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ABSTRACT Thaumarchaeota are frequently reported to associate with marine sponges
(phylum Porifera); however, little is known about the features that distinguish them
from their free-living thaumarchaeal counterparts. In this study, thaumarchaeal
metagenome-assembled genomes (MAGs) were reconstructed from metagenomic
data sets derived from the marine sponges Hexadella detritifera, Hexadella cf. de-
tritifera, and Stylissa flabelliformis. Phylogenetic and taxonomic analyses revealed that
the three thaumarchaeal MAGs represent two new species within the genus Nitros-
opumilus and one novel genus, for which we propose the names “Candidatus UNi-
trosopumilus hexadellus,” “Candidatus UNitrosopumilus detritiferus,” and “Candidatus
UCenporiarchaeum stylissum” (the U superscript indicates that the taxon is uncul-
tured). Comparison of these genomes to data from the Sponge Earth Microbiome
Project revealed that “Ca. UCenporiarchaeum stylissum” has been exclusively de-
tected in sponges and can hence be classified as a specialist, while “Ca. UNitros-
opumilus detritiferus” and “Ca. UNitrosopumilus hexadellus” are also detected out-
side the sponge holobiont and likely lead a generalist lifestyle. Comparison of the
sponge-associated MAGs to genomes of free-living Thaumarchaeota revealed signa-
tures that indicate functional features of a sponge-associated lifestyle, and these fea-
tures were related to nutrient transport and metabolism, restriction-modification, de-
fense mechanisms, and host interactions. Each species exhibited distinct functional
traits, suggesting that they have reached different stages of evolutionary adaptation
and/or occupy distinct ecological niches within their sponge hosts. Our study there-
fore offers new evolutionary and ecological insights into the symbiosis between
sponges and their thaumarchaeal symbionts.

IMPORTANCE Sponges represent ecologically important models to understand the
evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumar-
chaeota are commonly found in sponges, but their potential adaptations to a host-
associated lifestyle are largely unknown. Here, we present three novel sponge-
associated thaumarchaeal species and compare their genomic and predicted
functional features with those of closely related free-living counterparts. We found
different degrees of specialization of these thaumarchaeal species to the sponge en-
vironment that is reflected in their host distribution and their predicted molecular
and metabolic properties. Our results indicate that Thaumarchaeota may have
reached different stages of evolutionary adaptation in their symbiosis with sponges.
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Marine sponges are a group of sessile animals, which harbor diverse microorgan-
isms that often form stable and specific associations with their host (1–3).

Phylogenetic analyses have shown that sponge microbiota often contain members of
the phyla Proteobacteria (mainly Gamma- and Alphaproteobacteria), Actinobacteria,
Firmicutes, Chloroflexi, Nitrospirae, Cyanobacteria, “Candidatus Poribacteria,” and Thau-
marchaeota (4–6). Studies analyzing isolate genomes or metagenome-assembled ge-
nomes (MAGs) from a few of these bacterial phyla have postulated several adaptive
features of sponge-associated symbionts compared to their free-living relatives, includ-
ing an enrichment of unique eukaryotic-like proteins (ELPs) and methyltransferases in
the cyanobacterial “Candidatus Synechococcus spongiarum” (7–9), an abundance of
diverse phyH domain proteins in Poribacteria (10), an enrichment of CRISPR-Cas
systems, ABC transporters, and restriction-modification systems in the alphaproteobac-
terial Rhodospirillaceae (11), and functions related to carbohydrate uptake, phage
defense, and protein secretion in sulfur-oxidizing Gammaproteobacteria (12, 13). In
contrast, other Proteobacteria such as the genera Aquimarina and Pseudovibrio have few
or no obvious features that distinguish them from their free-living counterparts (9).

Thaumarchaeota occur in diverse habitats, including seawater (14–17), hot springs
(18), freshwater (19), industrial wastewater (20, 21), terrestrial soil (22–25), marine
sediments (26, 27), and marine sponges (28–33). Previous work has shown that some
Thaumarchaeota form so-called “sponge-specific” or “sponge-enriched” clades, which
are defined by monophyletic 16S rRNA sequence clusters found either exclusively or
highly enriched in sponges compared to other environments (1, 5, 34, 35). This
indicates that some Thaumarchaeota clades might have diverged from their free-living
counterparts because of adaptation to a sponge-associated lifestyle. Thaumarchaeota
are known to be ecologically important autotrophic, aerobic ammonia oxidizers, which
use urea and probably creatinine as indirect sources of ammonia (23, 36) and produce
NO (37), N2O (38), and ether-lipid components (39). A possible uptake of urea and
amino acids and the expression of a CO2 fixation pathway have also been recently
reported for a sponge-associated Thaumarchaeota (33), but no other genomic features
indicative of adaptation to the sponge environment have been reported.

This study aimed to generate hypotheses on the potential functional adaptations
based on the comparative genomic analyses of novel thaumarchaeal symbionts of
sponges. For this purpose, we reconstructed MAGs from metagenomic data derived
from the sponges Stylissa flabelliformis, Hexadella detritifera, and Hexadella cf. detritifera
and compared them to genomes from closely related free-living Thaumarchaeota.

