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Abstract

Designing management policies in ecology and agroecology is complex. Several compo-

nents must be managed together while they strongly interact spatially. Decision choices

must be made under uncertainty on the results of the actions and on the system dynamics.

Furthermore, the objectives pursued when managing ecological systems or agroecosys-

tems are usually long term objectives, such as biodiversity conservation or sustainable crop

production. The framework of Graph-Based Markov Decision Processes (GMDP) is well

adapted to the qualitative modeling of such problems of sequential decision under uncer-

tainty. Spatial interactions are easily modeled and integrated control policies (combining

several action levers) can be designed through optimization. The provided policies are

adaptive, meaning that management actions are decided at each time step (for instance

yearly) and the chosen actions depend on the current system state. This framework has

already been successfully applied to forest management and invasive species manage-

ment. However, up to now, no “easy-to-use” implementation of this framework was avail-

able. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of

new management policies and for comparing policies by simulation. We provide an illustra-

tion of the use of the toolbox on a realistic crop disease management problem: the design of

long term management policy of blackleg of canola using an optimal combination of three

possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to

support expert thinking.

Introduction

Management problems in ecology and agroecology are complex because several components

must be managed together while spatial interactions occur among them. In addition, manage-

ment actions are applied at a local level while the objective is often defined at a larger level. For

instance, for optimizing biodiversity conservation, protection actions may target only a few

species or habitats, while the whole biodiversity is of interest. The choice of the target species/
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habitats depends strongly on the ecological interaction network between the species and habi-

tats [1]. Ecosystem services are usually expected at the regional level, while management

actions are applied at the field level [2, 3]. In agroecology, many processes occur at levels

higher than the field level because interactions take place among landscape components (com-

mercial fields and interstitial spaces) through biotic and abiotic flows. For instance, erosion

problems must be managed collectively at the catchment basin level [4]. In addition, spatial

dispersion of pests and beneficials create spatial dependencies between fields and other habi-

tats [5]. A given proportion of refuge fields must be maintained at the landscape level in order

to limit adaptation of insects to genetically modified Bt crops [6]. Lastly, management of long-

term pesticide durability must be applied at the landscape level for fungicides [7], insecticides

[8], and herbicides [9].

Another feature of these management problems is that the objective is a long-term one: bio-

diversity and production must be preserved in a sustainable way and decisions are not taken

once and for all. Instead, sequences of decisions must be taken without a precise and determin-

istic knowledge of the potentially delayed effects of the decisions on the system [10].

Markov Decision Processes (MDPs [11, 12]) form a suitable framework for modeling and

solving problems of sequential decision under uncertainty. A MDP is defined in terms of state

variables, action variables, transition probability functions and reward functions. Solving a

MDP amounts to finding the policy that optimizes the expected sum of future rewards, over a

given time horizon. There exist several freely available toolboxes for solving Markov Decision

Processes [13–16]. However, their direct application to domains like ecology or agroecology is

difficult when there are a large number of state variables together with a large number of action

variables.

Several approaches have been proposed for solving MDPs with multidimensional state and

action spaces (FA-FMDPs [17–19]). In general, such methods do not compute an optimal

global policy for a given objective, but only an approximate one. A global policy is a set of deci-

sion rules that prescribe the actions to apply in any particular entity (e.g. a field, a species)

depending on the current state of all the considered entities. In practice, computing and even

representing global solution policies for FA-FMDP may quickly become too difficult when the

number of state and action variables increases. In addition, it is not always realistic to assume

that complete knowledge of the values of all state variables is available when deciding the value

of a local management action variable. Therefore, most approaches for solving large

FA-FMDPs have tried to overcome this problem by computing approximate policies which

are local, in the sense that the decision rule prescribes the action to apply locally, based only on

the current states of the few entities in direct interaction.

One such approach is the Graph-based MDP framework (GMDP [20, 21]) and the associate

solution algorithms. In a GMDP, each entity is represented as a node of a graph. To each node

is associated a pair of state / action variables. The graph edges represent local dependencies in

the transition and reward functions. For a fixed policy, the dynamics model is a Dynamic

Bayesian Network [22]. Its graphical representation provides an easy interpretation of the local

dependencies in the GMDP model. Algorithms dedicated to GMDPs usually find “good” local

policies [20, 21], but without any optimality guarantee.

The GMDP framework has already been used to model management problems and to

derive policies in various fields: plant disease management [23], human disease management

[24], forest management [25], and invasive species control [26].

