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Abstract 30 

 31 

Bacterial spores are formed within vegetative cells as thick-walled bodies resistant to 32 

physical and chemical treatments which allow the persistence and dissemination of the 33 

bacterial species. Spore-forming bacteria are natural contaminants of food raw materials and 34 

sporulation can occur in many environments from farm to fork. In order to predict spore 35 

formation over time, we developed a model that describes both the kinetics of growth and the 36 

differentiation of vegetative cells into spores. The model includes a classical growth model 37 

with the addition of only two sporulation-specific parameters: the probability of each 38 

vegetative cell to sporulate, and the time needed to form a spore once the cell is committed to 39 

sporulation. The growth-sporulation model was evaluated using the spore-forming, Gram 40 

positive bacterium, Bacillus subtilis and the biological meaning of the sporulation-specific 41 

parameters was validated using a derivative strain that produces the green fluorescent protein 42 

as a marker of sporulation initiation. The model accurately describes the growth and the 43 

sporulation kinetics in different environmental conditions and further provides valuable, 44 

physiological information on the temporal abilities of vegetative cell to differentiate into 45 

spores.  46 

 47 

Importance 48 

 49 

The growth-sporulation model we developed accurately describes growth and sporulation 50 

kinetics. It describes the progressive transition from vegetative cells to spores with 51 
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sporulation parameters which are meaningful and relevant to the sporulation process. The first 52 

parameter is the mean time required for a vegetative cell to differentiate into a spore (i.e. the 53 

duration of the sporulation process). The second sporulation parameter is the probability of 54 

each vegetative cell forming a spore over time. This parameter assesses how efficient the 55 

sporulation process is, how fast vegetative cells sporulate and how synchronous the bacterial 56 

population is for sporulation. The model constitutes a very interesting tool to describe the 57 

growth and the sporulation kinetics in different environmental conditions and it provides 58 

qualitative information on the sporulation of a bacterial population over time.  59 

 60 

Introduction 61 

 62 

Spore-forming bacteria are common contaminants of food, and represent the major 63 

source of food poisoning and food spoilage (1, 2). The aim for industrials is to prevent 64 

contamination of foods by bacterial cells under their vegetative or sporulated forms. To do so, 65 

it is necessary to target and control the different steps of the life cycle of these 66 

microorganisms. Bacterial cells under their vegetative or sporulated forms can be found in the 67 

environment and thereby can be natural contaminant of raw materials. The spore-formers 68 

display many physiological and enzymatic capacities. The spores are commonly resistant to 69 

physical and chemical treatments applied in the food industry. On the contrary, vegetative 70 

cells are sensitive but they can grow, produce degradative enzymes or toxins, form biofilms 71 

and differentiate into resistant spores as observed in milk powder processes (3–5).  72 

 73 

In order to control the occurrence of spore-formers in foods and in the food industry, it 74 

is necessary to prevent the growth and the sporulation of these microorganisms. A better 75 

understanding of the ecological niches of spore-formers can help preventing raw material 76 

contamination (6, 7). The sporulation leads to an increase of the spores yield in foods and the 77 
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sporulation conditions affect the quantity and the resistance properties of spores to subsequent 78 

chemical or thermal treatments (8, 9). The tools of predictive microbiology can help 79 

preventing the different bacterial processes thanks to mathematical models. The bacterial 80 

growth can be predicted over time and according to environmental factors (10–12). And some 81 

models exist to predict the resistance of spore according to chemical and physical treatments 82 

also (13–16). However, the sporulation process has been largely ignored in predictive 83 

microbiology.  84 

 85 

Mechanistic, knowledge-based models of sporulation have been proposed to describe 86 

the decision-making process of sporulation initiation at the cellular and molecular levels in 87 

response to environmental stimuli (17–19). These models are complex because they require 88 

numerous parameters, which for most of them cannot be experimentally evaluated in 89 

industrially relevant conditions. Alternatively, empirical, phenomenological models of 90 

sporulation were proposed to describe the evolution of spore counts over time, as they are 91 

simpler to use than mechanistic models. However, empirical models do not take into account 92 

the fact that sporulation is a differentiation process of vegetative cells into spores (20, 21), 93 

while growth and sporulation are well-known to be interdependent physiological processes 94 

(22).  95 

 96 

Sporulation occurs following different signals such as nutrient starvation and 97 

communication molecules of quorum sensing, that require previous bacterial growth. After 98 

signal sensing (23) the sporulation starts with the activation by phosphorylation of the master 99 

regulator Spo0A until a given threshold of Spo0A~P. Once this threshold is reached, the 100 

activated master regulator activates the early sporulation genes such as spoIIAA in the pre-101 

divisional cell and triggers the asymmetric division to form the mother-cell and the forespore 102 