RESULTS AND DISCUSSION
MAG reconstruction and phylogenetic analyses define novel thaumarchaeal

taxa. The seven sponge specimens investigated in this study (Table 1) each contained
a single 16S rRNA gene sequence belonging to the phylum Thaumarchaeota as
reconstructed using the Mapping-Assisted Targeted Assembly for Metagenomics
(MATAM) algorithm (40). Similarly, only one thaumarchaeal MAG was recovered for
each sample, to which the 16S rRNA gene sequence could be aligned with high
similarity (99.95% � 0.08%). MAGs had average sizes of 1.18 � 0.08 Mb, no heteroge-

TABLE 1 Statistics of sponge-associated thaumarchaeal MAGs

Sample MAG Proposed taxona Host species

MAG
size
(Mbp)

Completeness
(%)

Estimated
genome
size (Mbp) Contamination

Avg
coverage
of MAG

16S rRNA
gene length
(bp)

B06 HdNhB06 “Ca. UN. hexadellus” Hexadella dedritifera 1.25 91.83 1.36 0.96 28� 1,365
D6 HdNhD6 “Ca. UN. hexadellus” Hexadella dedritifera 1.12 92.31 1.21 0 89� 1,041
H08 HdNdH8 “Ca. UN. detritiferus” Hexadella cf. dedritifera 1.13 89.26 1.27 0 11� 1,448
H13 HdNdH13 “Ca. UN. detritiferus” Hexadella cf. dedritifera 1.12 89.9 1.25 0.07 106� 1,600
S13 SfCsS13 “Ca. UC. stylissum” Stylissa flabelliformis 1.31 85.58 1.53 0.96 9� 1,432
S14 SfCsS14 “Ca. UC. stylissum” Stylissa flabelliformis 1.13 80.13 1.41 1.04 6� 1,430
S15 SfCsS15 “Ca. UC. stylissum” Stylissa flabelliformis 1.17 61.54 1.90 0.96 5� 1,431
aThe three proposed taxa are “Candidatus UNitrosopumilus hexadellus,” “Candidatus UNitrosopumilus detritiferus,” and “Candidatus UCenporiarchaeum stylissum.”
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neity, contamination levels of 0.57% � 0.51% and completeness of 84.36% � 10.91% as
assessed by CheckM (41).

Maximum-likelihood trees were constructed for the 16S rRNA genes or single-copy
genes (SCG) from the MAGs and genomes of their close relatives in the National Center
for Biotechnology Information (NCBI) nonredundant nucleotide (NT) database (see
Table S1 in the supplemental material). These two trees showed very similar patterns,
with the sponge-derived Thaumarchaeota falling into two distinct clades (Fig. 1; see
also Fig. S1 in the supplemental material). One clade was comprised of the three MAGs
from Stylissa flabelliformis, which were 99.91% � 0.04% similar to each other at the 16S
rRNA gene level and formed an apparent sister clade (98.81% � 0.11% similar) to
“Candidatus Cenarchaeum symbiosum” (GenBank accession number DP000238.1),
which was previously reported from the marine sponge genus Axinella (30). The other
clade was composed of four genomes from the Hexadella samples, which were related
to the free-living Nitrosopumilus maritimus (GenBank accession number CP000866.1)

FIG 1 Maximum-likelihood tree based on 16S rRNA gene sequences (�1,000 bp) for sponge-associated and free-living Thaumarchaeota. Results �50% are
shown for 1,000 bootstraps. The tree is rooted with two Aigarchaeota (“Candidatus Caldiarchaeum subterraneum” and an unclassified Aigarchaeota) and one
unclassified Thaumarchaeota, and sponge-derived sequences are displayed in boldface type. Gray shaded boxes represent sponge-specific monophyletic
clusters, and white boxes represent monophyletic clusters containing both sponge-derived sequences and free-living sequences. Bars indicate 10% sequence
divergence.
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from seawater. The reconstructed 16S rRNA gene sequences of this clade were
98.65% � 0.31% similar to other sequences from the genus Nitrosopumilus and had
99.58% � 0.20% similarity to each other. Our analysis also included two MAGs
(GCA_002494985.1 and GCA_002506665.1) from the Genome Taxonomy Database
(GTDB), one of which (GCA_002494985.1) also contained a partial 16S rRNA gene. These
MAGs were derived from a sample of the deep-sea sponge Neamphius huxleyi. How-
ever, in the phylogenetic trees, these organisms clustered separately from each other
as well as from the MAGs analyzed here and were more closely related to free-living
Thaumarchaeota. They were therefore not further analyzed.

The thaumarchaeal MAGs from Stylissa flabelliformis had pairwise amino acid iden-
tities (AAI) of 57.30% � 7.30% with “Ca. Cenarchaeum symbiosum” (Fig. 2), suggesting
that they represent a different genus within the same family (45 to 65%) based on the
criteria proposed by Konstantinidis et al. (42). Pairwise AAI distance between MAGs
from S. flabelliformis were 98.19% � 0.63%. We therefore propose the novel genus
“Candidatus Cenporiarchaeum” with the species “Candidatus UCenporiarchaeum stylis-
sum” (the U superscript indicates that the taxon is uncultured) represented by the
MAGs found in S. flabelliformis.

MAGs from the Hexadella samples had AAI distances of 70.95% � 14.12% with
Nitrosopumilus sp. (GCA_000328925.1), indicating that they belong to the same
genus (65 to 95%) but are distinct species (42). Pairwise AAI distances between the
MAGs from the Hexadella dedritifera and Hexadella cf. dedritifera were 99.22% and
98.57%, respectively. AAI distances between genomes from the two sponge taxa
were 85.70% � 0.14%, indicating two distinct species. We therefore propose the
names “Candidatus UNitrosopumilus hexadellus” for the species found in H. de-
dritifera, and “Candidatus UNitrosopumilus detritiferus” for the species found in H.
cf. dedritifera.