In this article, we present GMDPtoolbox, a Matlab toolbox which is useful for modeling

spatial management problems, for designing and analyzing policies and for comparing given

policies by simulation. It provides implementations of the Approximate Linear Programming
and theMean-Field Approximate Policy Iteration algorithms proposed in [20]. We first briefly
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describe the GMDP framework, as well as the two above-mentioned algorithms. Then, we

describe the functionalities of the toolbox: GMDP solution functions, policy analysis tools and

documentation. Finally we provide an illustration of the use of the toolbox, on a realistic crop

disease management problem: the design of optimal long term management policies (or strate-

gies) of blackleg on canola (UK: Phoma stem canker on oilseed rape), through the use of three

management levers: specific genetic resistance, tillage and cultural control. We show how spa-

tial interactions can be modeled and how collective (at the scale of an agricultural area) and

integrated (combining several action levers) control policies can be proposed to support expert

thinking.

The GMDP framework

As a tutorial example, we describe the GMDP framework with the particular interpretation of

entities as sites of a spatial area. A site can be a crop field, a forest stand, etc. However, interac-

tions in a GDMP are not limited to the modeling of spatial interactions. They can be, for

instance, trophic or ecological interactions.

Definitions

A discrete-time GMDP is defined by a 5-tuple of variables <S, A,N, p, r> (see Table 1 for a list

of variables definition) where:

• S is the state space,

S = S1 × . . . × Sn with Si the finite state space of site i.

Table 1. Variables related to GMDP framework definition.

Variable Definition

n number of sites

i a site number

N set of sites neighbors set, N = {Ni, 8i = 1,. . ., n}

Ni set of neighbors of site i, Ni � {1, . . ., n}

S state space, S = S1 × . . . × Sn

Si finite state space of site i

s, s0 state of all sites, s 2 S, s0 2 S, s = {s1, . . ., sn}, s0i ¼ fs
0
1
; � � � ; s0ng

si; s
0
i state of site i, si 2 Si; s

0
i 2 Si

sNi
state of neighbors of field i, sNi

= {sj, j 2 Ni}

st state of sites at time t, st 2 S

A action space, A = A1 × . . . × An

Ai finite action space of site i

a action performed on all fields, a 2 A

ai action performed on field i, ai 2 Ai

p set of stationary local sites transition probability functions

piðs
0
i jsNi ; aiÞ probability for site i of transitioning to s0i at time t+1 given that at time t the neighborhood of the

site is in state sNi
and action ai is performed at time t

r set of stationary local sites reward functions

ri(sNi
, ai) reward obtained from site i at time t when the neighborhood of site i is in state sNi

and action ai

is performed

δ stationary decision rule or policy, a function δ: S! A assigning an action to every state

vδ(s) infinite horizon discounted value of a policy δ applied with initial state s

γ discount factor

https://doi.org/10.1371/journal.pone.0186014.t001
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• A is the action space,

A = A1 × . . . × An with Ai the finite action space of site i.

• N is the set of sites neighbors set,

N = {Ni, 8i = 1, . . ., n} whereNi� {1, . . ., n} is the set of neighbors of site i. Note that it is pos-

sible that i 2 Ni, but this is not mandatory.

• p is the set of local sites transition probability functions,

p ¼ fpiðs0ijsNi ; aiÞ; 8i ¼ 1; � � � ; n; 8s0i; sNi ; aig, where piðs0ijsNi ; aiÞ is the (stationary) proba-

bility for site i of transitioning to s0i at time t + 1 given that at time t the neighborhood of the

site is in state sNi = {sj, j 2 Ni} and action ai is performed.

The global transition probability is factored according to the local transition probabilities: if

s ¼ ðs1 . . . snÞ; s0 ¼ ðs01 . . . s0nÞ and a = (a1. . .an) are global state and action vectors,

pðs0js; aÞ ¼
Yn

i¼1

piðs
0

ijsNi ; aiÞ; 8s 2 S;8s
0 2 S; a 2 A

• r is the set of local sites reward functions

r = {ri(sNi, ai), 8i = 1, . . ., n, 8sNi, 8ai}
with ri the reward obtained from site i at time t when the neighborhood of site i is in state sNi
and action ai is performed.

The global reward is the sum of the local ones:

rðs; aÞ ¼
Xn

i¼1

riðsNi ; aiÞ; 8s 2 S;8a 2 A:

In a usual MDP [11], a function δ: S! A assigning an action to each state is called a station-
ary decision rule or policy. Once a policy δ is fixed, the MDP defines a stationary Markov Chain

over S, with transitions pδ(s0|s) = p(s0|s, δ(s)). The infinite horizon discounted value vδ(s) of a

policy δ, applied to a MDP with initial state s, is defined as:

vdðsÞ ¼ E
Xþ1

t¼0

gtrðst; dðstÞÞjs0 ¼ s

" #

; 8s 2 S:

The expectation is taken over all possible trajectories hs0, δ(s0), s1, . . ., st, δ(st), . . . i starting

from the initial state s0 and applying policy δ. The discount factor, 0� γ< 1, ensures that the

above infinite sum converges. It also takes into account the fact that there is a difference

between the “future value” of a reward and the “present value” of the same reward. The prob-

lem of finding the optimal policy for a stationary MDP, or solving the MDP, can be written as:

Find d
�
; S! A; s:t: vd� ðsÞ � vdðsÞ;8s 2 S;8d ðS! AÞ :

It has been shown that there always exists an optimal policy [11], and that it can be com-

puted in time polynomial in the size of S and A, using Stochastic Dynamic Programming algo-

rithms such as Policy Iteration and Value Iteration, or Linear Programming algorithms [11].