(24). The sporulation process continues according to a sequential process involving different 103 
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transcription factors specific to the mother cell (σ
E 

and σ
K
) and to the forespore (σ

F 
and σ

G
) 104 

until the formation of a mature spore.  105 

 106 

The objectives of this work were to develop a model that (i) describes the sporulation 107 

kinetics from the growth kinetics of vegetative cells and (ii) can be used to predict sporulation 108 

in industrially relevant conditions. The identification of the model parameters required to 109 

assess the temporal heterogeneity of the sporulation of the vegetative population over time, 110 

the time that the vegetative cells needed to complete the sporulation process and the 111 

sporulation efficiency. To assess the biological meaning of the sporulation parameters, the 112 

model of the Gram positive bacteria, Bacillus subtilis was used in combination with a 113 

fluorescent reporter of sporulation initiation (PspoIIAA-gfp).  114 

 115 

Results 116 

 117 

Model development and experimental strategy 118 

 119 

A kinetic model associating the sporulation to the bacterial growth was developed. It 120 

describes the growth of vegetative cells with a classical logistic (Equation 1), and their 121 

differentiation into spores over time with two sporulation parameters: the probability of 122 

vegetative cells to sporulate over time and the time for each cell to form a mature spore tf (we 123 

assume that all vegetative cells need the same time to form a spore). The probability to 124 

sporulate was defined at the maximum population level by the proportion of vegetative cells 125 

(out of 20 cells in the exemple depicted in Figure 1a) which initiate the sporulation over time. 126 

At the cell level, this proportion accounts for the probability of each individual cell to 127 

sporulate over time (Figure 1b). This probability to sporulate evolves over time following a 128 

Gaussian distribution (Equation 3), which is described with three parameters (Figure 1b). The 129 
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first parameter is the maximal probability to sporulate Pmax which accounts for the maximal 130 

proportion of vegetative cells that can sporulate in a given period of time. This parameter 131 

mainly influences the maximal concentration of spores to be produced. The second one is the 132 

time tmax at which this maximal probability to sporulate is obtained, which has an impact on 133 

the time at which the first spores appear. The third parameter is the probability scattering 134 

which has an impact on the speed of appearance of spores over time.  135 

 136 

The experimental strategy developed to assess the sporulation parameters consisted in 137 

using a promoter fusion between the gfp gene and the promoter of the gene spoIIA (PspoIIA gfp) 138 

as a reporter of the initiation of sporulation. We made the hypothesis that on average, each 139 

sporulating cell produces the same amount of GFP (i.e. they produce the same amount of 140 

fluorescence). Consequently, the increase of the fluorescence over time (right scale in Figure 141 

1a) accounted for the increase of sporulating cells over time. The fluorescence and the 142 

concentration of sporulating cells evolved following a Gaussian distribution function 143 

(Equation 4). This allowed calculating the evolution of the probability to form as spore over 144 

time which evolves following the Gaussian density function (Equation 3 and Figure 1b). 145 

Ultimately, the time to form a spore was assessed (Equation 5) as the increase of fluorescence 146 

accounting for the increase of mature spores after the time to form a spore (dashed line in 147 

Figure 1a).  148 

 149 

Assessment of the growth and sporulation parameters of B. subtilis PspoIIAA gfp at 27°C, 150 

40°C and 49°C 151 

 152 

The proposed models (Equations 1 and 4) accurately described the growth and sporulation 153 

kinetics. The qualities of fit for growth and sporulation models reached a global RMSE value 154 

of 0.90 ln (UFC/mL) for all conditions tested.  155 
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The growth and sporulation kinetics were not significantly different between the wild-156 

type BSB1 and PspoIIAA gfp strains for the three temperatures tested. The values of the 157 

likelihood ratio test were 8.37, 7.43 and 3.00 at 27 °C, 40°C and 49°C respectively, i.e. 158 

inferior to 15.51 (α<5%). This allowed the wild-type strain to be used as a background to 159 

compute the fluorescence related to the production of GFP by strain PspoIIAA gfp.  160 

 161 

At 40 °C, the lag time was of 1.6 h, the growth rate was 1.61 h
-1

 (Figure 2f and Table 162 

1) and cells reached a maximal concentration of 3.8 × 10
8 
CFU/mL at 10 hours of culture. The 163 

fluorescence of strain PspoIIAA gfp increased with growth until it reached a maximal value Fmax 164 

of 5.13 × 10
4 
AU at 50 hours of culture. The maximal accumulation of fluorescence per unit 165 

of time was obtained at 36.7 h of incubation (tmax) and with a standard deviation of 10.4 h 166 

(Figure 2d and 2e, and Table 1). The sporulation kinetics displayed a first phase of abrupt 167 

appearance of almost 10
3
 CFU/mL and a second phase with a more gradual appearance of 168 

spores over time. These two phases were correctly described by the predicted kinetics. The 169 

maximal concentration of spores was 4.86 × 10
5 
CFU/mL (Figure 2f) and was directly linked 170 

to the maximal sporulation probability Pmax which was estimated at 2.4 × 10
-2

 (Table 1). The 171 

use of the model allowed computing a time to see the first spore at 9.0 h of culture which was 172 

consistent with experimental observations. Indeed, the time needed to obtain the first 10 173 

spores per milliliter (corresponding to the detection limit) was at 12 h of culture. Lastly, the 174 

time to form a spore was estimated at 7.0 h of culture which was consistent with previous 175 

findings (25). 176 

 177 

At 27 °C, the growth rate was reduced by 35%  as compared to growth at 40°C, and 178 

the lag time was twice as high with λ values of 1.6 h and 3.1 h at 40 °C and 27 °C respectively 179 