Another thaumarchaeal genome (Ga0078905) from the sponge Cymbastela concen-
trica from a previous study (33) had AAI values of 71.36% � 0.24% with “Ca. UNitros-
opumilus detritiferus” and “Ca. UNitrosopumilus hexadellus,” indicating a different
species within the same genus, and we propose here the name “Candidatus UNitros-
opumilus cymbastelus.”

Size and GC content of sponge-associated thaumarchaeal genomes. Genome
reduction is often considered a signature of microbial symbiosis, as genes no longer
required for a host-associated lifestyle are being lost (43). Interestingly though, no
evidence for genome reduction has been reported for archaea. In our study, we

FIG 2 Pairwise average amino acid identity (AAI) distances among the genomes of sponge-derived Thaumar-
chaeota and their closest relatives. The color bar indicates the range of AAI distances that represents different
taxonomical levels: the level of species (95 to 100%), genus (65 to 95%), and family (45 to 65%).
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estimated the genome sizes of MAGs based on the predicted degree of genome
completeness evaluated with 146 lineage-specific SCG at a rank of phylum using
CheckM (41). The “Ca. UCenporiarchaeum stylissum” MAG ST15 MAG was excluded from
this and all subsequent analyses, as it had comparatively low genome completeness
(Table 1).

We found that the average estimated genome size of the five sponge-associated
thaumarchaeal species (1.51 � 0.34 Mbp) was significantly smaller than that of 15
terrestrial and marine free-living Thaumarchaeota (1.97 � 0.65 Mbp) (Wilcox test, P
value � 0.047; Fig. 3), but not when compared only to marine, free-living Thaumar-
chaeota (1.51 � 0.19 Mbp) (Wilcox test, P value � 0.613). The former significant result
is however likely due to the fact that marine Thaumarchaeota generally have smaller
genomes than their terrestrial counterparts (44). Estimated genome sizes of individual
sponge-associated species were also not significantly smaller than free-living ones, with
“Ca. UCenporiarchaeum stylissum” and “Ca. UNitrosopumilus cymbastelus” having the
largest of all marine genomes investigated here. This finding is consistent with recent
work also noting a lack of significant reduction in genome size for archaeal endosym-
bionts of ciliates (45, 46).

However, sponge-derived thaumarchaeal species had a significantly higher av-
erage GC content (53.75% � 9.52%) than those of their 15 free-living counterparts
(38.22% � 6.98%) (Wilcox test, P value � 7.67E�04) or the 7 free-living marine Thau-
marchaeota (33.40% � 0.94%) (Wilcox test, P value � 3.11E�04). The GC contents for
“Ca. UCenporiarchaeum stylissum” (66.24% � 1.05%), “Ca. UNitrosopumilus hexadellus”
(47.77% � 0.21%), and “Ca. UNitrosopumilus detritiferus” (53.10% � 0.16%) were also
found separately to be higher than those of the seven free-living marine Thaumar-
chaeota, but with only marginal statistical support (Wilcox test, P value � 0.056 for each
respective pairwise test). “Ca. UNitrosopumilus cymbastelus” had a GC content closer to
those of free-living, marine Thaumarchaeota. GC enrichment has previously also been
observed in obligate bacterial symbionts, such as “Candidatus Hodgkinia cicadicola”
and “Candidatus Tremblaya princeps” of cicada (insects) (43, 47) and was assumed to be
a result of GC directional mutational pressure during genome evolution (47). However,

FIG 3 Genome length versus GC content for sponge-derived and free-living Thaumarchaeota. Genome length (in base
pairs) versus GC content (as a percentage) are shown.
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it has also been shown that high GC content is correlated to the adaptation to
environmental stresses, such as nutrient and energy limitation (48). The mechanisms
that give rise to the high GC content in the sponge-associated symbiotic Thaumar-
chaeota therefore require further investigation.

Analysis of host specificity showed generalist and specialist taxa. The thaumar-
chaeal phylogenetic tree based on 16S rRNA gene sequences from the current study
and 19 sponge-derived thaumarchaeal sequences previously defined as sponge-
specific sequence clusters by Simister et al. (5) showed that “Ca. UCenporiarchaeum
stylissum” and “Ca. Cenarchaeum symbiosum” belong to separate monophyletic clades
comprised exclusively of sponge-specific 16S rRNA sequences (Fig. 1). This phylogenetic
placement indicates that these two organisms might have an obligate sponge-
associated lifestyle. In contrast, “Ca. UNitrosopumilus detritiferus” and “Ca. UNitros-
opumilus hexadellus” did not cluster with previously described sponge-specific se-
quences but instead formed a distinct cluster with other free-living Thaumarchaeota.
“Ca. UNitrosopumilus cymbastelus” was also closely related to sequences from free-
living Thaumarchaeota.

