1.
It means that if the ratio of market-shares of Renault over Others is equal to 25/40 = 0.6250
and Renault decides to increase its media budget by 10%, then this ratio will increase to
0.6266 according to Model A and to 0.6284 according to Model B.

Table 10: Odds ratios of market-shares for an increase of 10% in media investments M̌l,t−1

Model A Model B
For ∆ = 10% M̌t−1 M̌C,t−1 M̌P,t−1 M̌R,t−1 M̌Z,t−1

OR
(

Sjt

Sj′t
, M̌j,t−1,∆

)
1.0025 SC/P 1.0025 SP/C 1.0012 SR/C 1.0045 SZ/C 1.0022

OR
(

Sjt

Sj′t
, M̌j′,t−1,∆

)
0.9975 SC/R 1.0024 SP/R 1.0030 SR/P 1.0026 SZ/P 1.0031

OR
(

Sjt

Sj′t
, M̌l,t−1,∆

)∗
0 SC/Z 1.0020 SP/Z 1.0007 SR/Z 1.0054 SZ/R 1.0028

∗where l 6= j, j′ and SC/Z means SCitroen,t/SOthers,t for example.

Elasticity of
Sj

g(S−j)
relative to X̌l (see Table 11)

As in Model A, no matter which transformation is used, the parameter b1 will be the same,

then we obtain that e
(

Sjt
g(S−jt)

,
Mj,t−1

g(M−j,t−1)

)
= e

(
Sjt
Sj′t

,Mj,t−1

)
= e

(
Sjt
Sj′t

,
Mj,t−1

Mj′,t−1

)
. Moreover,

these elasticities are consistent with previous impact measures, and the largest one concerns
the ratio SR

g(S−R) relatively to the ratio MR
g(M−R) , which is equal to 0.0389%. For example,

let us consider a situation where the market-shares are the following: (SC , SP , SR, SZ)′ =
(13, 22, 25, 40)′, inducing that SR

g(S−R) = 1.1095. Then, if Renault increases its media invest-

ments by 1% of the geometric average of other brands media investments, we can expect its
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market-share to move from 110.95% to 110.99% of the geometric average market-share of
others.

Table 11: Elasticity of ratios
Sjt

g(S−jt)
relative to M̌l,t−1

Model A Model B
M̌C/g(−C) M̌P/g(−P ) M̌R/g(−R) M̌Z/g(−Z)

e
(

Sjt

g(S−jt)
, M̌j,t−1

)
0.0267

SC/g(−C) 0.0239 -0.0022 -0.0176 -0.0040
SP/g(−P ) -0.0106 0.0148 0.0112 -0.0154

e
(

Sjt

g(S−jt)
, M̌l,t−1

)∗
0

SR/g(−R) -0.0090 -0.0215 0.0389 -0.0085
SZ/g(−Z) -0.0043 0.0089 -0.0324 0.0279

∗where l 6= j.

SC/g(−C) means SCt
g(S−Ct)

, where g(S−Ct) is the geometric mean of others shares than Citroen.

4.4. Complexity and goodness-of-fit

We have seen that Model A and Model B can be used for the same type of application. Model
B is more complex than Model A because it allows to have component-specific parameters
for each explanatory variables along with cross-effects parameters. We have also fitted an
intermediate model without component-specific and cross-effects parameters for the price
(Model AB). The number of parameters to fit of Model B can be a serious limitation when
the number of components D and the number of explanatory compositions K increase. For
example, in our application Model A involves 10 parameters whereas Model AB and Model
B involve respectively 34 and 42 parameters.
However, Model B is also more flexible than Model A in the sense that it allows to have
positive synergies (positive interactions) between some shares, whereas cross elasticities of
Model A are necessarily negative11. For example, we see in Table 8 that when the media
investments of Citroen increase, it tends to benefit also to “Others”, and when the media
investments of Renault increase, it tends to benefit to Peugeot.
Is the complexity of Model B useful to explain brands market-shares of the B segment?
According to the Fisher tests of Model A against Model B, and Model AB against Model
B, for which the estimated statistics are respectively 2.22 and 3.72 to be compared to the
99% quantiles, respectively 0.51 and 0.56, we conclude that Model B is significantly more
adapted than Model A and Model AB. This means that the brand specific and cross effect
parameters for media investments and prices are necessary to reflect the complexity of the
competitive interaction in the automobile market. We also compare cross-validated12 quality
measures: adjusted R2 calculated on the transformed model with coordinates used for the
estimation13, R2 based on the total variance (as defined in compositional data analysis, see
van den Boogaart and Tolosana-Delgado (2013)) and RMSE (see Table 12). All measures
agree on the fact that Model B is better than Model A and Model AB for our application.