(Table 1). The fluorescence evolved more gradually from 0 h to 70 h at 27 °C than at 40 °C 180 

(Figure 2a). This led to a more scattered probability of commitment to sporulation at 27 °C 181 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 27, 2018. ; https://doi.org/10.1101/309617doi: bioRxiv preprint 

https://doi.org/10.1101/309617
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

with a σ value of 15.9 h compared to 10.4 h at 40 °C (Figure 2b) which explains the gradual 182 

appearance of spores at 27 °C (Figure 2c). The maximal fluorescence was 20% lower at 27 °C 183 

than at 40°C, leading to the estimation that the maximal sporulation probability was about 3-184 

fold lower at 27 °C than at 40°C. Thus, this explains why the maximal concentration of spores 185 

was 4-fold lower at 27 °C compared to 40 °C. The time taken to form a spore was estimated 186 

at 7.4 hours at 27 °C (as for 40 °C). 187 

 188 

At 49°C, the growth of B. subtilis was enhanced with a growth rate almost twice 189 

higher than at 40°C. However, the maximal concentrations of total cells and the lag time were 190 

not significantly different (Table 1). The GFP-related fluorescence was detected as soon as 191 

growth started, increased faster than at 40°C and the maximal fluorescence was 5 times lower 192 

than at 40°C (Figure 2g compared to Figure 2d). The concentration of spores was reduced by 193 

20,000-fold at 49°C compared to 40°C but the maximal probability to commit to sporulation 194 

was only reduced by 2,000-fold. Thus, the maximal probability was not sufficient to explain 195 

the observed difference in the spore yield. The maximal probability was obtained 25.1 h 196 

sooner, when the concentration of cells was much lower at 49 °C than at 40 °C. Consequently, 197 

the maximal concentration of cells which were able to sporulate in the same time was also 198 

lower at 49 °C. Furthermore, the probability was less scattered with a standard deviation σ 199 

around tmax of 6.8 h at 49 °C compared to 10.4 h at 40 °C (Figure 2h and e). The probability 200 

scattering had an impact on the temporal accumulation of sporulating cells. When the 201 

probability scattering was low, cells were able to sporulate in a shorter time frame which led 202 

to fewer cells that were able to sporulate over time. Lastly, the sporulation process was faster 203 

at 49 °C than at 40 °C with times required to form a heat-resistant spore (tf) which were 204 

estimated at 4.1 h and 7.0 h at 49 °C and 40 °C respectively. 205 

 206 
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Discussion 207 

 208 

Theories and design of the model 209 

 210 

The aim and the originality of this work were to develop a model that describes both the 211 

growth kinetics and the sporulation kinetics with parameters that account for the 212 

differentiation of vegetative cells into spores. The sporulation was precisely described using 213 

the two parameters related to the decision-making process of cells to sporulate and the time 214 

they need to complete the process.  215 

 216 

The logistic model of growth (Equation 1) is largely used to describe the bacterial growth. 217 

It describes the growth kinetics with the lag before growth, the growth rate and the maximal 218 

concentration of total cells. Similarly, some models were developed to describe the 219 

sporulation kinetics with parameters such as the lag before the appearance of the first spores, 220 

the sporulation rate and the maximal concentration of spores. However these models 221 

dissociate the growth and the sporulation whereas these two bacterial processes are 222 

physiologically intertwined (26).This statement was supported by previous observations on 223 

other species of Bacillus as a correlation between the growth rate and the sporulation rate was 224 

found (20).  225 

 226 

The decision-making process to sporulate  was defined elsewhere at the cell level (27–29) 227 

and was translated at the population level by the probability to sporulate P in this study. The 228 

sporulation decision-making process of vegetative cells is directly linked to both the growth 229 

rate and the bacterial density (26) which evolve themselves over time following the growth 230 

kinetic. Thereby, we suggested that the probability to sporulate evolves over time also.  This 231 

hypothesis is supported by recent works by (30) who showed that the time of sporulation (or 232 
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the time at which the cells enter into sporulation) is heterogeneous among a bacterial 233 

population. For many biological processes, heterogeneity is the result of the multiscale 234 

organization of life as explained elsewhere (31). The heterogeneity of sporulation between 235 

cells can be explained at molecular and cellular levels by stochastic variations (32). The 236 

heterogeneity of sporulation over time can be explained because the sporulation depends on 237 

nutrient starvation which becomes increasingly severe over time, and depends on quorum 238 

sensing molecules that accumulate over time. Moreover, the sporulation heterogeneity also 239 

rises with the heterogeneity of other decision-making cell processes such as entry into 240 

competence, cannibalism or dormancy (33, 34) that delay the entry into sporulation. 241 

Ultimately, once the sporulation is initiated by vegetative cells, the process takes some hours 242 

to achieve until it forms a mature spore, which defines the second sporulation parameter tf. 243 