The 16S rRNA genes of “Ca. UCenporiarchaeum stylissum,” “Ca. UNitrosopumilus
cymbastelus,” “Ca. Cenarchaeum symbiosum,” “Ca. UNitrosopumilus detritiferus,” and
“Ca. UNitrosopumilus hexadellus” were further searched against the Sponge Earth
Microbiome Project (SEMP) database, which comprises 3,490 samples from more than
250 different sponge species and other marine habitats (http://www.spongeemp.com)
(49). We allowed for single mismatches (i.e., 99% similarity) in the search against the
zero-distance operational taxonomic units (zOTUs) generated by the Deblur algorithm
used in the SEMP (49). “Ca. UC. stylissum” was found in 115 samples, which belonged
exclusively to six sponge species, including four Stylissa species (Fig. 4; Table S2). “Ca.
UN. hexadellus” and “Ca. UN. detritiferus” were detected in 969 and 722 samples,
respectively, which belonged mainly to at least 20 sponge species. Both species were
also found in some seawater and sediment samples analyzed in the SEMP, but the fact
that they were enriched in sponges and had high genome coverage when assembled
from the Hexadella microbial metagenomes (Table 1) suggests that they are symbionts
of sponges.

“Ca. UNitrosopumilus cymbastelus” was found in 87 samples, nearly half of which
were seawater, while the remainder were recovered from five sponge species. Through

FIG 4 Enrichment of “Ca. UCenporiarchaeum stylissum” (A), “Ca. UNitrosopumilus hexadellus” (B), “Ca. UNitrosopumilus
cymbastelus” (C), and “Ca. UNitrosopumilus detritiferus” (D) in samples of the Sponge Earth Microbiome Project. Enrich-
ment was calculated using either presence/absence binomial tests or relative frequency-based rank sum tests. The values
following the sample names represent the number of samples in which the archaeal species was detected.

Zhang et al.

July/August 2019 Volume 4 Issue 4 e00288-19 msystems.asm.org 6

http://www.spongeemp.com
https://msystems.asm.org


16S rRNA gene sequencing and fluorescence in situ hybridization visualization, “Ca. UN.
cymbastelus” has previously been shown to be consistently present in Cymbastela
concentrica, which was not analyzed in the SEMP (33). “Ca. Cenarchaeum symbiosum”
was found in only one sample from the SEMP and thus no statistical support for host
distribution could be obtained. The distributional patterns showed no overlap between
“Ca. UCenporiarchaeum stylissum,” Ca. UNitrosopumilus hexadellus,” “Ca. UNitrosopumi-
lus detritiferus,” and “Ca. UN. cymbastelus” (Fig. 4; Fig. S2), and in most cases, each pair
of thaumarchaeal species does not coexist within the same sponge species or sponge
sample. The only exceptions are three sponge species (Cliona celata, Geodia barretti,
and Petrosia ficiformis), where matches to both “Ca. UN. hexadellus” and “Ca. UN.
detritiferus” were found.

Together, these data show that “Ca. UCenporiarchaeum stylissum” has a somewhat
restricted host range by being predominantly found in Stylissa species and thus might
have an obligate association with this sponge taxon. “Ca. UNitrosopumilus hexadellus”
and “Ca. UNitrosopumilus detritiferus” occurred in a broader range of sponges, while
“Ca. UNitrosopumilus cymbastelus” was frequently found outside sponges, indicating
that these Thaumarchaeota have a more facultative relationship with particular sponge
species or sponges in general.

A recent study demonstrated that sponge-associated symbiont communities are
characterized by a combination of generalists and specialists (6). Generalists were
defined as cosmopolitans that were not only present in a large number of sponge
species but were also consistently present in a large fraction (�40%) of individuals of
each host species. “Ca. UNitrosopumilus hexadellus” and “Ca. UNitrosopumilus de-
tritiferus” clearly match this definition. “Ca. UCenporiarchaeum stylissum,” in contrast,
appears to be more of a specialist, being restricted to a few closely related sponge taxa.

Functional analysis showed features indicating adaptation to the sponge en-
vironment. To gain further insights into thaumarchaeal adaptation to a sponge-
associated lifestyle, indicator analysis (50) was undertaken for the relative abundance of
orthologous groups (OGs) of proteins. Comparison of OGs has been extensively used to
investigate the evolution of organisms and their potential functional adaptation to the
environment or particular lifestyles (9, 32). OGs from sponge-associated “Ca. UCenpo-
riarchaeum stylissum,” “Ca. UNitrosopumilus hexadellus,” “Ca. UNitrosopumilus de-
tritiferus,” and closely related free-living counterparts were compared. “Ca. UNitros-
opumilus cymbastelus” and “Ca. Cenarchaeum symbiosum” were excluded from the
indicator analysis, as they are represented only by single genomes, thus precluding
statistical analyses.

The total 43,542 predicted protein sequences of the thaumarchaeal species inves-
tigated here clustered with 40% identity and more than 80% coverage into 14,780 OGs.
MAGs of the sponge-associated “Ca. UCenporiarchaeum stylissum” were compared to
those from 15 free-living Thaumarchaeota (Table S1), and their combined 28,413
predicted protein sequences were contained in 4,748 OGs with at least two sequences
per OG (Table 2). A total of 328 OGs in the indicator analysis had P values of �0.005 and
were therefore indicative of either a sponge-associated or free-living lifestyle. Of these
OGs, 248 were indicator OGs for sponge-associated genomes (Fig. S3), of which 100
could be assigned to archaeal Clusters of Orthologous Groups of proteins (arCOGs) (51,
52). The “Ca. UNitrosopumilus hexadellus” and the “Ca. UNitrosopumilus detritiferus”
data sets with 163 and 140 indicator OGs, respectively, had 129 and 104 indicator OGs
for a sponge-associated lifestyle, of which 51 OGs for each species could be assigned
to arCOG functions, respectively (Table 2; Fig. S3). The genomes of “Ca. UC. stylissum,”
“Ca. UN. hexadellus,” and “Ca. UN. detritiferus” had 79, 34, and 36 indicator OGs with
functions, respectively, which were significantly more abundant in all free-living thau-
marchaeal genomes (Table 2; Fig. S3 and Table S3). These OGs with functions might be
absent because they are no longer required for a sponge-associated lifestyle or simply
due to the incompleteness of the MAGs.