Since a GMDP is a particular case of MDP, it can be solved using MDP solution algorithms.

However, the complexity of these algorithms, which is polynomial in |S| and |A|, is exponential

in n. Thus, they are impractical when n becomes large. Furthermore, a MDP solution policy, δ:

S! A also takes exponential space to represent.

For all these reasons, only approximate solution policies are usually looked for in GMDP

problems: the search space is limited to a subset of policies that exploit the notion of neighbor-

hood, namely the set of local policies. A policy δ: S! A is said to be local if and only if

GMDPtoolbox: A Matlab library for spatial management policies design
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δ = (δ1, . . ., δn) where δi: SNi! Ai (instead of δi: S! Ai). It means that the choice of the action

applied on site i depends only on the state of its neighbor sites (instead of the state of all sites).

Two algorithms for approximate resolution of GMDP

The two algorithms implemented in GMDPtoolbox provide local policies by approximating

the optimal solution of a GMDP [20]. The first one, referred to as MF-API, exploits the struc-

ture of the neighborhood relationships of the GMDP and computes amean-field approxima-
tion of the value function of a policy. This algorithm belongs to the family of Approximate
Policy Iteration (API) algorithms [27]. The second one is a specific Approximate Linear Pro-
gramming algorithm derived from the general class of ALP algorithms [28] and adapted to the

GMDP framework. Previous experimental comparisons have shown that the two algorithms

provide local policies of similar quality, outperforming naive policies such as greedy or ran-

dom policies. However, the MF-API algorithm provides a higher-quality approximation of the

expected value of the returned policy than the ALP algorithm, which is faster. Thus, the two

methods can be seen as complementary. We refer the reader to [20] for a full description of

these two algorithms and their comparison.

GMDPtoolbox

This section describes i) how the Matlab GMDPtoolbox can be used to model spatial manage-

ment problems; ii) how the value of a policy is computed; and finally iii) how to generate spa-

tio-temporal simulations of the system under the application of a given policy for given initial

states. These aspects are illustrated on a generic toy problem in the domain of crop protection.

Description of a simple epidemiological toy model. For didactic purposes, we consider a

simple implementation of a generic epidemiological toy model with GMDPtoolbox. We con-

sider a situation with 3 commercial fields in which 2 different crops can be sown. One of these

crops induces an important profit, however, it is susceptible to a pathogen, and when infected,

the profit is reduced. A second crop can be sown, instead, which induces a lower profit. This

second crop is not susceptible to the pathogen and induces its elimination from the field (this

is the main interest of this crop). The problem is then to decide a long-term crop policy (or

strategy), at the scale of the landscape (three fields).

Each field can be described by two states: uninfected (coded 1) or infected (coded 2), |Si| =

2,8i = 1, 2, 3. Crop management decisions are taken with a yearly time step and only two

actions can be applied to each field: either the high-profit susceptible crop is sown (coded 1) or

the low-profit resistant one (coded 2), |Ai| = 2,8i = 1, 2, 3. The problem is to identify the policy

that maximizes the expected cumulative profit on a long-term basis. The topology of the con-

sidered area can be represented by a graph (see Fig 1A). In this graph, each node represents a

commercial field. A directed edge between two nodes represents potential contamination

flows. The neighborhood relationships are here symmetric: N1 = {1, 2}, N2 = {1, 2, 3}, N3 = {2,

3}. The GMDP representation of transitions, policies and rewards structures is displayed in

Fig 1B.

Transition probabilities are defined from the following probabilities:

1. the probability p� of long-distance contamination of fields containing susceptible crops,

2. the probability pc that a field containing a susceptible crop be contaminated from an

infected neighboring field.

GMDPtoolbox: A Matlab library for spatial management policies design

PLOS ONE | https://doi.org/10.1371/journal.pone.0186014 October 5, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0186014


The probability that a non-infected field at time step t withmi infected neighboring fields

moves to state infected at time t+1 is then defined by:

p� þ ð1 � p�Þð1 � ð1 � pcÞ
miÞ:

Note that a field can be non-infected either because the non-susceptible crop was used or

because the susceptible one was, but did not get infected by the pathogen. In addition, if a field

was infected at time t and is still sown with the susceptible crop (ai = 1), then the field remains

infected at time t + 1 with probability 1. If a non-susceptible crop is used (ai = 2) at time t then

the field becomes uninfected with probability 1 at t + 1. Profit for each field is impacted by the

nature of the chosen crop (ai = 1, 2), and its state (infected or uninfected). The minimum profit

(noted r0) is obtained when the non-susceptible crop is used (ai = 2), while the maximum

profit (rm + r0) is obtained when the susceptible crop is sown and the field is not infected. An

intermediate profit (rm/2 + r0) is obtained when the susceptible crop is used while the field is

infected. For a field i in state si at time t, the rewards obtained when action ai is performed are

given in Table 2. In order to simplify the analysis of optimal policies, we arbitrarily fixed r0 = 0

in the Toolbox example implementation.