 244 

Quantitative and qualitative information are brought by the sporulation parameters 245 

 246 

The growth-sporulation model allowed describing accurately the growth and sporulation 247 

kinetics and allowed computing the time to obtain the first spore in the culture, the speed of 248 

appearance of spores and the maximal concentration of spores. Altogether, this revealed that 249 

the sporulation was the most efficient at 40 °C as the first spores appeared sooner and the 250 

maximal concentration of spores was higher than at 49°C and 27°C. This model allowed 251 

describing various curves shapes of growth and sporulation kinetics (fast and low kinetics) 252 

and was even more accurate than previous sporulation models (20, 21) with lower RMSE 253 

values (Supplementary Table S1). In particular, these early models did not succeed in 254 

describing the smooth emergence of spores as observed at 40 °C and 27 °C. In some cases, 255 

the use of these early models led to aberrant estimations of the time needed to see the first 256 

spores and the maximal concentration of spores (Supplementary Figure S1). Moreover, this 257 

model is capable of describing the growth and sporulation kinetics of other microorganisms 258 
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such as B. subtilis BSB1 and Bacillus licheniformis Ad 978 and in various environmental 259 

conditions (Supplementary Figures S1 and S2). 260 

 261 

The sporulation parameters also bring information at the physiological level on the 262 

sporulation behavior of vegetative cells over time. The probability to sporulate over time is 263 

described with a Gaussian density function involving three parameters. The maximal 264 

probability Pmax to sporulate accounts for the sporulation efficiency and explains why the 265 

sporulation yield is much higher at 40°C and 27°C than at 49°C. The low proportions of cells 266 

which sporulated at 49 °C may be the result of the rapid physico-chemical degradation of the 267 

medium provoked by such a high temperature. A simple hypothesis is that the deterioration of 268 

the growth medium may alter the cell decision-making and consequently advantage or 269 

disadvantage certain physiological processes; this hypothesis is supported by the rapid cell 270 

decline observed at 49 °C (Figure 2i). 271 

The probability scattering σ assesses how synchronous the bacterial population is for 272 

initiating sporulation. At 49°C, sporulation was synchrone whereas at 40°C sporulation was 273 

much more asynchrone, as observed by the sporulating population heterogeneity. . At least 274 

two hypotheses can explain this observation. First, the temperature affects the membrane 275 

fluidity by modifying its composition in fatty acids, which in turn is known to affect the 276 

activity of the sensors such as the histidine kinase KinA (35). Second, differentiation 277 

processes such as the entry into competence or the cannibalism are impacted by 278 

environmental factors. For instance, B. subtilis displays cannibalistic behavior at 40 °C but 279 

not at 45 °C (36). Consequently, we can reasonably assume that there are fewer 280 

differentiation opportunities at 49 °C than at 40°C, which leads to a lower sporulating 281 

population heterogeneity at 49°C.  282 

Concomitantly with σ, the time tmax at which Pmax is obtained allows assessing the time 283 

at which the first cell initiates the sporulation, which is mathematically obtained when the 284 
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product of the probability to sporulate with the concentration of total cells (CFU/mL) is 285 

superior to 1 i.e. 1 sporulating cell per milliliter. Lastly, the time to form a spore tf brings 286 

information on the time needed to complete the sporulation process according to 287 

environmental conditions. As the growth and the sporulation share enzymatic machineries 288 

(37–39), the time to form a spore is likely to be correlated with the growth rate.  This could 289 

explain why the sporulation completed faster at 49°C where bacterial cells grew faster than at 290 

40°C and 27°C. Nevertheless, dedicated experiments are required to address this issue. 291 

 292 

In summary, a kinetic model was developed to describe both growth and sporulation 293 

as a differentiation process from vegetative cells into spores. On the one hand, the model 294 

describes the growth with the classical logistic model of  Kono modified by Rosso (40). On 295 

the other hand, the models can be used to describe the sporulation kinetics from the growth 296 

kinetics with parameters thatare specific to sporulation: the time to form a spore and the 297 

probability to form a spore over time. The biological meaning of the sporulation parameters 298 

was experimentally assessed, providing both quantitative and qualitative information at the 299 

physiological level on the sporulation process. The sporulation parameters revealed that at 300 

suboptimal sporulation temperatures (eg. 49°C), vegetative cells commit to sporulation more 301 

synchronously, in lower amounts and belatedly than at optimal temperature (eg. 40°C). In the 302 

literature, few data are available on the time needed to complete the sporulation process and 303 

on the temporal behavior of vegetative cells for sporulation, according to environmental 304 

conditions of culture. The procedure we set to experimentally estimate the sporulation 305 

parameters experimentally offers new opportunities to better assess and understand spore 306 

formation across environmental conditions.  307 

 308 

Materials and methods 309 

 310 
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Biological material and strain storage 311 

 312 

The prototrophic B. subtilis BSB1 strain, a trp
+
 derivative of B. subtilis 168, was used 313 

in this work (41, 42). The BSB1 derivative strain carrying the PspoIIAA gfp transcriptional 314 

fusion was built by transformation of genomic DNA from strain AC699 (kindly provided by 315 