For all three species, OGs indicative of a sponge-associated lifestyle made up the
majority (77.5% � 4.7%) of all differential OGs (Fig. S3), providing support for the
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acquisition or enrichment of function in response to their particular symbiotic lifestyle.
Twelve of these sponge-associated OGs, which could be assigned to arCOG functions,
were found in all three species. “Ca. UCenporiarchaeum stylissum” had more sponge-
associated functions than “Ca. UNitrosopumilus hexadellus” or “Ca. UNitrosopumilus
detritiferus” did (Fig. 5), indicating different degrees of functional or evolutionary
adaptation to the sponge environment.

Shared OGs with functions involve metabolic and defense processes. The 12
functions that were encoded by the indicator OG genes shared by “Ca. UCenporiar-
chaeum stylissum,” “Ca. UNitrosopumilus hexadellus,” and “Ca. UNitrosopumilus de-
tritiferus” include Liv-type ATP-binding cassette (ABC) transporter ATPases (ar-
COG00924 and arCOG00925), a phenolic acid decarboxylase regulator (PadR)-like
transcriptional regulator (arCOG00724), a tetratricopeptide repeat (TPR)-containing
protein (arCOG03038) and enzymes Cas3 and Cas4 (arCOG01444 or arCOG00786)
(Fig. 6; Table S3).

The cytoplasmic ATPases LivG (arCOG00925) and LivF (arCOG00924) belong to
ABC-type transporters for branched-chain amino acids (Leucine-isoleucine-valine [Liv])
(53). These transporters also contain membrane-integrated permeases, for which dif-
ferent types (LivK, -M, and -H) were present in three sponge-associated Thaumar-
chaeota. In Escherichia coli, different types of permeases have been shown to contribute
to the specificity of the transport system (54). In addition, “Ca. UCenporiarchaeum
stylissum” and “Ca. UNitrosopumilus detritiferus” had high copy numbers for a unique
OG that was annotated as a LivK-type periplasmic component (arCOG01201), which is
involved in substrate binding during import (55). This indicates that import of
branched-chain amino acids might be an import feature for sponge-associated Thau-

TABLE 2 Indicator analysis of OGs and functional properties of “Ca. UCenporiarchaeum stylissum,” “Ca. UNitrosopumilus hexadellus,” and
“Ca. UNitrosopumilus detritiferus”a

Characteristic

Parameter value for proposed speciesb

“Ca. UC.
stylissum”

“Ca. UN.
hexadellus”

“Ca. UN.
dedritiferus”

General characteristics
Total no. of predicted protein sequences present in both SA

and FL genomes
28,413 28,851 28,822

No. of OGs present in genomes 4,748 4,631 4,601

Indicator analysis
No. of indicator OGs 328 163 140
No. of indicator OGs for SA genomes 248 129 104
No. of indicator OGs assigned to arCOG functions for SA genomes 100 51 51
No. of indicator OGs for FL genomes 80 34 36
No. of indicator OGs assigned to arCOG functions for FL genomes 79 34 36

aAbbreviations: SA, sponge-associated; FL, free-living. P � 0.005 for two sponge-associated Thaumarchaeota and 15 free-living Thaumarchaeota.
bThe three proposed taxa are “Candidatus UNitrosopumilus hexadellus,” “Candidatus UNitrosopumilus detritiferus,” and “Candidatus UCenporiarchaeum stylissum.”

FIG 5 Venn diagram showing sponge-associated functions found in three thaumarchaeal species
analyzed in comparison to other free-living Thaumarchaeota.
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marchaeota, which is consistent with other studies showing that ABC transporters
might have a role in scavenging nutrients for bacteria within the sponge environment
(12, 32, 33, 56, 57).

The PadR family (arCOG00724) comprises a diverse array of transcriptional regula-
tors involved, for example, in detoxification of phenolic acids (58, 59), expression of
multidrug efflux pumps (60), or virulence gene expression (61). Its exact role in
sponge-associated Thaumarchaeota is therefore not clear. TPR-containing protein can
mediate protein-protein interactions in eukaryotes (62) and might be used by sponge-
associated bacteria to interfere with phagosome processing (63).