Describing and analyzing a policy. On this toy example the MF-API and the ALP solution

algorithms lead to the same policy (experiments were run with a discount factor equal to 0.95).

This policy can be difficult to interpret since it corresponds to a set of local functions δi from

SNi to Ai. In GMDPtoolbox, one of the proposed visualizations enables to show the proportion

of each action applied for each site, depending on the site state (see Fig 2). From these graphics

Fig 1. Toy epidemiological management problem: (A) graphical representation of the neighborhood

relationships and (B) GMDP transition, reward and policy structures. Blue (respectively red, green)

nodes represent state variables (respectively action variables, reward functions). Blue (respectively red,

green) arrows model the influence on states variables (respectively actions variables, rewards functions).

https://doi.org/10.1371/journal.pone.0186014.g001

Table 2. Reward when field i is in state si at time t and action ai is performed.

ai = 1 ai = 2

si = 1 rm + r0 r0

si = 2 rm/2 + r0 r0

https://doi.org/10.1371/journal.pone.0186014.t002
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we can see that in this very simple example the policy amounts to the following simple rules,

that depend only on the site status and not on the status of the neighboring fields: if field i is

uninfected (site state 1) then use the high-profit susceptible crop (action 1); if field i is infected

(site state 2) then use the low-profit resistant one (action 2).

Simulating the effect of a policy. In GMDPtoolbox, the evolution of the cumulative global

value of the GMDP policy (i.e. the truncated infinite horizon discounted value) can be

obtained by Monte Carlo approximation, using simulations (Fig 3A). The GMDPtoolbox also

provides a graphical representation of the instantaneous global value, i.e. the expectation of the

(discounted) sum of rewards at a given time step, over all sites (Fig 3B).

Fig 2. Toy epidemiological management problem: proportions of neighborhood configurations for which the GMDP policy prescribes action 1

and action 2, at each of the three sites.

https://doi.org/10.1371/journal.pone.0186014.g002

Fig 3. Toy epidemics management problem: (A) cumulative and (B) instantaneous discounted global reward of the GMDP policy, estimated by

Monte Carlo simulation.

https://doi.org/10.1371/journal.pone.0186014.g003
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Other functions enable quantification of the contribution of each site to the cumulative

global value, and the time spent by each site in the different possible states.

General information. GMDPtoolbox relies on the free toolbox graphViz4Matlab for three

functions that display graphs. One of the solution functions relies on the Matlab Optimization

toolbox. Furthermore the two solution functions can be accelerated by using the Matlab Paral-

lel Computing toolbox. A complete description of GMDPtoolbox is available at http://www.

inra.fr/mia/T/GMDPtoolbox and the source code is available from Matlab Central (https://fr.

mathworks.com/matlabcentral/fileexchange/49101-graph-based-markov-decision-processes–

gmdp–toolbox) or the project Forge (https://mulcyber.toulouse.inra.fr/projects/

gmdptoolbox).

Application of the GMDP framework to the long-term collective

management of an airborne disease at the landscape level

Description of the problem

There is a need to limit the structural dependency of European agriculture on pesticides while,

at the same time, to maintain satisfactory levels of production and income for farmers. The use

of resistant cultivars is the cornerstone of Agroecological Protection against plant pathogens.

However, these resistances can be overcome within a few years [29]. There is therefore a need

for tools that help design collective management policies which do not rely only on resistant

cultivar and mobilize several management levers instead.

In order to illustrate the interest of the GMDP framework and GMDPtoolbox in this con-

text, we consider a simplified management problem that focuses on the long-term collective

management of an important disease worldwide: blackleg on canola, caused by the Lepto-
sphaeria maculans / biglobosa complex species [30]. Epidemics of blackleg on canola are initi-

ated by infected stubble, remaining on the soil surface after harvest of canola, and that

produces ascospores after a period of maturation. These spores are wind-dispersed and can

produce leaf spots on seedlings and young canola plants in proper conditions of infection [30].

Once the fungus has infected a leaf, it systematically colonizes the plant and produces a canker,

located at the basal stem and the crown, that develops after winter. Control of blackleg on

canola mainly relies on the use of cultivar with specific and/or quantitative resistances and cul-

tural controls. Whenever possible, soil tillage should be adopted to reduce the quantity of avail-

able primary inoculum [31]. Because of spore dispersal, trying to contain the disease at the

field level only is not sufficient. Collective policies at a regional level should be more efficient

and more sustainable.