Arnaud Chastanet, Micalis Institute, Jouy-en-Josas, France) using natural competence. Strain 316 

AC699 is a RL2792 derivative of the PY79 B. subtilis strain (43) containing the gfpmut2 gene 317 

under the control of the spoIIAA promoter (amyE::PspoIIAA gfp / cat), which is a marker of the 318 

early stage of sporulation and controls the initiation of sporulation. The transcription of this 319 

gene is not subject to intrinsic noise, which means that the heterogeneity of activation of this 320 

gene is not due to stochastic processes but is correlated to the sensing of the environment  321 

(44). The GFPmut2 is stable for 7 days  and in a pH range of 5.0 to 10.0 (45–47). 322 

 323 

Concerning the transformation procedure, B. subtilis was grown overnight on Luria 324 

Bertani plates, (Difco
TM

, Becton, Dickinson and Company) at 37 °C. After incubation, a 325 

colony was re-suspended in MG1 medium composed of MG medium (2g/L (NH4)2SO4, 1 g/L 326 

Na3C6H5O7, 14 g/L K2HPO4 ,3H2O, 6 g/L KH2PO4, 0.5% Glucose and 15.6 mM MgSO4) with 327 

an added 0.025% casamino acids and 0.1%, yeast extract for 4 h 30 min at 37 °C under 200 328 

rpm agitation. A 10-fold dilution was then carried out in MG2 composed of MG medium to 329 

which 0.012% casamino acids, 0.025% yeast extract, MgSO4 25mM  and Ca(NO3)2 8mM had 330 

been added. The suspension was incubated for 1 h 30 min at 37 °C under 200 rpm agitation 331 

(48). 200 µL of the suspension in MG2 was added to 0.1 µL of genomic DNA extracted from 332 

strain AC699 with a High Pure PCR Template Extraction Kit (Roche Dignostics, Meylan, 333 

France) and incubated for 30 minutes at 37 °C. Clones were selected on LB containing 334 

5 µg/mL of chloramphenicol after incubation for 24 h at 37 C. The inability of the PspoIIAA gfp 335 
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strain to degrade starch (as the reporter fusion is inserted in the amyE locus) was also verified 336 

on starch plates with iodine revelation.  337 

 338 

Concerning the storage procedure of B. subtilis strains, each selected colony was 339 

isolated on LB plates and incubated overnight at 37 °C. A colony was re-suspended in Luria 340 

Bertani Broth, Miller (Difco
TM

, Becton, Dickinson and Company) under 100 rpm agitation at 341 

37 °C for 4 hours. From this pre-culture, a 100-fold dilution was performed in 100 mL of LB 342 

broth in flasks, in the same culture conditions for 3 hours. A second dilution was then 343 

performed in the same conditions. When the early stationary phase was reached after a 5-hour 344 

culture, glycerol was added to the bacterial suspension at a final concentration of 25 % w/w in 345 

cryovials. The bacterial cells in cryovials were stored at -80 °C.  346 

 347 

Monitoring the kinetics of growth, sporulation and fluorescence 348 

 349 

Vegetative cells were inoculated from the cryovials at an initial concentration of 1000 350 

CFU/mL in 250 mL flasks filled with 100 mL LB broth, supplemented with sporulation salts 351 

(49). Bacterial cultures were performed under 100 rpm agitation, at 40 °C, which is close to 352 

the optimal growth temperature, and at two suboptimal temperatures for growth and 353 

sporulation (27 °C and 49 °C). The incubation was performed in darkness to prevent 354 

excitation and degradation of the GFP produced by the strain PspoIIAA gfp. 355 

 356 

The growth kinetics were monitored by pouring 1 mL of the relevant dilution into 357 

nutrient agar (Biokar Diagnostics, Beauvais, France). Enumeration of colonies was 358 

performed after incubation of the plates for 24 hours at 37 °C (ISO 7218). Sporulation was 359 

monitored by enumerating cells resistant to a 10-minute heat treatment at 80 °C. The heat 360 

treatment was applied to the suspension samples using the capillary method (8).  361 
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 362 

The green fluorescence emitted by the total suspensions of the wild-type BSB1 (used 363 

as reference for background fluorescence) and PspoIIAA gfp strains was monitored over time. 364 

100 µL of the suspensions obtained in shaking flasks (as previously described) were 365 

distributed in microplates and measurements were performed with a microplate photometer 366 

(VICTOR
TM

 X, PerkinElmer) equipped with an excitation filter at 485 nm and emission filter 367 

at 535 nm for green fluorescence measurement. The duration of the excitation was 1.0 s.  368 