Clustered regularly interspaced short palindromic repeats (CRISPR) and their asso-
ciated Cas proteins constitute an adaptive immune system found in many prokaryotic
genomes that provides protection against mobile genetic elements (MGEs), including
viruses, transposable elements, and conjugative plasmids (64, 65). Cas3 has been
proposed to play a key role in the CRISPR mechanism through direct cleavage of
invasive nucleic acids (66, 67). Cas4 belongs to the RecB family of exonuclease, which
is suggestive of DNA binding activity. The cas4 gene has been reported to be strictly
associated with CRISPR elements (65) and appears to be less conserved than other cas
genes, such as cas1 and cas2 (68, 69). In further support of the existence of CRISPR
mechanisms in the sponge-associated Thaumarchaeota, we found CRISPR arrays and
cas genes on the same genomic scaffolds for “Ca. UCenporiarchaeum stylissum” MAG
ST14 and “Ca. UNitrosopumilus hexadellus” MAG B06 (Fig. S4). CRISPRs and cas genes
could also be found in the genomes of “Ca. UNitrosopumilus detritiferus” but were
located on different scaffolds, most likely due to incomplete assembly. Together, these
results indicate the existence of some common features, such as amino acid transport
as well as DNA defense, in the adaptation of thaumarchaeal species to the sponge
environment. These findings are similar to recent findings that CRISPR and other

FIG 6 Comparison of sponge-associated functions in “Ca. UCenporiarchaeum stylissum,” “Ca. UNitrosopumilus hexadellus,” and “Ca. UNitrosopumilus
detritiferus” using arCOG-based annotation. Details of additional functions are given in Table S3 in the supplemental material.
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defense-related features were found enriched in sponge-associated bacterial symbionts
(70).

Shared and unique OGs of the generalist symbionts “Ca. UNitrosopumilus
hexadellus” and “Ca. UNitrosopumilus detritiferus.” Almost half (44.7% � 0.1%) of
the functions encoded by sponge-associated OGs in “Ca. UNitrosopumilus hexadellus”
are the same as in “Ca. UNitrosopumilus detritiferus,” including a unique PBS lyase
HEAT-like repeat domain (arCOG02966) (71–73). Proteins with this repeat domain have
been reported to inactivate exogenous proteases (73) and therefore could mediate
evasion of a host’s innate defense systems and resistance against phagocytosis. Both
“Ca. UN. hexadellus” and “Ca. UN. detritiferus” also carried unique genes encoding
components annotated as adamalysin (peptidase M10A) and matrixin (peptidase M12B)
(arCOG04994), indicating that the two archaea have similar opportunities for the
degradation of proteins and uptake of amino acids, which might be related to the
existence of an extracellular protein matrix of their hosts.

“Ca. UNitrosopumilus hexadellus” and Ca. UNitrosopumilus detritiferus” also have
unique, annotated OGs that discriminate their genomes. For example, “Ca. UN. hexa-
dellus” contains a unique OG annotated as polycystic kidney disease (PKD) domain
(arCOG08800) and another unique OG annotated as an ELP that consists of repeats of
the alpha-2-macroglobulin-like domain (A2M) (arCOG08778). PKD domains have been
previously detected in archaeal surface layer proteins (74), and both PKD and A2M have
been suggested to have a role in interacting with the cell surface proteins of metazoans
(73). An OG that was annotated as transcription initiation factor TFIID TATA box-binding
protein (TBP) (arCOG01764) was also unique to “Ca. UN. hexadellus,” potentially playing
a role in sensing and responding to the specific environmental conditions given in its
sponge host.

As for features that distinguish “Ca. UNitrosopumilus detritiferus” from “Ca. UNitros-
opumilus hexadellus,” we found OGs that encode DNA adenine methylase (Dam)
(arCOG03416) and S-adenosylmethionine (SAM)-dependent methyltransferase (ar-
COG04989). Dams and SAM-dependent methyltransferases and associated cognate
endonucleases form restriction-modification (R-M) systems that control the invasion of
foreign DNA (75). Dams were enriched in both “Ca. UCenporiarchaeum stylissum” and
“Ca. UN. hexadellus” and were found next to the cognate endonuclease Endonuc-EcoRV
(Pfam accession number PF09233) in “Ca. UC. stylissum” MAG ST14, strongly suggesting
they are part of a functional R-M systems (76, 77). Protection against foreign DNA has
previously been hypothesized to be an important feature of sponge-associated micro-
bial communities that must maintain genomic integrity in an environment with a
constant influx of biological material, including DNA and viruses, derived from the
sponge’s filter-feeding activity (32, 70). “Ca. UN. detritiferus” also carries genes that
encode unique OGs that were annotated as prophage death-on-curing (Doc) protein
(arCOG06831) and the kazal-type serine protease inhibitor (arCOG10350), which have
been reported to play important roles in bacterial stress response (78) and defense
against proteinases from pathogenic bacteria (79). Together with the CRISPR men-
tioned above, these results imply a general need for defense mechanisms in “Ca. UN.
detritiferus.” In addition, one OG annotated as a periplasmic binding protein of a
phosphonate ABC transporter (PhnD) (arCOG01805) was exclusively found in “Ca. UN.
detritiferus.” The ATPase (PhnC) and permease (PhnE) were also found in “Ca. UN.
detritiferus” MAG H8. The phn genes are generally induced under phosphate limitation
(80), perhaps indicating a potential adaptation of “Ca. UN. detritiferus” to a specific
nutritional environment (i.e., limited phosphate) in Hexadella cf. detritifera.