Table 12: Cross-validated quality measures
Model A Model AB Model B

Adj. R2 0.9250 0.9274 0.9310
R2
T 0.3183 0.4002 0.4513

RMSE 0.0326 0.0913 0.0322

11As long as the direct elasticity is positive (the cross elasticity is of opposite sign of the direct elasticity by
construction).

12The out-of-sample computation process is the same than in Morais et al. (2017).
13For Model B, the adjusted R2 is computed on the transformed model which uses dummy variables for

estimations, as in Model A and Model AB.
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5. Conclusion

The focus of this paper is to present of compositional models for the case when the dependent
variable and some of the explanatory variables are compositions, and to interpret them. The
difference between Model A (coming from marketing) and Model B (coming from CODA)
is due to the model specification: in Model A, a single global coefficient is associated to
an explanatory composition, whereas in Model B we assume that each component of the
explanatory composition has a specific impact on each component of the dependent variable.
In Model B, cross-effects between components are explicitly specified and can be positive,
whereas in Model A(coming from marketing) they are implicit and negative by construction.
Consequently, Model B is more flexible but also much more complex than Model A, and the
number of parameters to fit can be a serious limitation to use it. We prove in this paper that
Model A is a constrained version of Model B, and that an intermediate Model AB can also
be considered. An adapted Fisher test can be used for model selection.

This paper also presents a set of possible measures, mutually consistent, to interpret parame-
ters of these two models: marginal effects, elasticities and odds ratios. Elasticities are totally
adapted to enhance the interpretability of these models. However, this measure is observation
dependent and we have to make sure that it is stable across observations to use it. Marginal
effects are not well adapted to interpret this kind of models because they depend a lot on
the considered observation. The other types of measures presented have the advantage to be
observation independent, but they are more difficult to interpret in practical cases because
they involve ratios.

The two models and an intermediate specification are applied to the B segment of the French
automobile market, for the purpose of measuring the impact of brand media investments on
brands market-shares. Model B fits our data better than Model A and Model AB according
to cross-validated quality measures and to Fisher tests. In Model B, Renault is the brand
which has the largest direct elasticity to media investments. This model also shows interesting
non-symmetric synergies between brands.

In a further work, as compositions are observed across time, the potential autocorrelation
of error terms has to be considered. Moreover, from a marketing point of view, it would
be interesting to measure the impact of each channel (TV, radio, press, outdoor, internet,
cinema) separately.
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A. Appendix

A.1. Model A is a particular case of Model B

Model A is a particular case of Model B if and only if one can show that b�X can be equal
to B � X:

b�X = B � X⇔ ilr(b�X) = ilr(B � X)

⇔ bilr(X) = B∗ilr(X)

⇔ bIdD−1 = B∗,

where IdD−1 is the identity matrix of dimension D− 1 when B is of dimension D×D (let us
remind that Model A can be used only when dependant and explanatory compositions have
the same dimension D). Indeed, Model A is such that B∗ is diagonal with diagonal terms
equal to b. This relationship holds for any ILR transformation.

A.2. Marginal effect and elasticity calculus on ILR

We are going to demonstrate how to compute marginal effects of the volume X̌lt on the
dependent shares Sjt, and elasticities of Sjt relative to X̌lt, using the transformed and the
non-transformed models. The demonstration is made for Model B, with D = 3 components
and a pivot ILR transformation using the matrix VILR,3 as in Appendix A.1, but it holds for
any ILR transformation. Let us remind that X∗ = ilr(X) = V′ log(X), and X = ilr−1(X∗) =
C(exp(VX∗)).

We define the following transformations:

T : (X̌1, X̌2, X̌3)′ → (X̌∗1 , X̌
∗
2 )′

F : (X̌∗1 , X̌
∗
2 )′ → (ES∗1 ,ES∗2)′ = (a∗1 + b∗11X̌

∗
1 + b∗12X̌

∗
2 , a
∗
2 + b∗21X̌

∗
1 + b∗22X̌

∗
2 )′

T−1 : (ES∗1 ,ES∗2)′ → (E⊕S1,E⊕S2,E⊕S3)′

We are going to use the following property of Jacobian matrices: J = JT−1JFJT , implying
that:

ME(E⊕St, X̌t) =

[
∂E⊕Sit
∂X̌jt

]
D,D

=

[
∂E⊕Sit
∂ES∗jt

]
D,D−1

[
∂ES∗it
∂X̌∗jt

]
D−1,D−1

[
∂X̌∗it
∂X̌jt

]
D−1,D

and

E(E⊕St, X̌t) =

[
∂ logE⊕Sit
∂ log X̌jt

]
D,D

=

[
1

Sit

]
�
[
∂E⊕Sit
∂ES∗jt

]
D,D−1

[
∂ES∗it
∂X̌∗jt

]
D−1,D−1

[
∂X̌∗it
∂X̌jt

]
D−1,D

�[Xjt]

where � denotes here the Hadamard product (term by term product)14,
[

1
Sit

]
is a D×D− 1

matrix with 1/Sit on the ith row and [Xjt] is a D − 1, D matrix with Xjt on the jth column.