 369 

The growth-sporulation model 370 

 371 

The model of growth and sporulation can be divided into two modules. The vegetative 372 

cells’ growth was described by a classical primary model that has been previously developed: 373 

the modified logistic model of Kono (40) (Equation 1) and the sporulation kinetics were 374 

described from growth kinetics (Equation 2). 375 

ln(𝑁(𝑡𝑖)) = {

ln(𝑁0) , 𝑡𝑖 < 𝜆

ln (
𝑁𝑚𝑎𝑥

1+(
𝑁𝑚𝑎𝑥
𝑁0

)×exp(−µ𝑚𝑎𝑥×(𝑡𝑖−𝜆))
) , 𝑡𝑖 ≥ 𝜆

  (1) 376 

with N0 the concentration of the inoculum (CFU/mL), λ the lag before growth (h), μmax the 377 

maximum vegetative growth rate (h
-1

), and Nmax the maximal concentration of total cells  378 

(CFU/mL). Nmax corresponds to the maximal concentration of vegetative cells reached at the 379 

stationary phase. Once the first spores appear, Nmax corresponds to the total cells, i.e. the 380 

spores and the remaining vegetative cells that have not differentiated into spores. 381 

𝑆(𝑡𝑖) = {
0, 𝑡𝑖 < 𝑡𝑓

𝑆(𝑡𝑖−1) + ([𝑁(𝑡𝑖 − 𝑡𝑓) − 𝑆(𝑡𝑖−1)] × 𝑃(𝑡𝑖 − 𝑡𝑓)), 𝑡𝑖 > 𝑡𝑓
  (2) 382 

where 𝑁(𝑡𝑖 − 𝑡𝑓) are the total cells at time 𝑡𝑖 − 𝑡𝑓 given by equation 1, 𝑆(𝑡𝑖−1) are the spores 383 

at time 𝑡𝑖−1 and 𝑃(𝑡𝑖 − 𝑡𝑓) is the probability of the vegetative cells committing to sporulation 384 

at time 𝑡𝑖 − 𝑡𝑓.  385 
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 386 

The probability to commit to sporulation was defined as the proportion of cells that 387 

commit to sporulation over time. Previous works have shown that vegetative cells of a 388 

bacterial population do not initiate the sporulation at the same time (30). Consequently, the 389 

probability to sporulate evolves over time. In order to describe this evolution, four density 390 

functions (the Gaussian, the Weibull, the Lognormal and the Gamma laws) were evaluated 391 

and compared on four criteria: the biological significance of each-model parameters, the 392 

parsimonious number of parameters and the quality of fit of the kinetics with the RMSE 393 

statistical criterion (see below, equation 8). This led us to choose the Gaussian (or normal) 394 

probability density which was weighted by the maximal proportion Pmax of the vegetative 395 

cells to sporulate (equation 3).  396 

𝑃(𝑡𝑖) = 𝑃𝑚𝑎𝑥 × [
1

𝜎×√2𝜋
× exp(−0.5 × (

𝑡𝑖−𝑡𝑚𝑎𝑥

𝜎×√2
)
2

)](3)   397 

with 𝑃(𝑡𝑖)the probability of forming a spore at time ti (h
-1

), 𝑃𝑚𝑎𝑥 is the maximal proportion 398 

of vegetative cells forming spores (unitless). Pmax was obtained at the time tmax (h) at which 399 

the cell has the maximal probability of initiating sporulation and σ the standard deviation 400 

around tmax (h). Let us note that the maximal probability to sporulate at time tmax 𝑃(𝑡𝑚𝑎𝑥) can 401 

be calculated as follows: 𝑃(𝑡𝑚𝑎𝑥) = 𝑃𝑚𝑎𝑥 ×
1

𝜎×√2𝜋
. 402 

Finally, the sporulation module of the global model of growth and sporulation combines the 403 

equations 2 and 3. 404 

 405 

Methodology to assess the growth and the sporulation parameters 406 

 407 

The growth and the sporulation parameters of the model in equations 1 and 4 were 408 

estimated in a three-step procedure. 409 
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 In the first step, the primary growth model was fitted to the experimental counts (ln 410 

(CFU/mL)) to estimate the growth parameters (N0, λ, µmax and Nmax) with Equation 1. 411 

In the second step, the experimental fluorescence data in log10 (AU) were plotted 412 

against time in order to estimate the mean time taken to initiate the sporulation (tmax) and the 413 

probability scattering σ. We considered that within the population, each cell of strain 414 

PspoIIAA gfp that commits to sporulation produces the same amount of GFP, i.e. has the same 415 

fluorescence intensity. A sporulating cell is composed of a mother cell and a forespore. The 416 

mature spore is released into the medium after lysis of the mother cell. Consequently, the 417 

fluorescence measured in a bacterial population corresponds to the fluorescence emitted by 418 

sporulating cells in addition to the fluorescence of the medium linked to the GFP molecules 419 

released in the medium following the lysis of the mother cell. To simplify the equations, the 420 

fluorescence that would be related to the presence of GFP molecules in the refractive spores is 421 

neglected. Consequently, the accumulation of fluorescence was directly related to the 422 

accumulation of cells that have initiated the sporulation and ultimately, to the accumulation of 423 

spores i.e. the sporulation kinetics.  424 

The auto-fluorescence of the wild-type strain BSB1 was used as the background fluorescence. 425 