Unique OGs with functional features in the specialist “Ca. UCenporiarchaeum
stylissum.” “Ca. UCenporiarchaeum stylissum” contains unique OGs that were anno-
tated as methylases (YhdJ, arCOG00115; CbiE, arCOG00650) and methyltransferase
(Dcm, arCOG04157) belonging to R-M systems, the heat shock protein GrpE (ar-
COG04772), and a DnaJ-class molecular chaperone (arCOG02846), a late embryogenesis
abundant (LEA14)-like protein (arCOG03788), and proteins involved in a toxin-antitoxin
(TA) module, including a persistence and stress resistance toxin PasT (arCOG08713).
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Heat shock proteins and chaperones protect other proteins from irreversible aggrega-
tion during synthesis and in times of cellular stress (81–83), and this has been postu-
lated as an evolutionary adaptation in the symbiotic lifestyle of dinoflagellates (84). “Ca.
UCenporiarchaeum stylissum” has three OGs assigned to arCOG02846 (DnaJ-class
molecular chaperone), of which one is unique to the organism. This unique copy could
represent a specific functional adaptation or experience specific gene expression under
conditions that are important for “Ca. UCenporiarchaeum stylissum.” “Ca. UCenporiar-
chaeum stylissum” also has only one OG that was annotated as GrpE (arCOG04772),
which is divergent from the OG with a gene that encodes GrpE in the other sponge-
associated or free-living Thaumarchaea. It is unclear why this OG has diverged so much
from those found in the other closely related archaea, but this could reflect a potential
functional adaptation. The LEA14-like protein is thought to be associated with archaeal
stress response and functions either in archaeal defense or by interacting with host
signaling pathways (85). TA systems are prevalent in many bacterial genomes and
contribute to biofilm and persister cell formation (86, 87). Specifically, in pathogenic
Escherichia coli, the PasT of TA systems increased its antibiotic stress resistance (88).
Such a defense mechanism might also be useful for sponge-associated Thaumar-
chaeota given a large number of chemical antagonists produced by sponges (89).
Interestingly, “Ca. UCenporiarchaeum stylissum” also had a unique set of significantly
enriched OGs that were annotated as TPRs (arCOG05195 and arCOG03042), which
suggests a different kind of molecular interaction with the sponge host than what
occurs in “Ca. UNitrosopumilus hexadellus” and “Ca. UNitrosopumilus detritiferus” (63).

Summary. In our study, three new sponge-associated thaumarchaeal species were
described, and we propose them to be specialist (“Ca. UCenporiarchaeum stylissum”) or
generalist (“Ca. UNitrosopumilus hexadellus” and “Ca. UNitrosopumilus detritiferus”)
species based on their observed host distribution. The unique and shared genetic
characteristics of “Ca. UCenporiarchaeum stylissum,” “Ca. UNitrosopumilus hexadellus,”
and “Ca. UNitrosopumilus detritiferus” have highlighted several genomic strategies for
a sponge-associated lifestyle. Genomic traits found in all three species (e.g., CRISPR,
TPRs) indicate a functional convergence reflecting general adaptation to the sponge
environment. The unique characteristics for the specific thaumarchaeal taxa studied
here highlight how generalists and specialists could be at different stages of evolu-
tionary adaptation, employ different ecological strategies, and/or are exposed to
different environmental conditions within the sponge hosts. Our study therefore
provides new evolutionary and ecological insights into the symbiosis between Thau-
marchaeota and marine sponges.

MATERIALS AND METHODS
Sample collection and sequencing. Four individual deep-sea sponge specimens were collected

from three stations in the North Atlantic Ocean (see Fig. S5 in the supplemental material; map drawn with
ODV software [90]). Sponge sample B0601MIN (B06) and H8 were collected from locations close to
Mingulay, Scotland, and the Celtic Sea, France, respectively, while sponge sample D6ROC (D6) and H13
were sampled from the Irish Sea, Ireland. Phylogenetic analysis showed that these four sponges belong
to the genus Hexadella but likely represent two different species within the genus with sample B06 and
D6 being Hexadella detritifera and sample H8 and H13 belonging to Hexadella cf. detritifera (91, 122). Total
genomic DNA was extracted from sponge samples using the MoBio PowerPlant DNA isolation kit
following the manufacturer’s instructions (MO BIO Laboratories, CA, USA). We used a Covaris S series
sonicator to shear DNA to �175-bp fragments and constructed metagenomic libraries using the Ovation
Ultralow Library DR multiplex system (Nugen Redwood City, CA, USA) following the manufacturer’s
instructions. Metagenomic sequencing was conducted on the Illumina HiSeq 1000 platform with up to
2 � 113 bp chemistry at the W.M. Keck sequencing facility at the Marine Biological Laboratory (Woods
Hole, MA, USA).

Three samples (S13, S14, and S15) of the sponge Stylissa flabelliformis were collected from the Davies
Reef, Great Barrier Reef, Australia. Tissue samples were frozen in liquid nitrogen and stored at – 80°C. Each
sample was homogenized in collagenase and then centrifuged for microbial cell collection. Microbial
community DNA was extracted with a Qiagen UltraClean Microbial DNA Isolation kit (92). Extracted DNA
was further purified using the ZymoResearch (CA, USA) purification kit (Genome DNA clean and
concentrator). Nextera XT library preparation was performed on all samples at the Ramaciotti Centre for
Genomics (University of New South Wales, Australia), and samples were then sequenced on the Illumina
MiSeq platform with 2 � 250-bp chemistry.
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Further details about sample collection are presented in Table S4 and Fig. S5 in the supplemental
material.