We designed a qualitative model that represents the impact of cropping practices on epi-

demics of blackleg on canola and the changes over time of a Leptosphaeria maculans popula-

tion. A three-year rotation is assumed for the entire region: fields are successively sown with

canola, then wheat, then barley. This is a typical rotation in France. Primary inoculum is pro-

duced in wheat fields from infected stubble left on the soil surface after the harvest of canola.

Then spores reach neighbor canola fields by dispersion. The genetic structure of the pathogen

population is described in terms of proportion of virulent pathotypes to the considered specific

resistance. Then the qualitative model of the pathogen spatio-temporal dynamics corresponds

to a downgrading of the SIPPOM-WOSR model [32]. This model describes the effects of crop-

ping systems and their spatial arrangement at the landscape level, along with the effects of

weather on the genetic structure of L. maculans populations, epidemics, and yield losses on

canola.

We considered 3 management levers (action variables in the GMDP framework): cultivar

choice (2 choices: with of without a specific resistance), canola management plan (2 choices:

GMDPtoolbox: A Matlab library for spatial management policies design
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favorable or unfavorable to blackleg; these cultural modes differ in terms of soil nitrogen con-

tent, sowing date and sowing density [32, 33]) and tillage (2 choices: plowing or not after the

harvest of canola). Each canola field can thus be managed with 23 = 8 possible options. These

actions are applied to canola fields on a yearly basis. The wheat and barley fields are assumed

to be managed to provide the same annual harvest over years. Using a simple damage function,

yield losses were estimated and the economic performances of cropping practices were calcu-

lated as a function of economic drivers (i.e. crop management cost and canola prices).

The GMDPtoolbox is used to test the effect of 3 contrasted policies corresponding to 3 dif-

ferent attitudes to control blackleg. These policies are compared to the policy computed by the

ALP algorithm (referred to as the GMDP policy). All these policies adapt the action choice on

each field, on a yearly basis, as a function of the neighboring field states or indicators calculated

at the regional scale. The policies are evaluated with regard to the cumulative global gross mar-

gin of farmers in the considered region, on a long term basis.

The GMDP model

The variables of the model are listed in Table 3.

State of field i. The state si of field i is either canola (c), barley (b) or represented by a pair

(Ii, Vi) if the field is sown with wheat (which will contain canola stubbles from previous year),

with

• Ii 2 {1, 2, 3} is the level of inoculum on infected stubble in field i, to be interpreted as low,

medium or high.

• Vi 2 {1, 2, 3} is the level of percentage of virulent spores on infected stubble in field i, to be

interpreted as low, medium or high.

The correspondence between global states numbering and the values taken by Ii and Vi var-

iables is given in Table 4.

Action in field i. For fields in wheat or barley, no specific action is applied. For a field i in

canola, the action ai is a triple (CCi, CMi,Wi) corresponding to

• CCi (cultivar choice) equal to resistant (encoded by 1) or susceptible (encoded by 2).

Table 3. Variables related to the GMDP model of long-term collective management of an airborne dis-

ease at the landscape level.

Variable Definition

Ii level of inoculum on infected stubble in field i, to be interpreted as a low, medium or high number

of ascospores per soil surface unit, associated to a low, medium or high percentage of cankered

area in the stem section at the crown level ([0 25[, [25 50[ and [50 100]; respectively encoded 1,

2, 3).

Vi level of percentage of virulent spores on infected stubble in field i, to be interpreted as a low,

medium or high percentage ([0 5[, [5 50[ and [50 100]; respectively encoded 1, 2, 3).

CCi cultivar choice in canola field i: resistant or susceptible (encoded 1, 2)

CMi crop management in canola field i: cautious practice enabling to decrease the risk of infection

(early sowing date, low soil nitrogen content and low sowing density) or standard one (with a

higher infection risk) (encoded 1, 2).

Wi plowing (tillage operations before canola sowing include plowing) or not in canola field i (encoded

1, 2).

NWi set of neighbor wheat fields of field i sown with wheat.

https://doi.org/10.1371/journal.pone.0186014.t003
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• CMi (crop management). Two crop management plans are considered: practice 1 (cautious)

enables to decrease the risk of infection (with an early sowing date, a low soil nitrogen con-

tent and a low sowing density) while practice 2 (standard crop management) has a higher

infection risk.

• Wi (plowing) equal to 1 if tillage operations before canola sowing include plowing and 2

otherwise.

When the considered field is a wheat field, 9 states are possible (3 possible levels of primary

inoculum production x 3 proportions of virulent spores against a given specific resistance).

Thus, in total, each state variable si has 11 possible values. When a field state variable is in state

“canola”, there are 8 possible action variable values (2 possible tillage operations times 2 possi-

ble cultivar choices times 2 crop managements), while there is only one available action value

when the field is in the 10 other possible states. The correspondence between actions number-

ing and the values taken by CCi, CMi andWi variables is given in Table 5.