The Jacobian of the model in coordinates JF

JF =

∂ES∗1∂X̌∗1

∂ES∗1
∂X̌∗2

∂ES∗2
∂X̌∗1

∂ES∗2
∂X̌∗2

 =

[
b∗11 b∗12

b∗21 b∗22

]
= B∗

14Note that � in bold denote the Hadamard product whereas � denote the power transformation.
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The Jacobian of the transformation JT The ILR transformation is defined by:

(X̌∗1 , X̌
∗
2 )′ = T (X̌1, X̌2, X̌3)′ =

(√
2

3
log X̌1 −

1√
6

log X̌2 −
1√
6

log X̌3 ,
1√
2

log X̌2 −
1√
2

log X̌3

)′

Then, JT =

∂X̌∗1∂X̌1

∂X̌∗1
∂X̌2

∂X̌∗1
∂X̌3

∂X̌∗2
∂X̌1

∂X̌∗2
∂X̌2

∂X̌∗2
∂X̌3

 = V′�
[

1
Xj

]
=

[√
2
3

1
X1

− 1√
6

1
X2

− 1√
6

1
X3

0 1√
2

1
X2

− 1√
2

1
X3

]
where

[
1

Xj

]
is a D − 1, D matrix with 1/Xj on the jth column.

The Jacobian of the inverse transformation JT−1

(E⊕S1,E⊕S2,E⊕S3)′ = T−1(ES∗1 ,ES∗2)′ = C(exp(VES∗)′)

= C
(

exp(ES∗1)

√
2
3 ; exp(ES∗1)

− 1√
6 exp(ES∗2)

1√
2 ; exp(ES∗1)

− 1√
6 exp(ES∗2)

− 1√
2

)′
=
( u1

DEN
;

u2

DEN
;

u3

DEN

)
where

u1 = exp(ES∗1)

√
2
3

u2 = exp(ES∗1)
− 1√

6 exp(ES∗2)
1√
2

u3 = exp(ES∗1)
− 1√

6 exp(ES∗2)
− 1√

2

DEN = u1 + u2 + u3

In order to compute the matrix JT−1 =


∂E⊕S1
∂ES∗1

∂E⊕S1
∂ES∗2

∂E⊕S2
∂ES∗1

∂E⊕S2
∂ES∗2

∂E⊕S3
∂ES∗1

∂E⊕S3
∂ES∗2

, we need to compute the derivatives

of the numerators of E⊕S: u = (u1, u2, u3)′ with respect to ES∗.

(
∂u

∂ES∗

)
= V � u =


∂u1
∂ES∗1

=
√

2
3u1

∂u1
∂ES∗2

= 0
∂u2
∂ES∗1

= − 1√
6
u2

∂u2
∂ES∗2

= 1√
2
u2

∂u3
∂ES∗1

= − 1√
6
u3

∂u3
∂ES∗2

= − 1√
2
u3


Now we can compute the elements of JT−1 . For example, the first element of this matrix is:

∂E⊕S1

∂ES∗1
=
DEN

√
2
3u1 − u1[

√
2
3u1 − 1√

6
u2 − 1√

6
u3]

DEN2
=

3√
6
u1(u2 + u3)

DEN2
=

3√
6
E⊕S1(1− E⊕S1)

using the fact that u1/DEN = E⊕S1 and u2 + u3 = DEN − u1.

Similar computations give the results for the whole matrix:

JT−1 =


∂E⊕S1

∂ES∗1
∂E⊕S1

∂ES∗2
∂E⊕S2

∂ES∗1
∂E⊕S2

∂ES∗2
∂E⊕S3

∂ES∗1
∂E⊕S3

∂ES∗2

 =


3√
6
E⊕S1(1− E⊕S1) 1√

2
E⊕S1(E⊕S3 − E⊕S2)

− 3√
6
E⊕S1E⊕S2

1√
2
E⊕S2(E⊕S1 + 2E⊕S3)

− 3√
6
E⊕S1E⊕S3 − 1√

2
E⊕S3(E⊕S1 + 2E⊕S2)



= [Sit] �


3√
6
(1− E⊕S1) 1√

2
(E⊕S3 − E⊕S2)

− 3√
6
E⊕S1

1√
2
(E⊕S1 + 2E⊕S3)

− 3√
6
E⊕S1 − 1√

2
(E⊕S1 + 2E⊕S2)

 = [Sit] � W∗
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The Jacobian of the model in the simplex J