Metagenome-assembled genome reconstruction. Metagenomic sequences obtained from indi-
vidual sponges were analyzed separately to reconstruct archaeal metagenome-assembled genomes
(MAGs) for comparative analysis. Paired-end reads were quality filtered and trimmed with Trimmomatic
v.0.33 using the following parameters: “SLIDINGWINGDOW:6:30 MINGLEN:50” (93). Reads were assem-
bled using IDBA_UD v.1.1.1 with the kmer size from 20 to 100 bp and an interval of 20 (94). Only contigs
larger than 2.0 kbp were kept, and contig coverage was calculated by mapping reads back to the contigs
using the end-to-end option of Bowtie2 v.2.2.9 (95). Metagenome binning was performed using both
MetaBAT v.0.32.4 (96) and MyCC (97), and bins were then refined using Binning_refiner (98). MAG quality
was assessed by CheckM based on the presence of 146 single-copy marker genes, which were grouped
into 104 lineage-specific marker sets from 207 archaeal genomes (41). The genome size was estimated
by dividing the bin size by its estimated completeness. High heterogeneity was evident in some of the
bins due to the high coverage (e.g., the sequencing depth of data set D6 was about 361�). In these cases,
bins with high quality were obtained by subsampling the metagenomic reads to reduce the coverage
followed by assembly and binning as described above.

Phylogenetic analysis. The 16S rRNA gene sequences were reconstructed from metagenomic reads
using MATAM (40), and their taxonomical information was obtained by alignment to the SILVA database
v1.2.11 (99, 100). Reconstructed thaumarchaeal 16S rRNA gene sequences were added to the MAG, if
they had a sequence similarity of �98.6% (101) and an alignment length of more than 400 bp with any
scaffold within the MAG. All aligned thaumarchaeal 16S rRNA genes were then subjected to a BLASTN
search (102, 103) against the nonredundant nucleotide (NT) database at the NCBI on 2 December 2017,
and top hits with closed genomes were aligned in order to determine sequence similarities (104, 105).
In addition, another sponge-associated thaumarchaeal genome bin (Ga0078905) with corresponding 16S
rRNA genes assembled from metagenomic data sets from the sponge Cymbastela concentrica was
included (33). 16S rRNA gene sequences of �1,000 bp were aligned using MAFFT v7.310 (106), and a
maximum-likelihood tree was calculated using RAxML v.8.2.10 with a GTRGAMMA model and 1,000
bootstraps (107). The tree was visualized using iTOL (108) and rooted with the sequence of two
Aigarchaeota (“Candidatus Caldiarchaeum subterraneum” NC_022786.1 and an unclassified Aigarchaeota
Ga0180309_101) and one unclassified Thaumarchaeota (Ga0181444_1001) as an outgroup (109, 110).
The 16S rRNA genes of the new MAGs were also searched against the Sponge Earth Microbiome Project
(SEMP) database (http://www.spongeemp.com) (49), and the search results were manually curated to
remove hits against biofilm samples, whose exact nature were unclear.

For further taxonomic classification, pairwise average amino acid identity (AAI) distance between
new MAGs and 74 thaumarchaeal reference genomes was calculated with the Microbial Genomes Atlas
(111). Pairwise AAI distance between the new MAGs and the 16 most similar closed reference genomes
was also calculated using CompareM (https://github.com/dparks1134/CompareM). The SCG tree for all
input genomes was inferred from the concatenation of 122 archaeal single-copy proteins identified as
being present in �90% of archaeal genomes and, when present, being present in a single copy in �95%
of the genomes (112). Predicted protein sequences for the input genomes were searched against the
PFAM v31.0 (113) and TIGRFAM v14.0 (114) hmm profiles of these SCG proteins using HMMER v3.1b2
(115). Protein sequences for each hmm profile were then individually aligned with MAFFT v7.310 and
concatenated into a multiple-sequence alignment (MSA). A phylogenetic tree was then generated by
RAxML v.8.2.10 with a PROTGAMMAWAG model and 1,000 bootstraps and visualized as well as rooted
as described above.

Gene annotation and comparison. Prodigal, as implemented in Prokka, was used to predict open
reading frames (ORF) in the MAGs using the “metagenome” setting and specifying the kingdom as
“Archaea” (116, 117). All predicted protein sequences were clustered into orthologous groups (OGs)
using the OrthoMCL v1.4 clustering algorithm (118) as implemented in the program get_homologues
v18092017 (119). Bidirectional BLAST searches were filtered with an E value of 10�05 as well as �40%
alignment identity over 80% alignment coverage, which has been demonstrated to have a probability of
�90% that the sequences in OGs are also homologous (120). The longest sequence in each OG is then
used for functional annotation. OGs that are characteristic of sponge-associated and free-living lifestyle
were identified using indicator analysis on relative abundance data (50). Abundance data for OGs were
also visualized using the R package “pheatmap” (121). OGs that displayed significant differences between
lifestyles were further annotated by searching them with BLASTP and an E value of 10�4 against the
archaeal Clusters of Orthologous Groups of proteins (arCOGs) database released in December 2014 (51,
52). Some functional names of clusters were corrected by annotation results against the Clusters of
Orthologous Groups of proteins (COGs) and KEGG Orthology (KO) databases.

Data availability. Sequences from this project have been deposited at the GenBank database under
the genome accession numbers RHFA00000000, RHEZ00000000, and RHEY00000000 for “Ca. UCenpori-
archaeum stylissum,” RHFD00000000 and RHFE00000000 for “Ca. UNitrosopumilus hexadellus,” and
RHFB00000000 and RHFC00000000 for “Ca. UNitrosopumilus detritiferus.”

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00288-19.
FIG S1, TIF file, 1.9 MB.
FIG S2, TIF file, 1.1 MB.
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