The two BSB1 and PspoIIAA gfp strains were concomitantly cultivated. The fluorescence 426 

emitted by strain BSB1 was subtracted from the fluorescence emitted by strain PspoIIAA gfp at 427 

each time point to assess the fluorescence associated with the production of GFP, hereafter 428 

referred as the “fluorescence”. The fluorescence kinetics were fitted with the cumulative 429 

distribution function for the normal distribution (equation 4). This function is used to assess 430 

the probability of a cell initiating the sporulation over time (equation 2 and 3 and Figure 1). 431 

𝐹(𝑡𝑖) = 𝐹𝑚𝑎𝑥 ×
1

2
× (1 + erf (

t𝑖−tmax

σ×√2
)) (4) 432 

with 𝐹(𝑡𝑖) the fluorescence at time ti (AU), Fmax the maximal fluorescence (AU), tmax (h) the 433 

time at which Fmax (UA) is obtained, σ the standard deviation around tmax and erf, the error 434 

function of Gauss. 435 
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In the third step, the time taken to form a spore (tf) and the maximal proportion of 436 

sporulating 𝑃𝑚𝑎𝑥 were estimated: the sporulation curves were fitted with the Gaussian 437 

distribution function (equation 5) modified as follows:  438 

𝑃(𝑡𝑖) = 𝑃𝑚𝑎𝑥 × 𝑁(𝑡𝑖) ×
1

2
× (1 + erf (

t𝑖−t𝑚𝑎𝑥−t𝑓

𝜎×√2
) (5) 439 

with 𝑁(𝑡𝑖) the concentration of total cells (equation 1), tmax (h) the time at which Fmax (UA) 440 

was obtained, 𝑃𝑚𝑎𝑥 was the maximal proportion of sporulating cells, and σ (h) the standard 441 

deviation around tmax (h). Pmax and tmax were estimated in the previous step, by fitting the 442 

fluorescence kinetics in equation 5, and were used as inputs in equation 6 to fit the sporulation 443 

kinetics. The two parameters fitted on the sporulation kinetics were 𝑃𝑚𝑎𝑥 , and the time to form 444 

a spore tf. 445 

 446 

Statistical procedures and analysis 447 

 448 

The growth and sporulation parameters of equations 1 to 6 were estimated by minimizing 449 

the Error Sum of Squares (ESS, fmincon, Optimization Toolbox; MATLAB 7.9.0; The Math-450 

works, Natick, USA) (equation 6). 95% confidence intervals were estimated with the nlparci 451 

function of the Optimization Toolbox (MATLAB 7.9.0; The Math-works, Natick, USA).  452 

𝐸𝑆𝑆 = ∑(𝑦𝑖 − �̂�𝑖)
2               (6) 453 

with 𝑦𝑖 the experimental data for the concentration of total cells or spores (ln (CFU/mL)) or 454 

fluorescence (AU) and�̂�𝑖 the value calculated with the model. 455 

 456 

The goodness of fit of the model was assessed with the RMSE (Root Mean Square 457 

Error): 458 

𝑅𝑀𝑆𝐸 = √
𝐸𝑆𝑆

𝑛−𝑝
               (7) 459 
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with ESS, the Error sum of squares calculated in equation 6, n, the number of experimental 460 

data and p the number of parameters of the model.  461 

 462 

The likelihood ratio test (50) was used to check that the growth and sporulation 463 

kinetics were not significantly different between the wild type BSB1 and PspoIIAA gfp strains. 464 

The growth and sporulation parameters were estimated for both strains. In order to compare 465 

the quality of fit with the model with fitted parameters or inputs, the likelihood ratio (SL) was 466 

calculated as follows (50): 467 

𝑆𝐿 = 𝑛 × 𝑙𝑛 (
𝐸𝑆𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑

𝐸𝑆𝑆𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
)             (8) 468 

where n is the number of experimental data, 𝐸𝑆𝑆𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 is the ESS obtained by fitting 469 

the eight growth and sporulation parameters to the kinetics of the strain PspoIIAA gfp and 470 

𝐸𝑆𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 is the ESS obtained with the same eight kinetics but using the 8 parameters 471 

estimated on strain BSB1 as inputs. The value was compared with the Chi-squared value 472 

(15.51) that corresponds to a degree of freedom of eight and a tolerance threshold α of 5%. 473 
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Table 1. Estimations of the fluorescence, the growth and the sporulation parameters of B. subtilis at 27 °C, 40 °C and 49 °C. Values between brackets 629 

correspond to the confidence intervals (95%) of the estimates (bold values). 630 

 631 
Parameter Meaning Related data 27°C 40°C 49°C 

N0  

(ln (CFU/mL) 

Initial concentration of vegetative 

cells: inoculum size 

 

 

 

Growth 

 

10,2 
[9,6-10,7] 

13,1 
[12,4-13,8] 

11,5 
[11,1-11,9] 

λ (h) Lag before growth 3,1 
[2,2-3,9] 

1,6 
[1,1-2,1] 

1,2 
[0,9-1,4] 

µmax (h
-1

) Maximal growth rate 1,05 
[0,88-1,22] 