Neighborhood relations, N. The fields are modeled as the cells of a regular grid. We define

the neighbors of field i as the four closest fields (north, south, east, west). This results from the

assumption that the landscape experiences only four wind directions (north-south, south-

north, east-west, and west-east).

Transition probability function, p. The succession of events that occur in a field during a

cropping season is represented graphically on Fig 4. When field i in year t is a wheat field, it

will be a barley field the next year, while when field i at year t is a barley field, it will be a canola

field the next year (both transition are deterministic). When field i at year t is a canola field, it

Table 4. Encoding of the 9 possible states when field i is a wheat field.

si Ii Vi

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

7 3 1

8 3 2

9 3 3

https://doi.org/10.1371/journal.pone.0186014.t004

Table 5. Encoding of the 8 possible actions when field i is a canola field.

ai CCi CMi Wi

1 1 1 1

2 1 1 2

3 1 2 1

4 1 2 2

5 2 1 1

6 2 1 2

7 2 2 1

8 2 2 2

https://doi.org/10.1371/journal.pone.0186014.t005
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will be a wheat field the next year, and the transition to pairs ðItþ1
i ;Vtþ1

i Þ is stochastic and

depends on the state of the neighboring fields of i which are in wheat at year t, and on action

ati . In this case, Pðstþ1
i j s

t
Ni
; atiÞ becomes

Pðstþ1
i j s

t
Ni
; atiÞ

¼ PðVtþ1
i ; Itþ1

i j V
t
NWi
; ItNWi

;CCti ;W
t
i ;CM

t
i Þ

¼ PðVtþ1
i j Vt

NWi
; ItNWi

;CCti Þ � PðI
tþ1
i j V

t
NWi
; ItNWi

;CCti ;W
t
i ;CM

t
i Þ

whereNWi is the set of indices of the neighboring fields of i sown with wheat when i is a canola

field. The complete definition of the transition probability function is given in the Supporting

Information S1 Appendix.

Rewards. The yearly reward at the field level is defined as the gross margin: the difference

between the income from crop production selling, and the production costs. Its expression

depends on the cultivated crop (the parameters of the reward function are described in

Table 6): If at time t field i is a wheat field

rðstNi ; a
t
iÞ ¼ biðSIw � CwÞ:

If at time t field i is a barley field

rðstNi ; a
t
iÞ ¼ biðSIb � CbÞ:

If at time t field i is a canola field

rðstNi ; a
t
iÞ ¼

X

stþ1
i

rðsti ; s
tþ1

i ; atiÞpiðs
tþ1

i j s
t
Ni
; atiÞ:

Fig 4. Representation of the succession of events that occur on a field within one year for the three

considered crops.

https://doi.org/10.1371/journal.pone.0186014.g004
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with

rðsti ; s
tþ1
i ; atiÞ ¼ bi½YðCCti ;CM

t
i Þ � ð1 � RYLðI

tþ1
i Þ � pc � CCMðCMt

i Þ � CWðW
t
i Þ:

We considered 500 m x 500 m square fields. This choice is justified by the fact that canola

fields further than 500 m away from primary inoculum sources are considered safe with

regards to major Lepstophaeria maculans infections [34]. With this size of fields, only neigh-

boring fields with infected stubble at soil surface can infect a given canola field. Income from

wheat and barley fields (2008-2012 French average yield times 2008-2012 average selling

price), as well as canola selling price, were taken from a FAO database (http://faostat3.fao.org).

Production costs for wheat and barley fields were estimated by adding operating costs and

mechanization labor costs [35]. Attainable canola yields with different crop management plans

and cultivar susceptibilities were hypothesized. The three relative yield losses were calculated

using the damage function proposed by [32] assuming a Disease Index of 1, 3, and 7 for low,

medium and high inoculum levels respectively. Costs of canola management plans were esti-

mated by associating cropping operations [36] with their costs [35] and adding them up (see

Table 6).

The three contrasted policies and the GMDP policy

We consider 3 contrasted policies that correspond to very distinct crop management policies

for canola. The first one, the cultural control policy, never uses the resistant cultivar and always

applies the canola management plan which is the least favorable to blackleg together with

plowing: CC = 2, CM = 1,W = 1. On the contrary, the systematic policy relies on a permanent

use of the resistant cultivar, without plowing and with standard canola management plan:

Table 6. Parameters defining the reward function in the GMDP model of management of blackleg on canola.