J = JT−1JFJT =


∂S1

∂X̌1

∂S1

∂X̌2

∂S1

∂X̌3
∂S2

∂X̌1

∂S2

∂X̌2

∂S2

∂X̌3
∂S3

∂X̌1

∂S3

∂X̌2

∂S3

∂X̌3


= [Sit] � W∗B∗V′�

[
1/X̌j

]
= [Sit] � W∗V′B �

[
1/X̌j

]
= [Sit] � WB �

[
1/X̌j

]
= [Sit] �


3√
6
(1− E⊕S1) 1√

2
(E⊕S3 − E⊕S2)

− 3√
6
E⊕S1

1√
2
(E⊕S1 + 2E⊕S3)

− 3√
6
E⊕S1 − 1√

2
(E⊕S1 + 2E⊕S2)

[b∗11 b∗12

b∗21 b∗22

][√
2
3 − 1√

6
− 1√

6

0 1√
2
− 1√

2

]
�
[
1/X̌j

]

= [Sit] �

1− S1 −S2 −S3

−S1 1− S2 −S3

−S1 −S2 1− S3

b11 b12 b13

b21 b22 b23

b31 b32 b33

�
[
1/X̌j

]
= ME(E⊕St, X̌t)

⇔ E(E⊕St, X̌t) =

[
1

Sit

]
�ME(E⊕St, X̌t) �

[
X̌j

]
= WB

where W∗V′ = W is a D,D matrix with 1−Si in the diagonal and −Si in the row i otherwise.

We then conclude that marginal effects and elasticities matrices are easy to compute using
coefficients in the simplex or coefficients in the transformed space:

ME(E⊕St, X̌t) = [Sit] � WB �
[
1/X̌j

]
= [Sit] � WVB∗V′�

[
1/X̌j

]
E(E⊕St, X̌t) = WB = WVB∗V′

A.3. C derivatives

We keep here the notations of chapter 13 in Pawlowsky-Glahn and Buccianti (2011) except

that we denote
∂f

∂⊕x the part-C derivatives. Let f be a vector valued scale invariant function
from RDX to Rk. Let f be the corresponding vector valued function on SDX induced by
f(x) = f(w), where w is the vector of volumes corresponding to the vector of shares x. We
have

f(w) = f(C(w)) (21)

For the sake of simplicity, let us assume that DX = 3. Denote by w+ =
∑DX

i=1 wi the total
volume. Taking the derivative of (21) with respect to wj yields

∂f

∂wj
(w) =

3∑
i=1

∂f

∂xi
(x)

∂xi
∂wj

Since ∂xi
∂wi

= w+−wi
w2

+
and ∂xi

∂wj
= −wi

w2
+

if i 6= j, we obtain

∂f

∂wj
(w) =

1

w2
+

[w+

∂f

∂xj
(x)−

3∑
i=1

wi
∂f

∂xi
(x)] (22)

=
1

w+
[
∂f

∂xj
(x)−

3∑
i=1

xi
∂f

∂xi
(x)] (23)

Proposition 13.3.5 tells us that

∂f

∂⊕xj
(x) = xj [

∂f

∂xj
(x)−

3∑
i=1

xi
∂f

∂xi
(x)] (24)
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Using (22) with wj replaced by log(wj) yields

∂f

∂ log(wj)
(w) = wj

∂f

∂wj
(w) =

wj
w+

[
∂f

∂xj
(x)−

3∑
i=1

xi
∂f

∂xi
(x)] = xj [

∂f

∂xj
(x)−

3∑
i=1

xi
∂f

∂xi
(x)]

Combining this with (24) yields the following proposition linking the semi-log derivatives of
f with the directional C derivatives of f .

∂f

∂⊕xj
(x) =

∂f

∂ log(wj)
(w) (25)

Let us now consider the case of a function from the simplex SDX of RDX to the simplex SDS
of RDS . Rewriting (12.6) from chapter 12 (page 163) with our present notations we have

∂⊕h

∂t
(t) = C exp(

∂ log(h)

∂t
).

Combining this with (25), we can define the following directional C derivatives of h, denoted
∂⊕h
∂⊕xj

as ∂⊕h
∂⊕xj

= C exp(∂ log(h)
∂⊕xj

) = C exp(∂ log(h)
∂ logwj

).

A.4. Nullity of the sum of elasticities weighted by shares

We have to prove that
∑D

m=1 emltE⊕Smt = 0. This is the necessary condition for new shares

S′mt, resulting from a change in Xlt, to sum up to one:
∑D

m=1 S
′
mt = 1⇔

∑D
m=1 emltE⊕Smt =

0.
Proof:

D∑
m=1

E⊕Smt = 1⇔
D∑

m=1

∂E⊕Smt
∂ logXlt

= 0⇔
D∑

m=1

∂E⊕Smt
∂ logXlt

1

E⊕Smt
E⊕Smt = 0⇔

D∑
m=1

emltE⊕Smt = 0
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