1,61 
[1,33-1,88] 

2,90 
[2,48-3,32] 

Nmax  

(ln (CFU/mL) 

Maximal concentration of total 

cells 

20,1 
[19,7-20,4] 

20,0 
[19,8-20,2] 

19,1 
[18,8-19,4] 

Fmax (AU) Maximal fluorescence of the 

bacterial suspension AU 

(485/535nm) 

Fluorescence 4,11 × 10
4
 

[3,85 × 104 -4,35 × 104] 
5,13 × 10

4 

[4,79 × 104 -5,47 × 104] 

9,79 × 10
3
 

[7,39 × 103  -1,22 ×104] 

σ (h) Standard deviation around tmax  

 

 

 

Sporulation 

 

15,9 
[12,5-19,4] 

10,4 
[5,1-15,7] 

6,8 
[-3,3-17,0] 

tmax (h) Time at which the maximal 

probability is reached 

40,0 
[37,2-42,8] 

36,7 
[33,1-40,3] 

11,6 
[3,0-20,2] 

Pmax Maximal proportion of vegetative 

cells sporulating 

8,86 10
-4 

[4,30 × 10-4-1,43 × 10-3] 

2,42 10
-3

 
[9,14 × 10-4 – 3,03 × 10-3] 

4,25 10
-7

 
[1,01 × 10-7-7,51 × 10-7] 

P(tmax) (h
-1

) Maximal probability to sporulate 2,22 × 10
-5 

5,44 ×10
-5

 2,49 × 10
-8

 

tf (h) Time to form a spore from 

commitment to the formation of a 

heat-resistant spore 

7,4 
[7,4-7,4] 

7,0 
[7,0-7,0] 

4,1 
[4,0-4,3] 
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 632 
Figure 1633 
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 634 

Figure 1. Schematic representation of the growth and sporulation model. The bacterial 635 

population of the strain PspoIIAA gfp can be divided into four sub-populations (Figure 1a). 636 

Among the total cells (20 cells in this example), there are the vegetative cells not committed 637 

to sporulation ( ), the vegetative cells that initiate the sporulation process at each time of the 638 

culture ( ) and produce GFP ( ), the vegetative cells already committed to sporulation 639 

(or sporulating cells) ( ) and the mature spores (o) defined as resistant cells in our study ( ) 640 

with its corresponding curve ( ).The proportion of each sub-population is given by the 641 

numbers separated by slashes. In this figure, the vegetative cells (4 cells are inoculated at time 642 

t0) grow until they reach 20 cells at time t2 (following Equation 1). At each time of the culture, 643 

a given proportion of vegetative cells not committed to sporulation yet initiates the 644 

sporulation, what defines the probability to sporulate over time (Figure 1b). Once the 645 

sporulation is initiated, this process takes some time to achieve and form a mature spore, what 646 

defines the time to form a spore. 647 
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 648 

Figure 2649 
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 650 

Figure 2. Fluorescence, growth and sporulation kinetics of B. subtilis at 27°C (a, b and c), 651 

40°C (d, e and f) and 49°C (g, h and i). The values of fluorescence (ᴏ) were fitted with the 652 

normal density function (solid lines in a, d and g) and the corresponding probability densities 653 

(b, e and h) with the three sporulation parameters of Equation 6: Pmax, tmax and σ. The 654 

concentration of total cells (ᴏ) and the concentration of spores () over time were fitted with 655 

the growth sporulation model in equations 1 and 4 (in c, f and i). 656 

657 
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Figure 1. Schematic representation of the growth and sporulation model. The bacterial 

population of the strain PspoIIAA gfp can be divided into four sub-populations (Figure 1a). 

Among the total cells (20 cells in this example), there are the vegetative cells not committed 

to sporulation ( ), the vegetative cells that initiate the sporulation process at each time of the 

culture ( ) and produce GFP ( ), the vegetative cells already committed to sporulation 

(or sporulating cells) ( ) and the mature spores (o) defined as resistant cells in our study ( ) 

with its corresponding curve ( ).The proportion of each sub-population is given by the 

numbers separated by slashes. In this figure, the vegetative cells (4 cells are inoculated at time 

t0) grow until they reach 20 cells at time t2 (following Equation 1). At each time of the culture, 

a given proportion of vegetative cells not committed to sporulation yet initiates the 

sporulation, what defines the probability to sporulate over time (Figure 1b). Once the 

sporulation is initiated, this process takes some time to achieve and form a mature spore, what 

defines the time to form a spore. 
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Figure 2. Fluorescence, growth and sporulation kinetics of B. subtilis at 27°C (a, b and c), 

40°C (d, e and f) and 49°C (g, h and i). The values of fluorescence (ᴏ) were fitted with the 

normal density function (solid lines in a, d and g) and the corresponding probability densities 

(b, e and h) with the three sporulation parameters of Equation 6: Pmax, tmax and σ. The 

concentration of total cells (ᴏ) and the concentration of spores () over time were fitted with 

the growth sporulation model in equations 1 and 4 (in c, f and i). 
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