Parameter Definition Unit Value Source

βi surface area of field i ha 25 [34]

SIb income from barley fields €.ha-1 1040.20 http://faostat3.fao.org

Cb barley production cost €.ha-1 654 [35]

SIw income from wheat fields €.ha-1 1184.27 http://faostat3.fao.org

Cw wheat production cost €.ha-1 714 [35]

Y(1, 1) attainable canola yield with resistant cultivar and cautious canola management plan kg.ha-1 3000 hypothetical value derived from

http://faostat3.fao.org

Y(1, 2) attainable canola yield with resistant cultivar and standard canola management plan kg.ha-1 3500 hypothetical value derived from

http://faostat3.fao.org

Y(2, 1) attainable canola yield with sensitive cultivar and cautious canola management plan kg.ha-1 3500 hypothetical value derived from

http://faostat3.fao.org

Y(2, 2) attainable canola yield with sensitive cultivar and standard canola management plan kg.ha-1 4000 hypothetical value derived from

http://faostat3.fao.org

RYL(1) canola relative yield loss for low injury (level 1) - 0.0133 [32]

RYL(2) canola relative yield loss for medium injury (level 2) - 0.0735 [32]

RYL(3) canola relative yield loss for high injury (level 3) - 0.3283 [32]

πc canola selling price €.kg-1 0.35 http://faostat3.fao.org

CCM(1) cost of cautious canola management plan €.ha-1 637 [35, 36]

CCM(2) cost of standard canola management plan €.ha-1 681 [35, 36]

CW(1) additional cost of plowing €.ha-1 64 [35]

CW(2) additional cost without plowing €.ha-1 0 [35]

https://doi.org/10.1371/journal.pone.0186014.t006
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CC = 1, CM = 2,W = 2. Finally, the integrated policy is adaptive: if a canola field has no neigh-

bor fields in wheat then the chosen cultivar is sensitive, associated to a standard canola man-

agement plan and simplified tillage (action CC = 2, CM = 2,W = 2). Otherwise, if either the

maximal level of inoculum or the maximal percentage of virulent spores among the neighbor

fields in wheat is in the highest state (i.e. 3), cautious decisions are applied: use of resistant cul-

tivar associated to cautious canola management plan and plowing after harvest of canola

(CC = 1, CM = 1,W = 1). In all other situations, the sensitive cultivar is used, in association

with the canola management plan least favorable to blackleg together with plowing (action

CC = 2, CM = 1,W = 1).

It is not straightforward to interpret the optimized GMDP policy from its expression as a

function, since the sum over fields of the possible states of the neighborhood is equal to

980,000. We observed that the advocated action (when the field is sown with canola) is to

choose sensitive cultivar, standard canola management plan and simplified tillage (action

CC = 2, CM = 2,W = 2) for 88% of the cases and to add plowing (action CC = 2, CM = 2,

W = 1) for the other 12%. To understand what are the characteristics of the neighbor states

that lead to one choice or the other, a CART (Classification And Regression Tree) model was

used (Matlab function fitctree). We obtained that the GMDP policy was very well summarized

by the following rule (precision of the CART model was of 97%).

IF (i) the average of the level of inoculum is low (�I tNWi
¼ 1) and the average of the level of

virulent spores is not high ( �Vt
NWi

< 3) or (ii) the average of the level of inoculum is low

(�I tNWi
¼ 1) and the average of virulent spores is high ( �Vt

NWi
¼ 3) and less than 4 neighbor fields

are in wheat or (iii) the average of the level of inoculum is medium (�I tNWi
¼ 2) and the average

of virulent spores is medium ( �Vt
NWi
¼ 2) and only one neighbor field is in wheat

THEN cultivar is sensitive, associated to a standard canola management plan and simplified

tillage (action CC = 2, CM = 2,W = 2)

ELSE add plowing (action CC = 2, CM = 2,W = 1).

It can be noted that the long-term optimized GMDP policy does not make use of the culti-

var resistance but relies on plowing.

Comparison of policies’ long term efficiency

We considered a regular grid of 10 by 10 fields. The first year, the land use is as follows: the top

left field is in canola, and from left to right and top to bottom we repeat the same pattern,

canola then wheat then barley. Then crop rotation applies yearly as described above. In this

configuration, a canola field always has 2 wheat neighbors and 2 barley neighbors. The first

year, all wheat fields have a low inoculum production level and a low percentage of virulent

spores. For each of the 4 policies tested, we simulated 100 trajectories of length 100 of the

GMDP model. Average proportions of use of each action and average proportions of state of

wheat fields are plotted on Fig 5.

Code and results are available from FigShare (https://dx.doi.org/10.6084/m9.figshare.

3759465.v1).

We observed that even though the integrated policy prescribed the use of resistant cultivar

for certain states of the neighborhood, these states were never reached in the simulations and

the integrated policy was able to maintain low levels of both inoculum and virulent spores pro-

portion. So in practice, the integrated, cultural control and GMDP policies succeeded in avoid-

ing the development of blackleg without using the resistant cultivar while, as expected, under

the systematic policy, the resistance was broken down and the inoculum level reached state 3

(see Fig 6). With the GMDP policy, the state medium level of inoculum and low percentage of
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virulent spores (I = 2, V = 1) was sometimes reached, which is not the case with the integrated
and the cultural control policies. But the mean value of reward per field and per year of the

GMDP policy (2503 €) was 10% larger than that of the integrated (2259 €) and cultural control
(2256 €) policies and 44% larger than that of the systematic policy (1735 €). These results

depend on the underlying assumptions of our model (in particular, that the dynamics of the

disease are perfectly described by the GMDP transition model). Also, it is assumed that: i)

there is a perfect knowledge of the status of each single field; ii) there is a regional coordinated

decision-making; iii) fields are evenly sized and evenly spaced apart; iv) weather conditions are

always conducive to sporulation; v) there is no cost to access information. These assumptions

are obviously strong, but they allow to simply model the behaviour of epidemics at a regional

scale. Further modeling developments could be made ni order to address these shortcomings.

They also depend on the parameters values used for the simulations (described in Table 6). An

analysis of the sensitivity of the GMDP policy and the contrasted ones to the model parameters

values could point out situations where the use of the resistant cultivar is useful.

Conclusion

In this article, we have presented the first toolbox dedicated to the Graph-Based Markov Deci-

sion Process (GMDP) framework. GMDPtoolbox provides a Matlab structure to encode

GMDP problems, as well as modeling tools, solution algorithms, and analysis tools for

Fig 5. Proportion of use of each action modality, in average over 100 simulations of 100 years of

blackleg dynamics. A bar indicates the proportion of times modality 1 of a given action is applied in a canola

field. Modality 1 for actions CC, CM and W corresponds respectively to the choice of the resistant cultivar, the

application of a canola management plan unfavorable to blackleg, and plowing.

https://doi.org/10.1371/journal.pone.0186014.g005
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evaluating and comparing policies (arbitrary policies or obtained by the provided GMDP solu-

tion algorithms). In addition, GMDPtoolbox provides a didactic toy example and an illustra-

tive example describing a problem of sustainable collective management of plant disease at the

landscape scale. This toolbox completes the set of available toolboxes for solving factored

MDP. SPUDD [37] and APRICODD [38] are JAVA softwares implementing respectively

exact and approximate solution approaches to FMDP, based on Algebraic Decision Diagrams.

The aGrUM C++ library [39] also implements solution algorithms for factored MDP. A limit

of these toolboxes is that they use frameworks and algorithms that can handle only a flat repre-

sentation of the action space, while in GMDPtoolbox, the action space is multidimensional. In

the blackleg of canola problem, it would mean to choose a global action among 8100 instead of

choosing 100 actions each among 8 possible ones with the GMDP model. This is clearly not

tractable. The F3MDP Matlab solver [19] removes this limitation, and can model any FA-MDP

not just GMDP. However, the computational time for resolution is in general longer than with

GMDPtoolbox.

GMDPtoolbox can be useful for two different types of users. Researchers in Artificial Intel-

ligence can test newly developed algorithms for sequential decision in spatial context and com-

pare them with the algorithms provided in the toolbox, on the included examples (using, for

example, the toolbox analysis functions). They can also use the toolbox for teaching purposes.

Modelers can use it to support experts thinking, in many applied fields (including ecology

and agriculture). The process of modeling an applied management problem in the GMDP

framework and building transition and reward functions is already useful by itself to better

understand the considered problems. This is something that we observed with specialists of

Fig 6. Distribution of wheat field states, in average over 100 simulations of 100 years of blackleg

dynamics. Axis I indicates the level of inoculum production in the field (1 = low, 2 = medium, 3 = high), and

axis V indicates the percentage of virulent spores in the inoculum (1 = low, 2 = medium, 3 = high).

https://doi.org/10.1371/journal.pone.0186014.g006
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forestry management [25], plant disease control [23] or ecology [26]. Then, the analysis of the

solutions (policies) obtained by applying GMDP solution algorithms gives a further insight on

the studied problem and sometimes generates new ways of managing spatio-temporal pro-

cesses, or confirm the quality of the proposed expert policies.

Several extensions of GMDPtoolbox can be explored. The first one is to include the GMDP

solution algorithm proposed by [21]. It is based on approximate Value Iteration and approxi-

mates the value function using a Belief Propagation algorithm. Another natural extension

would be to develop an R version of the toolbox. The R language, initially developed for statis-

tical analysis, is a GNU language which is now widely used by modelers, to perform computa-

tion and data analysis. An R version of GMDPtoolbox would allow to target a larger

community of modeler scientists.

To conclude, we have illustrated the usefulness of GMDPtoolbox for modeling and solving

problems of management in agroecology. The scope of applications goes beyond this field

since the interactions do not need to be spatial interactions. The framework is also adapted for

example to networks of social relationships like in viral marketing applications [21] or to com-

puter networks like in computer virus control.

Supporting information

S1 Appendix. Transition probability functions for the GMDP model of management of

blackleg of canola.
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Investigation: Marie-Josée Cros, Jean-Noël Aubertot, Nathalie Peyrard, Régis Sabbadin.
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